文档库 最新最全的文档下载
当前位置:文档库 › 离散数学 第3章 习题解答

离散数学 第3章 习题解答

离散数学 第3章  习题解答
离散数学 第3章  习题解答

第3章 习题解答

3.1 A :③; B :④; C :⑤; D :⑦;E :⑧

3.2 A :③;B :①; C :⑤; D :⑥; E :⑦

3.3 A :①;B :③; C :⑧; D :⑤; E :⑩

分析 对于给定的集合或集合公式,比如说是A 和B ,判别B 是否被A 包含,可以有下述方法:

1° 若A 和B 是通过列元素的方式给出的,那么依次检查B 中的每个元素是否在A 中出现,如果都在A 中出现,则,A B ?否则不是。例如,3.3题给的答案中有{{1,2}}和{1},谁是}}2,1{},1{,{?=S 的子集呢?前一个集合的元素是{1,2},要S 中出现,但后一个集合的元素是1,不在S 中出现,因此,{{1,2}}.S ?

2° 若A 和B 是通过用谓词概括元素性质的主试给出的,B 中元素的性质为P,A 中元素的性质为Q,那么,

“如果P 则Q ”意味着,A B ?

“只有P 才Q ”意味着,B A ?

“除去P 都不Q ”意味着,B A ?

“P 且仅P 则Q ”意味着.B A =

例如,3.1题(1)是“如果P 则Q ”的形式,其中“计算机专业二年级学生”是性质P ,“学《离散数学》课”是性质;题(2)是“P 且仅P 则Q ”的形式,此外

“如果P 就非Q ”则意味着?=B A 。

例如,3.1 题(3)和3.2题(3)都是这种形式。

3° 通过集合运算差别,A B ?如果A B A = ,B A B = ,?=-A B 三个等式中有任何一个成立,则有.A B ?。

4° 通过文氏图观察,如果代表B 的区域落在代表A 的区域内部,则.A B ?。这后两种方法将在后面的解答中给出实例。

3.4 A :②; B :④; C :⑦; D :⑥;E :⑧

3.5 A :②;B :④; C :⑤; D :⑥; E :⑨

3.6 A :①;B :⑨; C :④; D :⑦; E :⑧

3.7 A :④;B :⑨; C :①; D :⑧; E :①

分析 设只买1本、2本及3本书的学生集合分别为21,S S 和3S ,它们之间两两不交,由题意可知,

.55||,

20||323==S S S

又知?=||32S S ,所以, .352055||||||3322=-=-=S S S S

然后列出下面的方程:

140||3||2||321=++S S S

求得10||1=S .因此,没有买书的人数是

75-(10+35+20)=10.

3.8 (1)和(4)为真,其余为假.

分析 这里可以应用集合运算的方法来差别集合之间的包含或相等关系.如题(3)中的条件?=-T S 意味着, T S ?,这时不一定有S=T 成立.而对于题(4),由条件~E SUT =可推出

.

)()()~()(~S T S S T S S T S S S E S SUT S =?=??=?= 这是T S ?的充公必要条件,从而结论为真.

对于假命题都可以找到反例,如题(2)中令}2{},1{},2,1{===M z T S 即可;而对于题(5),只要?≠S 即可.

3.9 (2),(3)和(4)为真,其余为假.

3.10 (1) }.2,1,0{=A

(2) }5,4,3,2,1{=A

(3) }1{-=A

(4),3,0,0,2,1,1,2,0,0,11,0,0,0{><><><><>><<><=A

}0,4,1,3,2,2,3,2,3,1,4,00,3,1,2,2,1><><><><><>><<><><

3.11 (1) c a =或 b c =

(2) 任何b a ,

(3) d c b ==

(4) c b a ==

(5) ?==c a 且}{?=b .

3.12 (1),(2)和(6)都是,A B ?而(3),(4),(5)是A=B.

分析 对于用谓词给定的集合先尽量用列元素的方法表示,然后进行集合之间包含关系的判别.如果有的集合不能列元素,也要先对谓词表示尽可能化简.如题(3)中的A 可化简为

};2|{>∧∈x N x x

题(5)中的A 和B 都可以化简为}2,1{-;题(6)中的

}.21,1{},22|{=≤≤-∧∈=B x N x x A

而对于题(4),不难看出A=B=R,是实数集合.

3.13 (1) }.{},,},,{{c B A d c b a B A ==

}},,{{b a B A =- }.}},,{{d b a B A =⊕

(2) }}.{},,{},{,}},{{{b b a c c b a B A =

},},,{{c b a B A = }},{}},{,{{c b a B A =-

}}.{},{},{{{b c b a B A =⊕

(3) }1,0{},2{,=-==B A B A N B A

}2{-=⊕N B A

(4)观察到,A B ?故

}.1|{,,<∧-∈=-=⊕==x Z R x x B A B A B B A A B A

(5) 观察到?=B A ,故

?=-=B A Z B A }1,0{

A B A =- }1,0{-=⊕N B A

3.14 (1) }}.{,{)(??=A P

(2) }}.1},1{{},1{}},1{{,{)(?=A P

(3) }},2,1{,{}},2{{}},2{{}},2,1{{}},2{{}},1{{},{,{)(?????=A P

}}2{},1{,{}},2,1{},2{{}},2,1{},2{{}},2,1{},1{{}},2{},1{{?

}}2,1}{2{},1{{}},2,1{},2{,{}},2,1{},1{{}},2{},1{,{???,

}}}.2,1{},2{},1{,{?

(4) }}2,1{{}},1{{}},2,1{{}},1{{,{)(?=A P

(5) }.2,1,1}{2,1}{2,1{},1,1{},2{},1{},1{,{)(----?=A P

分析 在做集合运算前先要化简集合,然后再根据题目要求进行计算.这里的化简指的是元素,谓词表示和集合公式三种化简.

元素的化简——相同的元素只保留一个,去掉所有冗余的元素。

谓词表示的化简——去掉冗余的谓词,这在前边的题解中已经用到。

集合公工的化简——利用简单的集合公式代替相等的复杂公式。这种化简常涉及到集合间包含或相等关系的判别。

例如,题(4)中的}}1,2,1{},1,2{},1,1{{=A 化简后得}}2,1{},1{{=A ,而题(5)

中的}

022|{23=+--∧∈=x x x R x x A 化简为}2,1,1{-=A 。

3.15

3.16 (1),(2),(3)和(6)为

真。(4)和(5)不为真。

分析 如果给出的是集合恒等式,可以用两种方法验证。一是分别对等式两边的集合画出文氏图,然后检查两个图中的阴影区域是否一致。二是利用集合恒等式的代入不断对等式两边的集合公式进行化简或者变形,直到两边相等或者一边是另一边的子集为止。例如,题(1)中的等式左边经恒等变形后可得到等式右边,即

C B A C B A ~)()( =-

)()()~()~(C B C A C B C A --==

类似地,对题(2)和(3)中的等式分别有

)~(~)(C B A C B B A =--

)()~()(~C A B A C B A ==

))(C A B A -=

)()()(C A B A C B A --=-

C A B A C A B A ~))(()~()( -=-=

C B A C B A --=-=)(~)(

但对于等式(4),左边经变形后得

))(())()(()()(B A C B A B A B A C B A --=-

=).())((B A C B A C -=-?

易见,,)(C B A C ?- 但不一定有.)(C B A C =- 如令}.1{===C B A 时,等式(4)不为真。类假地,等式(5)的左边经化简后得B C A --)(,而B C A --)(不一定恒等于A-C 。

3.17 (1)不为真。(2),(3)和(4)都为真。对于题(1)举反例如下:令},1{=A },3,2{},2{},4,1{===D C B 则B A ?且B C ?,但D B C A =,与结论矛盾。

分析 (2)由于,~~C D D C ???又由B A ?可得~~,A D B C ? 即C B D A -?-成立。

(3)由于B A A B A =-)(,故有

B A B A B A B A B ??=?-= )(。

这里用到B A ?的充要条件为B A B =或B A B =或.?=-B A

(4)易见,当A=B 成立时,必有A-B=B-A 。反之,由A-B=B-A 得

B A B B B A )()(-=-

化简后得?=-A B ,即A B ?,同理,可证出B A ?,从而得到A=B 。

3.18 由64|)(|=B P 可知|B|=6。又由256|)(|=B A P 知8||=B A ,代入包含排斥原理得

|,|638B A -+=

从而有.752||,2||,1||=+=⊕=-=B A B A B A

3.19 令}.1000000

1|{≤≤∧∈=x N x x S x S x x A ∧∈=|{是完全平方数},

x S x x B ∧∈=|{是完全立方数},

从而有.10||,100||,1000||,1000000

||====B A B A S 代入包含排斥原理得 |||)||(|||||B A B A S B A ++-=

10)1001000(1000000

++-= =998910

离散数学习题(耿素云屈婉玲)

离散数学习题答案 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨?∧ 解:公式的真值表如下:

由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式 1234567m m m m m m m ?∨∨∨∨∨∨ 习题三及答案:(P52-54) 11、填充下面推理证明中没有写出的推理规则。 前提:,,,p q q r r s p ?∨?∨→ 结论:s 证明: ① p 前提引入 ② p q ?∨ 前提引入 ③ q ①②析取三段论 ④ q r ?∨ 前提引入 ⑤ r ③④析取三段论 ⑥ r s → 前提引入 ⑦ s ⑤⑥假言推理 15、在自然推理系统P 中用附加前提法证明下面推理: (2)前提:()(),()p q r s s t u ∨→∧∨→ 结论: p u → 证明:用附加前提证明法。 ① p 附加前提引入 ② p q ∨ ①附加 ③ ()()p q r s ∨→∧ 前提引入 ④ r s ∧ ②③假言推理 ⑤ s ④化简 ⑥ s t ∨ ⑤附加 ⑦ ()s t u ∨→ 前提引入 ⑧ u ⑥⑦假言推理 故推理正确。 16、在自然推理系统P 中用归谬法证明下面推理: (1)前提: p q →?,r q ?∨,r s ∧? 结论:p ?

离散数学第五章

第五章函数Function 函数在数学、应用数学等许多领域,尤其计算机科学领域有着极其重要的作用。函数的思想、概念和应用无处不在,无时不在。 它主要是研究变量之间的关系和规律。函数的划分有很多种。有线性与非线性之分、连续与离散之分。例

如, x12345… y357911… 5.1 函数 假定A,B是两个非空集合,f : A→B,称f为A到B上的函数,对每个a∈A, 有唯一的f(a)∈B, 记做b = f(a)。 函数也叫映射mappings或变换transformations(错误) a叫做函数f的自变量argument,b被称为因变量,b=f(a)叫做函数的值value,也叫a的像。 例1. A={1,2,3,4}, B={a,b,c,d}, ,

则f是一个函数。 也可以简单记为, f={(1,a), (2,a), (3,d), (4,c)} 另外, g={(1,a), (1,b), (2,a), (4,c)} 因为对于1来说,1∈A, 不是唯一的f(1)∈B与之相对应,f(1)=a,并且f(1)=b, 因此g就不是一个函数。 例2. f:Z→Z, f(a)= f是函数。 例3.恒等函数1A(a)=a是函数。 正如,我们在第四章里表述的,函数f : A→B,b=f(a), 是一个特殊的二元关系,我们知道,由函数f可以确定一个关系,简单地,可以表示为(a,b)∈,或 ab。关系的特征函数为 或者简记为 因此,这样一来,我们以前所讨论的有关集合或关系的运算和性质对于函数来说,就可以完全适用。 例如,f:A→B, g:A→B, 函数的复合 设f:A→B,g:B→C,是函数,则g?f:A→C,是函数。 g?f(a)=g(f(a))

离散数学复习题及答案

1. 写出命题公式 ﹁(P →(P ∨ Q ))的真值表。 答案: 2.证明 答案: 3. 证明以下蕴涵关系成立: 答案: 4. 写出下列式子的主析取范式: 答案: 5. 构造下列推理的论证:p ∨q, p →r, s →t, s →r, t q 答案: ) ()(R P Q P ∨∧∧?) ()(R P Q P ∨∧?∨??) )(())(R Q P P Q P ∧?∨?∨∧?∨??) ()()()(R Q R P P Q P P ∧?∨∧?∨∧?∨∧??) ()()(Q R P R P Q R P Q ∧∧?∨?∧∧?∨∧∧??) ()()(P R Q P R Q Q R P ?∧∧?∨∧∧?∨?∧∧?∨) ()()(Q R P R P Q R P Q ∧∧?∨?∧∧?∨∧∧??) (Q R P ?∧∧?∨) ()(Q P Q P Q P ?∧?∨∧??Q) P (Q)(P P) (Q P)P (Q)(Q Q)P (P) Q)P ((Q)Q)P (P) Q (Q)P (Q P ?∧?∨∧?∧∨∧?∨?∧∨?∧??∧∨?∨?∧∨??∨?∧∨???Q Q P P ?∨∧?)() ()(R P Q P ∨∧∧?

①s →t 前提 ②t 前提 ③s ①②拒取式I12 ④s →r 前提 ⑤r ③④假言推理I11 ⑥p →r 前提 ⑦p ⑤⑥拒取式I12 ⑧p ∨q 前提 ⑨q ⑦⑧析取三段论I10 6. 用反证法证明:p →((r ∧s)→q), p, s q 7. 请将下列命题符号化: 所有鱼都生活在水中。 答案: 令 F( x ):x 是鱼 W( x ):x 生活在水中 ))((W(x)F(x)x →? 8. 请将下列命题符号化: 存在着不是有理数的实数。 答案: 令 Q ( x ):x 是有理数 R ( x ):x 是实数 Q(x))x)(R(x)(?∧? 9. 请将下列命题符号化: 尽管有人聪明,但并非一切人都聪明。 答案: 令M(x):x 是人 C(x):x 是聪明的 则上述命题符号化为 10. 请将下列命题符号化: 对于所有的正实数x,y ,都有x+y ≥x 。 答案: 令P(x):x 是正实数 S(x,y): x+y ≥x 11. 请将下列命题符号化: 每个人都要参加一些课外活动。 答案: ))) ()((())()((x C x M x x C x M x →??∧∧?)) ,()()((y x S y P x P y x →∧??

《离散数学》考试题库及答案(三)

《离散数学》考试题库及答案 一、 填空 10% (每小题 2分) 1、 若P ,Q 为二命题,Q P ?真值为1,当且仅当 。 2、 对公式),()),(),((y x xR z x zQ y x yP ?∨?∧?中自由变元进行代入的 公 式 为 。 3、 )) (()(x xG x xF ??∧?的 前 束 范 式为 。 4、 设x 是谓词合式公式A 的一个客体变元,A 的论域为D ,A (x )关于y 的自由的, 则 被称为全称量词消去规则,记为US 。 5、 与非门的逻辑网络为 。 二、 选择 30% (每小题 3分) 1、 下列各符号串,不是合式公式的有( )。 A 、R Q P ?∧∧)(; B 、)()((S R Q P ∧→→; C 、R Q P ∧∨∨; D 、S R Q P ∨∧∨?))((。 2、 下列语句是命题的有( )。 A 、2是素数; B 、x+5 > 6; C 、地球外的星球上也有人; D 、这朵花多好看呀!。 3、 下列公式是重言式的有( )。 A 、)(Q P ??; B 、Q Q P →∧)(; C 、P P Q ∧→?)(; D 、P Q P ?→)( 4、 下列问题成立的有( )。 A 、 若C B C A ∨?∨,则B A ?; B 、若C B C A ∧?∧,则B A ?; C 、若B A ???,则B A ?; D 、若B A ?,则B A ???。 5、 命题逻辑演绎的CP 规则为( )。 A 、 在推演过程中可随便使用前提; B 、在推演过程中可随便使用前面演绎出的某些公式的逻辑结果; C 、如果要演绎出的公式为C B →形式,那么将B 作为前提,设法演绎出C ;

离散数学复习题参考带答案

一、选择题:(每题2’) 1、下列语句中不是命题的有( )。 A .离散数学是计算机专业的一门必修课。 B .鸡有三只脚。 C .太阳系以外的星球上有生物 。 D .你打算考硕士研究生吗? 2、命题公式A 与B 是等价的,是指( )。 A . A 与B 有相同的原子变元 B . A 与B 都是可满足的 C . 当A 的真值为真时,B 的真值也为真 D . A 与B 有相同的真值 3、所有使命题公式P∨(Q∧?R)为真的赋值为( )。 A . 010,100,101,110,111 B . 010,100,101,111 C . 全体赋值 D . 不存在 4、合式公式 (P∧Q)R 的主析取范式中含极小项的个数为( )。 A .2 B .3 C .5 D .0 5、一个公式在等价意义下,下面哪个写法是唯一的( )。 A .析取范式 B .合取范式 C .主析取范式 D .以上答案都不对 6、下述公式中是重言式的有( )。 A .(P ∧Q) (P ∨Q) B .(P Q) (( P Q)∧(Q P)) C .(P Q)∧Q D .P (P ∧Q) 7、命题公式 (P Q) ( Q ∨P) 中极小项的个数为( ),成真赋值的个数为( )。 A .0 B .1 C .2 D .3 8、若公式 (P∧Q)∨(P∧R) 的主析取范式为 m 001∨m 011∨m 110∨m 111 则它的主合取范式为( )。 A .m 001∧m 011∧m 110∧m 111 B .M 000∧M 010∧M 100∧M 101 C .M 001∧M 011∧M 110∧M 111 D .m 000∧m 010∧m 100∧m 101 9、下列公式中正确的等价式是( )。 A .(x)A(x) ( x)A(x) B .(x) (y)A(x, y) (y) (x) A(x, y) C .(x)A(x) (x)A(x) D .(x) (A(x) ∧B(x)) ( x) A(x) ∨(x) B(x) 10、下列等价关系正确的是( )。 A .x ( P(x) ∨Q(x) ) x P(x) ∨x Q(x) B .x ( P(x) ∨Q(x) ) x P(x) ∨x Q(x) C .x ( P(x) Q ) x P(x) Q D . x ( P(x) Q ) x P(x) Q 11、设个体域为整数集,下列真值为真的公式是( )。 A .x y (x·y=1) B .x y (x·y=0) C . x y (x·y=y) D .x y (x+y=2y ) 12、设S={,{1},{1,2}},则有( )S 。 A .{{1,2}} B .{1,2 } C .{1} D .{2} 13、下列是真命题的有( )。 A .{a}{{a}} B .{{}}{,{}} C .{,{}} D .{}{,{}}

离散数学习题

第一章习题 1.1判断下列语句是否为命题,若是命题请指出是简单命题还是复合命题。(1)2是无理数。 (2)5能被2整除。 (3)现在开会吗? (4)x+5>0 (5)这朵花真是好看! (6)2是素数当且仅当三角形有三条边。 (7)雪是黑色的当且仅当太阳是从东方升起。 (8)2000年10月1日天气晴好。 (9)太阳系以外的星球上有生物。 (10)小李在宿舍里。 (11)全体起立。 (12)4是2的倍数或是3的倍数。 (13)4是偶数且是奇数。 (14)李明和王华是同学。 (15)蓝色和黄色可以调配成绿色。 1..2 将上题中的命题符号化,并讨论他们的真值。 1.3判断下列各命题的真值。 (1)若2+2=4,则3+3=6; (2)若2+2=4,则3+3≠6; (3)若2+2≠=4,则3+3=6; (4)若2+2≠=4,则3+3≠=6; (5)2+2=4,当且仅当3+3=6; (6)2+2=4,当且仅当3+3≠6; (7)2+2≠4,当且仅当3+3=6; (8)2+2≠4,当且仅当3+3≠6; 1.4将下列命题符号化,并讨论其真值。 (1)如果今天是1号,则明天是2号; (2)如果今天是1号,则明天是3号; 1.5将下列命题符号化。 (1)2是偶数不是素数; (2)小王不但聪明而且用功; (3)虽然天气冷。老王还是来了; (4)他一边吃饭,一边看电视; (5)如果天下大雨,他就乘公交汽车来; (6)只有天下大雨,他才乘公交汽车来; (7)除非天下大雨,否则他不乘公交汽车来; (8)不经一事,不长一智; 1.5设p,q的真值为0 ,r,s的真值为1,求下列命题公式的真值。(1)p∨(q∧r);

离散数学习题解答(第五章)格与布尔代数

离散数学习题解答 习题五(第五章 格与布尔代数) 1.设〈L ,?〉是半序集,?是L 上的整除关系。问当L 取下列集合时,〈L ,?〉是否是格。 a) L={1,2,3,4,6,12} b) L={1,2,3,4,6,8,12} c) L={1,2,3,4,5,6,8,9,10} [解] a) 〈L ,?〉是格,因为L 中任两个元素都有上、下确界。 b) 〈L ,?〉不是格。因为L 中存在着两个元素没有上确界。 例如:8 12=LUB{8,12}不存在。 c) 〈L ,?〉不是格。因为L 中存在着两个元素没有上确界。 1 6 3 1 2 4 8 63 1 2 4 1 1

倒例如:46=LUB{4,6}不存在。 2.设A ,B 是两个集合,f 是从A 到B 的映射。证明:〈S ,?〉是〈2B ,?〉的子格。其中 S={y|y=f (x),x ∈2A } [证] 对于任何B 1∈S ,存在着A 1∈2A ,使B 1=f (A 1),由于f(A 1)={y|y ∈B ∧(x)(x ∈A 1∧f (x)=y)}?B 所以B 1∈2B ,故此S ?2B ;又B 0=f (A)∈S (因为A ∈2A ),所以S 非空; 对于任何B 1,B 2∈S ,存在着A 1,A 2∈2A ,使得B 1=f (A 1),B 2=f (A 2),从而 L ∪B{B 1,B 2}=B 1∪B 2=f (A 1)f (A 2) =f (A 1∪A 2) (习题三的8的1)) 由于A 1∪A 2?A ,即A 1∪A 2∈2A ,因此f (A 1∪A 2)∈S ,即上确界L ∪B{B 1,B 2}存在。 对于任何B 1,B 2∈S ,定义A 1=f –1 (B 1)={x|x ∈A ∧f (x)∈B 1},A 2=f -1 (B 2)={x|x ∈A ∧f (x)∈B 2},则A 1,A 2∈2A ,且显然B 1=f (A 1),B 2=f (A 2),于是 GLB{B 1,B 2}=B 1∩B 2=f (A 1)∩f (A 2) ?f (A 1∩A 2) (习题三的8的2)) 又若y ∈B 1∩B 2,则y ∈B ,且y ∈B 2。由于y ∈B 1=f (A 1)={y|y ∈B ∧(x)(x ∈A 1∧f (x)=y)},于是存在着x ∈A 1,使f (x)=y ,但是f (x)=y ∈B 2。故此x ∈A 2=f -1 (B 2)={x|x ∈A ∧f(x)∈B 2},因此x ∈A 1∩A 2,从而y=f (x)∈f (A 1∩A 2),所以 GLB{B 1,B 2}=B 1∩B 2=f (A 1)∩f (A 2) ?f (A 1∩A 2) 9 7 31

离散数学第5章作业答案

第5章作业答案 1. 用枚举法给出下列集合 解(2) {-3,2} (4) {5,6,7,8,9,10,11,12,13,14,15} 2. 用抽象法说明下列集合 解(6) {x|?k (k∈I∧x = 2k + 1)} 6.写出下列集合的幂集 解(2) ρ({1, ?}) = {?, {1}, {?}, {1, ?}} (4) ρ({?, {a}, {?}}) = {?, {?}, {{a}}, {{?}}, {?, {a}}, {?, {?}}, {{a}, {?}}, {?, {a}, {?}}} 9. 证明:如果B?C,则ρ(B) ?ρ(C)。 证明任取x∈ρ(B),则x?B,又因为B?C,所以x?C,x∈ρ(C)。 10.设U = {1, 2, 3, 4, 5},A = {1, 4},B = {1, 2, 5}和C = {2, 4},试写出下列集合。解(8) ρ(A) -ρ(C) = {?, {1}, {4}, {1, 4}} - {?, {2}, {4}, {2, 4}} = {{1}, {1, 4}} 11.证明下列恒等式 (7) (A-B) -C = (A-C) - (B-C) 证法1 对于任意x, x∈ (A-C) - (B-C) ?x∈A-C ∧x? B-C ?x∈A∧x?C ∧?(x∈ B∧x?C) ? x∈A∧x?C ∧ ( x?B ∨ x∈C) ?( x∈A∧x?C ∧ x?B)∨( x∈A∧x?C ∧ x∈C) ? x∈A∧x?C ∧ x?B ? x∈A∧ x?B∧x?C ? x∈A-B ∧ x?C ? x∈(A-B) -C 证法2 (A-C) - (B-C) = A?~C?~( B?~C) = A?~C? (~ B? C) = ( A?~C?~ B) ?( A?~C? C) =(A?~C?~ B) ?? = A?~B?~ C = (A-B) ?~ C = (A-B) -C 12.设A, B, C是集合,下列等式成立的条件是什么? (3) (A-B ) ? (A-C) = ? 解因为(A- B) ?( A-C) = (A?~B) ? ( A?~C) = A? (~B?~C) = A?~(B ?C) = A- (B ?C) 所以(A-B)?(A-C) = ?iff A- (B?C) = ?iff A? (B?C)

离散数学课后习题答案(左孝凌版)

离散数学课后习题答案(左孝凌版) 1-1,1-2解: a)是命题,真值为T。 b)不是命题。 c)是命题,真值要根据具体情况确定。 d)不是命题。 e)是命题,真值为T。 f)是命题,真值为T。 g)是命题,真值为F。 h)不是命题。 i)不是命题。 (2)解: 原子命题:我爱北京天安门。 复合命题:如果不是练健美操,我就出外旅游拉。 (3)解: a)(┓P ∧R)→Q b)Q→R c)┓P d)P→┓Q (4)解: a)设Q:我将去参加舞会。R:我有时间。P:天下雨。 Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。 c) 设Q:一个数是奇数。R:一个数不能被2除。 (Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解: a)设P:王强身体很好。Q:王强成绩很好。P∧Q b)设P:小李看书。Q:小李听音乐。P∧Q c)设P:气候很好。Q:气候很热。P∨Q d)设P: a和b是偶数。Q:a+b是偶数。P→Q e)设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P Q f)设P:语法错误。Q:程序错误。R:停机。(P∨ Q)→ R (6) 解: a)P:天气炎热。Q:正在下雨。 P∧Q b)P:天气炎热。R:湿度较低。 P∧R c)R:天正在下雨。S:湿度很高。 R∨S d)A:刘英上山。B:李进上山。 A∧B e)M:老王是革新者。N:小李是革新者。 M∨N f)L:你看电影。M:我看电影。┓L→┓M g)P:我不看电视。Q:我不外出。 R:我在睡觉。 P∧Q∧R h)P:控制台打字机作输入设备。Q:控制台打字机作输出设备。P∧Q 1-3 (1)解:

离散数学例题整理

第一章 定律证明: (1) A?B=B?A (交换律) 证?x x∈A?B ? x∈A 或x∈B, 自然有x∈B 或x∈A ? x∈B?A 得证A?B?B?A. 同理可证B?A?A?B. (2) A?(B?C)=(A?B)?(A?C) (分配律) 证?x x∈A?(B?C) ? x∈A或(x∈B且x∈C ) ?(x∈A或x∈B)且(x∈A或x∈C) ?x∈(A?B)?(A?C) 得证A?(B?C)?(A?B)?(A?C). 类似可证(A?B)?(A?C)?A?(B?C). (3) A?E=E (零律) 证根据并的定义, 有E?A?E. 根据全集的定义, 又有A? E?E. (4) A?E=A (同一律) 证根据交的定义, 有A?E?A. 又, ?x x∈A, 根据全集E的定义, x∈E, 从而x∈A且x∈E, ?x∈A?E 得证A?A?E. 例4 证明A?(A?B)=A(吸收律) 证利用例3证明的4条等式证明 A?(A?B) = (A?E)?(A?B) (同一律) = A?(E?B) (分配律) = A?(B?E) (交换律) = A?E (零律) = A (同一律) 例5 证明(A-B)-C=(A-C)-(B-C) 证(A-C)-(B-C) = (A ?~C) ? ~(B ? ~C) (补交转换律) = (A ?~C) ? (~B ? ~~C) (德摩根律) = (A ?~C) ? (~B ? C) (双重否定律) = (A ?~C? ~B)?(A ?~C? C) (分配律) = (A ?~C? ~B)?(A ??) (矛盾律) = A ?~C? ~B (零律,同一律) = (A ?~B) ? ~C (交换律,结合律)

离散数学 第5章 习题解答

第5章 习题解答 5.1 A:③; B:⑥; C:⑧; D:⑩; E:⑨ 分析 S 为n 元集,那么有个元素.S 上的一个二元运算就是函数 S S ?2n .这样的函数有个.因此上的二元运算有个. S S S f →?:2n n },{b a 162 =n n 下面说明通过运算表判别二元运算性质及求特导元素的方法. 1 °交换律 若运算表中元素关于主对角线成对称分布,则该运算满足交换律. 2 °幂等律 设运算表表头元素的排列顺序为如果主对角线元,,,21n x x x 素的排列也为 则该运算满足幂等律. ,,,21n x x x 其他性质,如结合律或者涉及到两个运算表的分配律和吸收律,在运算表中没有明显的特征,只能针对所有可能的元素等来验证相关的算律是否成立. z y x ,,3 ° 幺元设运算表表头元素的排列顺序为如果元素所在的.e ,,,21n x x x i x 行和列的元素排列顺序也是则为幺元. ,,,21n x x x i x 4 ° 零元如果元素所在的行和列的元素都是,则是零元. .θi x i x i x 5 ° 幂等元.设运算表表头元素的排列顺序为如果主对角线上,,,21n x x x 第个元素恰 为那么是幂等元.易见幺元和零元都是幂等元. i },,2,1{n i x i ∈i x 6 ° 可逆元素及其逆元.设为任意元素,如果所在的行和列都有幺元,并i x i x 且这两个幺元关于主对角线成对称分布,比如说第行第列和第行第列的两i j j i 个位置,那么与互为逆元.如果所在的行和列具有共同的幺元,则幺元一j x i x i x 定在主对角线上,那么的逆元就是自己.如果所在的和地或者所在的列没i x i x i x 有幺元,那么不是可逆元素.不难看出幺元一定是可逆元素,且;而零i x e e e =-1元不是可逆元素. θ以本题为例,的运算表是对称分布的,因此,这三个运算是可交换的, 321,,f f f

离散数学习题解答(第五章)格与布尔代数教学文案

离散数学习题解答(第五章)格与布尔代数

仅供学习与交流,如有侵权请联系网站删除 谢谢2 离散数学习题解答 习题五(第五章 格与布尔代数) 1.设〈L ,?〉是半序集,?是L 上的整除关系。问当L 取下列集合时,〈L ,?〉是否是格。 a) L={1,2,3,4,6,12} b) L={1,2,3,4,6,8,12} c) L={1,2,3,4,5,6,8,9,10} [解] a) 〈L ,?〉是格,因为L 中任两个元素都有上、下确界。 b) 〈L ,?〉不是格。因为L 中存在着两个元素没有上确界。 例如:8 12=LUB{8,12}不存在。 6 3 1 6 3 1 1

仅供学习与交流,如有侵权请联系网站删除 谢谢3 c) 〈L ,?〉不是格。因为L 中存在着两个元素没有上确界。 倒例如:4⊕6=LUB{4,6}不存在。 2.设A ,B 是两个集合,f 是从A 到B 的映射。证明:〈S ,?〉是 〈2B ,?〉的子格。其中 S={y|y=f (x),x ∈2A } [证] 对于任何B 1∈S ,存在着A 1∈2A ,使B 1=f (A 1),由于f(A 1)={y|y ∈ B ∧(?x)(x ∈A 1∧f (x)=y)}?B 所以B 1∈2B ,故此S ?2B ;又B 0=f (A)∈S (因为A ∈2A ),所以S 非空; 对于任何B 1,B 2∈S ,存在着A 1,A 2∈2A ,使得B 1=f (A 1),B 2=f (A 2),从而 L ∪B{B 1,B 2}=B 1∪B 2=f (A 1)f (A 2) =f (A 1∪A 2) (习题三的8的1)) 由于A 1∪A 2?A ,即A 1∪A 2∈2A ,因此f (A 1∪A 2)∈S ,即上确界L ∪B{B 1,B 2}存在。 对于任何B 1,B 2∈S ,定义A 1=f –1(B 1)={x|x ∈A ∧f (x)∈B 1},A 2=f -1 (B 2)={x|x ∈A ∧f (x)∈B 2},则A 1,A 2∈2A ,且显然B 1=f (A 1),B 2=f (A 2),于是 GLB{B 1,B 2}=B 1∩B 2=f (A 1)∩f (A 2) ?f (A 1∩A 2) (习题三的8的2)) 又若y ∈B 1∩B 2,则y ∈B ,且y ∈B 2。由于y ∈B 1=f (A 1)={y|y ∈B ∧(?x)(x ∈A 1∧f (x)=y)},于是存在着x ∈A 1,使f (x)=y ,但是f 7 1

离散数学课后习题答案第二章

第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有2=(x+)(x). (2) 存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合. 解: F(x): 2=(x+)(x). G(x): x+5=9. (1)在两个个体域中都解释为) ?,在(a)中为假命题,在(b)中为真命题。 (x xF (2)在两个个体域中都解释为) (x ?,在(a)(b)中均为真命题。 xG 4. 在一阶逻辑中将下列命题符号化: (1) 没有不能表示成分数的有理数. (2) 在北京卖菜的人不全是外地人. 解: (1)F(x): x能表示成分数 H(x): x是有理数 命题符号化为: )) x x∧ ? ?? F ( ) ( (x H (2)F(x): x是北京卖菜的人 H(x): x是外地人 命题符号化为: )) x F H x→ ?? (x ) ( ( 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快. (3) 不存在比所有火车都快的汽车. 解: (1)F(x): x是火车; G(x): x是轮船; H(x,y): x比y快 命题符号化为: )) F x G y x→ ? ? y ∧ )) ( , ( ) x ((y ( H (2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快 命题符号化为: ))) y x F G y→ ?? ∧ ? x ( ) ( , H ( x ) (y ( 9.给定解释I如下: (a) 个体域D为实数集合R.

离散数学题目大汇总

离散数学试题一(A 卷答案) 一、(10分)证明(A ∨B )(P ∨Q ),P ,(B A )∨P A 。 二、(10分)甲、乙、丙、丁4个人有且仅有2个人参加围棋优胜比赛。关于谁参加竞赛,下列4 种判断都是正确的: (1)甲和乙只有一人参加; (2)丙参加,丁必参加; (3)乙或丁至多参加一人; (4)丁不参加,甲也不会参加。 请推出哪两个人参加了围棋比赛。 三、(10分)指出下列推理中,在哪些步骤上有错误为什么给出正确的推理形式。 (1)x (P (x ) Q (x )) P (2)P (y )Q (y ) T (1),US (3)xP (x ) P (4)P (y ) T (3),ES (5)Q (y ) T (2)(4),I (6)xQ (x ) T (5),EG 四、(10分)设A ={a ,b ,c},试给出A 上的一个二元关系R ,使其同时不满足自反性、反自反性、 五、(15分)设函数g :A →B ,f :B →C , (1)若f o g 是满射,则f 是满射。 (2)若f o g 是单射,则g 是单射。 六、(15分)设R 是集合A 上的一个具有传递和自反性质的关系,T 是A 上的关系,使得T R 且R ,证明T 是一个等价关系。 七、(15分)若是群,H 是G 的非空子集,则的子群对任意的a 、b ∈H 有 a * b -1∈H 。 八、(15分)(1)若无向图G 中只有两个奇数度结点,则这两个结点一定是连通的。 (2)若有向图G 中只有两个奇数度结点,它们一个可达另一个结点或互相可达吗 离散数学试题一(B 卷答案) 一、(15分)设计一盏电灯的开关电路,要求受3个开关A 、B 、C 的控制:当且仅当A 和C 同时关闭或B 和C 同时关闭时灯亮。设F 表示灯亮。 u v w

离散数学第一章部分课后习题参考答案

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)0∨(0∧1) 0 (2)(p?r)∧(﹁q∨s) (0?1)∧(1∨1) 0∧10. (3)(p∧q∧r)?(p∧q∧﹁r) (1∧1∧1)? (0∧0∧0)0 (4)(r∧s)→(p∧q) (0∧1)→(1∧0) 0→0 1 17.判断下面一段论述是否为真:“是无理数。并且,如果3是无理数,则也是无理数。另外6能被2整除,6才能被4整除。” 答:p: 是无理数 1 q: 3是无理数0 r: 是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p→q) →(q→p) (5)(p∧r) (p∧q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q q p q→p (p→q)→(q→p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) (p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)(p∨(p∨q))∨(p∨r)p∨p∨q∨r1

所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)(p→(q∧r)) (4)(p∧q)∨(p∧q)(p∨q) ∧(p∧q) 证明(2)(p→q)∧(p→r) (p∨q)∧(p∨r) p∨(q∧r)) p→(q∧r) (4)(p∧q)∨(p∧q)(p∨(p∧q)) ∧(q∨(p∧q) (p∨p)∧(p∨q)∧(q∨p) ∧(q∨q) 1∧(p∨q)∧(p∧q)∧1 (p∨q)∧(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(p→q)→(q∨p) (2)(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r) 解: (1)主析取范式 (p→q)→(q p) (p q)(q p) (p q)(q p) (p q)(q p)(q p)(p q)(p q) (p q)(p q)(p q) ∑(0,2,3) 主合取范式: (p→q)→(q p) (p q)(q p)

离散数学部分答案

第十四章部分课后习题参考答案 5、设无向图G 有10条边,3度与4度顶点各2个,其余顶点的度数均小于3,问G 至少有多少个顶点?在最少顶点的情况下,写出度数列、)()(G G δ、?。 解:由握手定理图G 的度数之和为:20102=? 3度与4度顶点各2个,这4个顶点的度数之和为14度。 其余顶点的度数共有6度。 其余顶点的度数均小于3,欲使G 的顶点最少,其余顶点的度数应都取2, 所以,G 至少有7个顶点, 出度数列为3,3,4,4,2,2,2,2)(,4)(==?G G δ. 7、设有向图D 的度数列为2,3,2,3,出度列为1,2,1,1,求D 的入度列,并求)(),(D D δ?, )(),(D D ++?δ,)(),(D D --?δ. 解:D 的度数列为2,3,2,3,出度列为1,2,1,1,D 的入度列为1,1,1,2. 2)(,3)(==?D D δ,1)(,2)(==?++D D δ,1)(,2)(==?--D D δ 8、设无向图中有6条边,3度与5度顶点各1个,其余顶点都是2度点,问该图有多少个顶点? 解:由握手定理图G 的度数之和为:1262=? 设2度点x 个,则1221513=+?+?x ,2=x ,该图有4个顶点. 14、下面给出的两个正整数数列中哪个是可图化的?对可图化的数列,试给出3种非同构的无向图,其中至少有两个时简单图。 (1) 2,2,3,3,4,4,5 (2) 2,2,2,2,3,3,4,4 解:(1) 2+2+3+3+4+4+5=23 是奇数,不可图化; (2) 2+2+2+2+3+3+4+4=16, 是偶数,可图化; 18、设有3个4阶4条边的无向简单图G 1、G 2、G 3,证明它们至少有两个是同构的。 证明:4阶4条边的无向简单图的顶点的最大度数为3,度数之和为8,因而度数列为2,2,2,2;3,2,2,1;3,3,1,1。但3,3,1,1对应的图不是简单图。所以

离散数学复习题参考带答案

. 一、选择题:(每题2’) 1、下列语句中不是命题的有()。 A.离散数学是计算机专业的一门必修课。B.鸡有三只脚。 C.太阳系以外的星球上有生物。D.你打算考硕士研究生吗? 2、命题公式A与B是等价的,是指()。 A.A与B有相同的原子变元B.A与B都是可满足的 C.当A的真值为真时,B的真值也为真D.A与B有相同的真值 3、所有使命题公式P∨(Q∧?R)为真的赋值为()。 A.010,100,101,110,111 B.010,100,101,111 C.全体赋值D.不存在 4、合式公式?(P∧Q)→R的主析取范式中含极小项的个数为()。 A.2 B.3 C.5 D.0 5、一个公式在等价意义下,下面哪个写法是唯一的()。 A.析取范式B.合取范式C.主析取范式D.以上答案都不对 6、下述公式中是重言式的有()。 A.(P∧Q) → (P∨Q) B.(P?Q) ? (( P→Q)∧(Q→P)) C.?(P →Q)∧Q D.P →(P∧Q) 7、命题公式(?P→Q) →(?Q∨P)中极小项的个数为(),成真赋值的个数为()。 A.0 B.1 C.2 D.3 8、若公式(P∧Q)∨(?P∧R) 的主析取范式为m001∨m011∨m110∨m111则它的主合取范式为()。 A.m001∧m011∧m110∧m111B.M000∧M010∧M100∧M101 C.M001∧M011∧M110∧M111D.m000∧m010∧m100∧m101 9、下列公式中正确的等价式是()。 A.?(?x)A(x) ? (?x)?A(x) B.(?x) (?y)A(x, y) ? (?y) (?x) A(x, y) C.?(?x)A(x) ? (?x)?A(x) D.(?x) (A(x) ∧B(x)) ? (?x) A(x) ∨(?x) B(x) 10、下列等价关系正确的是()。 A.?x ( P(x) ∨Q(x) ) ??x P(x) ∨?x Q(x) B.?x ( P(x) ∨Q(x) ) ??x P(x) ∨?x Q(x) C.?x ( P(x) →Q ) ??x P(x) → Q D.?x ( P(x) →Q ) ??x P(x) → Q 11、设个体域为整数集,下列真值为真的公式是()。 A.?x?y(x·y=1)B.?x?y(x·y=0)C.?x?y(x·y=y)D.?x?y(x+y=2y) 12、设S={?,{1},{1,2}},则有()?S。 A.{{1,2}} B.{1,2 } C.{1} D.{2} 13、下列是真命题的有()。 A.{a}?{{a}} B.{{?}}∈{?,{?}} C.?∈{?,{?}} D.{?}∈{?,{?}} 14、设S={?,{1},{1,2}},则2S有()个元素。 A.3 B.6 C.7 D.8

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P :你努力,Q :你失败。 2、 “除非你努力,否则你将失败”符号化为 ; “虽然你努力了,但还是失败了”符号化为 。 2、论域D={1,2},指定谓词P 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不是对称的又不是反对称的关系 R= ;A 上既是对称的又是反对称的关系R= 。 5、设代数系统,其中A={a ,b ,c}, 则幺元是 ;是否有幂等 性 ;是否有对称性 。 6、4阶群必是 群或 群。 7、下面偏序格是分配格的是 。

8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。 二、选择 1、在下述公式中是重言式为( ) A .)()(Q P Q P ∨→∧; B .))()(()(P Q Q P Q P →∧→??; C .Q Q P ∧→?)(; D .)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为( )。 A .0; B .1; C .2; D .3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A .3; B .6; C .7; D .8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生 的S S ?上一个划分共有( )个分块。 A .4; B .5; C .6; D .9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A .自反性、对称性、传递性; B .反自反性、反对称性; C .反自反性、反对称性、传递性; D .自反性 。

离散数学第五章习题.doc

第五章习题 7年昆明理工 1、在自然数集合 N上,下列哪种运算是可结合的。() A. a*b=a-b B.a*b=max(a,b) C. a*b=a+2b D.a*b=|a-b| 2、设 Z 为整数集合, +为普通加法,则代数系统 中,Z 对加法的幺元为 _______,Z 对+的零元为 _______,对任意 x∈N,x -1 =_______。 3、设 是一个代数系统 ,其中 * 是一个二元运算使任意a,b∈ A, 有a*b=a. (1)证明 * 运算是可结合的。 (2)说明 * 运算是否可交换。 6年清华大学 1 设是二元代数,元素 a∈A 有左逆元 a l-1和右逆元 a r-1,若运算 满足()律,则 a l-1=a r-1 A. 结合 B.交换 C.等幂 D. 分配 2设为实数集 R 上的二元运算, x,y∈R有 x y=x+y-2xy, 说明运算是 否为可交换的、可结合的?确定运算的幺元、零元和所有幂等元及可 逆元素的逆元。

其他习题 1、已知集合 A={1 ,2,?,10}, 下面定的哪些运算关于集合 A 是不封的 .() A. x*y=max(x,y) B.x*y=min(x,y) C.x*y=GCD(x,y) , 即 x,y 的最大公数 D.x*y=LCM(x,y), 即 x,y 的最小公倍数 2、 Z* 是正整数集合, +,—, * ,△分是数的普通加法、减法, 乘法和平方运算,下列()不能构成代数系。 A. B. C. < Z* ,*> D. 3、 * 是集合 A 上的二元运算,若 A 中一个元素 e,它即是 _______,又是 _______,称 e 是 A 中关于运算 * 的幺元。 4、 S=R-{-1},R 数集,任意 a,b ∈S,a*b=a+b+ab 明 是否构成群。

离散数学题库及答案

数理逻辑部分 选择、填空及判断 ?下列语句不是命题的( A )。 (A) 你打算考硕士研究生吗?(B) 太阳系以外的星球上有生物。 (C) 离散数学是计算机系的一门必修课。(D) 雪是黑色的。 ?命题公式P(P P)的类型是( A ) (A) 永真式(B) 矛盾式 (C) 非永真式的可满足式(D) 析取范式 ?A是重言式,那么A的否定式是( A ) A. 矛盾式 B. 重言式 C. 可满足式 D.不能确定 ?以下命题公式中,为永假式的是( C ) A. p→(p∨q∨r) B. (p→┐p)→┐p C. ┐(q→q)∧p D. ┐(q∨┐p)→(p∧┐p) ?命题公式P→Q的成假赋值是( D ) A. 00,11 B. 00,01,11 C.10,11 D. 10 ?谓词公式) x R xP∧ ?中,变元x是( B ) ) x ( , (y A. 自由变元 B. 既是自由变元也是约束变元 C. 约束变元 D. 既不是自由变元也不是约束变元 ?命题公式P(Q Q)的类型是( A )。 (A) 永真式(B) 矛盾式 (C) 非永真式的可满足式(D) 析取范式 ?设B不含变元x,) x→ ?等值于( A ) A (B ) ( x

A. B x xA →?)( B. ))((B x A x ∨? C. B x xA →?)( D. B x A x ∧?)(( ? 下列语句中是真命题的是( D )。 A .你是杰克吗? B .凡石头都可练成金。 C .如果2+2=4,那么雪是黑的。 D .如果1+2=4,那么雪是黑的。 ? 从集合分类的角度看,命题公式可分为( B ) A. 永真式、矛盾式 B. 永真式、可满足式、矛盾式 C. 可满足式、矛盾式 D. 永真式、可满足式 ? 命题公式﹁p ∨﹁q 等价于( D )。 A. ﹁p ∨q B. ﹁(p ∨q) C. ﹁p ∧q D. p →﹁q ? 一个公式在等价意义下,下面写法唯一的是( D )。 (A) 范式 (B) 析取范式 (C) 合取范式 (D) 主析取范式 ? 下列含有命题p ,q ,r 的公式中,是主析取范式的是 ( D )。 (A) (p q r) (p q) (B) (p q r) (p q) (C) (p q r) (p q r) (D) (p q r) (p q r) ? 设个体域是整数集合,P 代表x y ((x y )(x y x )),下面描述正确的是 ( C )。 (A) P 是真命题 (B) P 是假命题 (C) P 是一阶逻辑公式,但不是命题 (D) P 不是一阶逻辑公式 ? 对一阶逻辑公式((,)(,))(,)x y P x y Q y z xP x y ??∧∧?的说法正确的是( B ). (A) x 是约束的,y 是约束的,z 是自由的; (B) x 是约束的,y 既是约束的又是自由的,z 是自由的; (C) x 是约束的,y 既是约束的又是自由的,z 是约束的;

相关文档
相关文档 最新文档