文档库 最新最全的文档下载
当前位置:文档库 › 线性代数第五章答案

线性代数第五章答案

线性代数第五章答案
线性代数第五章答案

第五章 相似矩阵及二次型

1. 试用施密特法把下列向量组正交化:

(1)???

?

??=931421111) , ,(321a a a ;

解 根据施密特正交化方法,

???

? ??==11111a b , ???

? ??

-=-=101]

,[],[1112122b b b a b a b ,

?

??

? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .

(2)???

?

? ??---=011101110111) , ,(321a a a .

解 根据施密特正交化方法,

???

?

? ??-==110111a b ,

?

???? ??-=-=123131],[],[1112122b b b a b a b ,

?

???

? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵:

(1)??????

? ??--

-1

21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵.

(2)????

??

? ??----

--979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.

3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为

H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为

H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.

4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,

(AB )T (AB )=B T A T AB =B -1A -1AB =E ,

故AB 也是正交阵.

5. 求下列矩阵的特征值和特征向量:

(1)???

? ??----201335212;

解 3)1(2013352

12||+-=-------=-λλ

λλλE A ,

故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由

???

? ?????? ??----=+000110101101325213~E A ,

得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.

(2)???

?

??633312321;

解 )9)(1(6333123

21||-+-=---=-λλλλ

λλλE A ,

故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由

???

?

?????? ??=000110321633312321~A ,

得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由

???

? ?????? ??=+000100322733322322~E A ,

得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由

????

? ??--???? ??---=-00021101113333823289~E A , 得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.

(3)????

?

?

?00

01001001001000

.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(0

1

0100101

00

||+-=----=-λλλ

λλλλE A , 故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1, 由

????

? ???????

?

?=+00

00

0000

0110100110

01011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值

λ1=λ2=-1的线性无关特征值向量.

对于特征值λ3=λ4=1, 由

????

? ??--?????

?

?----=-00

00

0000

0110100110

01011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值

λ3=λ4=1的线性无关特征值向量.

6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为

|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,

所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.

7. 设n 阶矩阵A 、B 满足R (A )+R (B )

证明 设R (A )=r , R (B )=t , 则r +t

若a 1, a 2, ???, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.

类似地, 设b 1, b 2, ???, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值

λ=0的线性无关的特征向量.

由于(n -r )+(n -t )=n +(n -r -t )>n , 故a 1, a 2, ???, a n -r , b 1, b 2, ???, b n -t 必线性相关. 于是有不全为0的数k 1, k 2, ???, k n -r , l 1, l 2, ???, l n -t , 使

k 1a 1+k 2a 2+ ??? +k n -r a n -r +l 1b 1+l 2b 2+ ??? +l n -r b n -r =0.

记 γ=k 1a 1+k 2a 2+ ??? +k n -r a n -r =-(l 1b 1+l 2b 2+ ??? +l n -r b n -r ), 则k 1, k 2, ???, k n -r 不全为0, 否则l 1, l 2, ???, l n -t 不全为0, 而

l 1b 1+l 2b 2+ ??? +l n -r b n -r =0,

与b 1, b 2, ???, b n -t 线性无关相矛盾.

因此, γ≠0, γ是A 的也是B 的关于λ=0的特征向量, 所以A 与B 有公共的特征值, 有公共的特征向量.

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

(完整版)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

线性代数上机作业题答案

线性代数机算与应用作业题 学号: 姓名: 成绩: 一、机算题 1.利用函数rand 和函数round 构造一个5×5的随机正整数矩阵A 和B 。 (1)计算A +B ,A -B 和6A (2)计算()T AB ,T T B A 和()100 AB (3)计算行列式A ,B 和AB (4)若矩阵A 和B 可逆,计算1 A -和1 B - (5)计算矩阵A 和矩阵B 的秩。 解 输入: A=round(rand(5)*10) B=round(rand(5)*10) 结果为: A = 2 4 1 6 3 2 2 3 7 4 4 9 4 2 5 3 10 6 1 1 9 4 3 3 3 B = 8 6 5 4 9 0 2 2 4 8 9 5 5 10 1 7 10 6 0 3 5 5 7 9 3 (1)输入: A+B 结果为:

ans= 10 10 6 10 12 2 4 5 11 12 13 14 9 12 6 10 20 12 1 4 14 9 10 12 6 输入: A-B 结果为: ans = -6 -2 -4 2 -6 2 0 1 3 -4 -5 4 -1 -8 4 -4 0 0 1 -2 4 -1 -4 -6 0 输入: 6*A 结果为: ans = 12 24 6 36 18 12 12 18 42 24 24 54 24 12 30 18 60 36 6 6 54 24 18 18 18 (2)输入: (A*B)' 结果为: ans = 82 112 107 90 135 100 121 107 83 122

80 99 105 78 107 61 82 137 121 109 78 70 133 119 134 输入: B'*A' 结果为: ans = 82 112 107 90 135 100 121 107 83 122 80 99 105 78 107 61 82 137 121 109 78 70 133 119 134 输入: (A*B)^100 结果为: ans = 1.0e+270 * 1.6293 1.6526 1.4494 1.5620 1.6399 1.9374 1.9651 1.7234 1.8573 1.9499 2.4156 2.4501 2.1488 2.3158 2.4313 2.0137 2.0425 1.7913 1.9305 2.0268 2.4655 2.5008 2.1932 2.3636 2.4815 (3)输入: D=det(A) 结果为: D = 5121 输入: D=det(B) 结果为:

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

居于马线性代数第一章答案

1、2222 0a ab a b ab ab ab b =?-?= 2、 22cos sin cos cos (sin )sin cos sin 1sin cos αααααααααα-=?--?=+= 3、 222()()22()2a bi b a bi a bi ab a b ab a b a a bi +=+--=+-=-- 4、3 24 2 123*1*(3)2*(2)*5(4)*4*23*(2)*22*4*(3)(4)*1*5423--=-+-+--------- 5、123 4 561*5*92*6*73*4*81*6*82*4*93*5*7789=++--- 6、2 21 4 1 12*1*1012*(1)*2021*4*1992*(1)*1992*4*1011*1*202202199101-=+-+---- 7、22 22 343222222 11101(1)(1)(1)01001w w w w w w w w w w w w w w w w w w +?---=-=-++=-?--第2行第1行()第3行第1行() 8、33222321 21*2*3322663 x x x x x x x x x x x x x =++---=-+ 9、 1430004 004 00431(1)04342560432432 4321 +-=-=-按第行展开 10、公式: 解: 10100 00 10 010 02000020 10(1)10 080000 800900009 10 +-?按第行展开

11、 31 111111********* 00311*(2)811110020411 1 1 1 2 ----=-=------第行第行第行第行第行第行 12、该行列式中各行元素之和均为10,所以吧第2,3,4列加到第1列,然后再把第1列后三个元素化为零,再对第1列展开,即 13、 5 04211111111210 1121112102 1 143247412041200324153 1 1 11 5 42 0153 ----- =- =----=----------第,行交换 14、先将第1行与第5行对换,第3行与第4行对换(反号两次,其值不变) 根据课本20页公式(1.21),原式012 11 2003*41203 022 = -=-=-() 15、 12 00340012132*160013 345 1 00 5 1-= =---()()=32 16、1234512345 123678910678910 21 3567810*220000********* 0100002400024 01011 00013 -=-=-=-第,行对换 17、根据课本20页公式(1.22) 18、100 12 01*2*33!123 A ===, 所以 3*5*(1)||||3!5!0 A A B B =-=- 19、证: 20、111111112111110 031111100 411 1 1 10 0x x x x x y x y y x y ++----= -+-----第行第行左第行第行第行第行

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

同济大学线性代数第六版答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

线性代数机械工业出版社第一章答案

线性代数第一章行列式 一、填空题 1.排列631254的逆序数τ(631254)= 8 . 解: τ(631254)=5+2+1=8 2.行列式2 13132 3 21= -18 . 解:D=1?3?2+2×1×3+2×1×3-3?3?3-1?1?1-2?2?2=-18 3、4阶行列式中含1224a a 且带正号的项为_______ 答案:12243341a a a a 分析:4阶行列式中含1224a a 的项有12243341a a a a 和12243143a a a a 而 12243341a a a a 的系数:() (1234)(2431) 41(1)1ττ+-=-= 1224314 a a a a 的系数:()(1234)(2413) 31(1)1ττ+-=-=- 因此,符合条件的项是12243341a a a a 4、2 2 2 111a a b b c c (,,a b c 互不相等)=_______ 答案:()()()b a c a c b --- 分析:2 22 111a a b b c c =222222 ()()()bc ab a c b c ac ba b a c a c b ++---=--- 5.行列式 1 13 6 104 204 710501 λ --中元素λ的代数余子式的值为 42 解析: 元素λ的代数余子式的值为6 42 071 01-3 41+-?)(=(-1) ×7×6×(-1)=42 6.设3 1-2031 2 22 3=D ,则代数余子式之和232221A A A ++=0

解析:232221A A A ++=1×21A +1×22A +1×23A =3 121112 22 -=0 二、 单项选择题 1、设x x x x x x f 1111231 11 2 12)(-= ,则x 3 的系数为(C ) A. 1 B. 0 C. -1 D. 2 解: x 3 的系数为 ) () ()(1-21341234 +=-1 2、 设333231232221 131211 a a a a a a a a a =m ≠0,则33 3231312322 212113 121111423423423a a a a a a a a a a a a ---=(B ) A.12m B. -12m C.24m D. -24m 解:3332 31 232221 131211 a a a a a a a a a )4(2-?j →33 32 31 23222113 12114-4-4-a a a a a a a a a =-4m 212j j +?→33 32 3131 23222121 13 1211114-24-24-2a a a a a a a a a a a a =-4m 31?j →33 32 3131 23222121 13 121111 4-234-234-23a a a a a a a a a a a a =-12m 3.行列式 k-12 2k-1 ≠0的充分必要条件是(C ) (A.)k ≠-1 (B)k ≠3 (C)k ≠-1且k ≠3(D)k ≠-1或k ≠3 因为原式=(k-1)(k-1)-4≠0 所以k-1≠2且k-1≠-2 所以k ≠-1且k ≠3 所以答案为C 4.行列式 0000 00 a b c d e f g h 中元素g 的代数余子式的值为(B ) (A )bcf-bde (B)bde-bcf (C)acf-ade (D)ade-acf

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

北大版 线性代数第一章部分课后答案详解

习题1.2: 1 .写出四阶行列式中 11121314212223243132333441 42 43 44 a a a a a a a a a a a a a a a a 含有因子1123a a 的项 解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有() () 13241τ-11233244a a a a 或() () 13421τ-11233442a a a a ,即含有因子1123a a 的项 为11233244a a a a 和11233442a a a a 2. 用行列式的定义证明111213141521 22232425 31 3241425152 000000000 a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。故所有因式都为0.原命题得证.。 3.求下列行列式的值: (1)01000020;0001000 n n -L L M M M O M L L (2)00100200100000 n n -L L M O M O M L L ; 解:(1)0100 0020 0001 000 n n -L L M M M O M L L =()()23411n τ-L 123n ????L =()1 1!n n --

线性代数复习题带参考答案(2)

线性代数考试题库及答案 第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 40 3 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

线性代数习题参考答案

第一章 行列式 §1 行列式的概念 1. 填空 (1) 排列6427531的逆序数为 ,该排列为 排列。 (2) i = ,j = 时, 排列1274i 56j 9为偶排列。 (3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的 n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构 成一个n 元排列。若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。 (4) 在6阶行列式中, 含152332445166a a a a a a 的项的符号为 ,含 324314516625a a a a a a 的项的符号为 。 2. 用行列式的定义计算下列行列式的值 (1) 11 222332 33 000 a a a a a 解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。 (2) 12,121,21,11,12 ,100000 0n n n n n n n n n n n n nn a a a a a a a a a a ------L L M M M M L L 解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。 3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。 证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。对于任意奇排 列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2 多,则此行列式为0,为什么? 5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少? (提示:利用3题的结果) 6. 利用对角线法则计算下列三阶行列式 (1)2 011 411 8 3 --- (2)2 2 2 1 11a b c a b c

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001000 ( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 1 10000 0100100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 003232 1 1112)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若21 3332 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 222123 21 12 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若573411111 3263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23500101 1 110403--= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2 a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αααα-=___________。 (3) 二阶行列式2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 ,; C 1 ,; D 2 ,。 (3)三阶行列式2 31503 2012985 2 3 -=()。 A -70; B -63; C 70; D 82。

(4A 44 a b -;B () 2 2 2a b -;C 44b a -;D 44 a b 。 (5)n 阶行列式 0100002 000 1 000 n n -=()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号: (1)152332445166a a a a a a ;(2)215316426534a a a a a a ;(3)615243342516a a a a a a 答案:(1)正号;(2)负号。 【7】根据定义计算下列各行列式: (1)00001 00020 0030004000 50000 ;(2) 11 14 2223323341 44 000 00 a a a a a a a a ;(3)00010 20 0100 000 n n -;

同济大学线性代数第六版答案(全)

第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++.

解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为2 )1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n -1)2, (2n -1)4, (2n -1)6,???, (2n -1)(2n -2)(n -1个) (6)1 3 ??? (2n -1) (2n ) (2n -2) ??? 2.

相关文档
相关文档 最新文档