文档库 最新最全的文档下载
当前位置:文档库 › VTP+NAT+OSPF+路由重发布+路由注入+rip+PPP+负载均衡

VTP+NAT+OSPF+路由重发布+路由注入+rip+PPP+负载均衡

VTP+NAT+OSPF+路由重发布+路由注入+rip+PPP+负载均衡
VTP+NAT+OSPF+路由重发布+路由注入+rip+PPP+负载均衡

首先:基本配置连接(配置ip、连线等)

第一步:配置vtp

1、在sw2上配置vtp服务端(命令)

Switch(config)#vtp domain benet //配置vtp名称

Changing VTP domain name from NULL to benet

Switch(config)#vtp mode server //配置vtp服务模式

Device mode already VTP SERVER.

2、创建vlan 2 3 4

3、在sw1 和sw4 及三层交换上配置vtp客户端

Switch(config)#vtp domain benet //在客户端配置vtp名称

Changing VTP domain name from NULL to benet

Switch(config)#vtp mode client //配置vtp客户端模式

Setting device to VTP CLIENT mode.

4、开启交换机各个端口的trunk

Switch(config)#int f?/?

Switch(config-if)#swit mode trunk //二层交换机

5、将端口加入vlan

Switch(config)#int f?/? //进入接口模式

Switch(config-if)#swit mode access //将端口设置成接入模式

Switch(config-if)#swit access vlan ? // 将端口加入到vlan

Switch(config-if)#exit

第二步:配置三层交换

1、配置vlan ip

Switch(config)#int vlan 1 //进入vlan接口模式

Switch(config-if)#ip add 192.168.1.254 255.255.255.0 // 配置ip(网关)

Switch(config-if)#no shut

2、配置三层交换 trunk

Switch(config-if)#switchport trunk encapsulation dot1q //封装接口为dot1q Switch(config-if)#swit mode trunk //设置接口为trunk

Switch(config-if)#exit

3、配置三层交换接口ip

Switch(config)#ip routing //启动路由模式

Switch(config-if)#int f?/? //进入接口模式

Switch(config-if)#no switchport // 关闭交换功能

Switch(config-if)#ip add 10.0.0.1 255.255.255.0 //配置ip地址

Switch(config-if)#no shut

Switch(config-if)#exit

第三步:配置内网路由 ip

1、Router(config)#int f0/0 //进入接口模式

Router(config-if)#ip add 20.0.0.2 255.255.255.0 //配置ip

Router(config-if)#no shut

Router(config-if)#exit

第四步:配置内网 ospf

1、在三层交换上配置ospf

Switch(config)#router ospf 1 // 启用ospf模式

Switch(config-router)#network 192.168.1.0 0.0.0.255 area 0 //宣告所有直连网段Switch(config-router)#network 192.168.2.0 0.0.0.255 area 0

Switch(config-router)#network 192.168.3.0 0.0.0.255 area 0

Switch(config-router)#network 192.168.4.0 0.0.0.255 area 0

。。。。。。

2、在内网路由器上配置 ospf

Router(config)#router ospf 1

Router(config-router)#network 10.0.0.0 0.0.0.255 area 0

Router(config-router)#network 20.0.0.0 0.0.0.255 area 0

Router(config-router)#exit

第五步:配置双线 NAT

1、定义访问控制列表

Router(config)#access-list 1 permit 192.168.1.0 0.0.0.255 //创建访问控制列表Router(config)#access-list 1 permit 192.168.2.0 0.0.0.255

Router(config)#access-list 2 permit 192.168.3.0 0.0.0.255

Router(config)#access-list 2 permit 192.168.4.0 0.0.0.255

2、PAT转换

Router(config)#ip nat inside source list 1 int s0/3/0 //允许list 1 从端口s0/3/0通过Router(config)#ip nat inside source list 2 int s0/3/1 //允许list 2 从端口s0/3/1通过3、设置默认路由

Router(config)#ip route 0.0.0.0 0.0.0.0 s0/3/0

Router(config)#ip route 0.0.0.0 0.0.0.0 s0/3/1

4、进出模式

Router(config)#int f0/?

Router(config-if)#ip nat inside //设置接口为进口模式

Router(config-if)#exit

Router(config)#int s0/3/0

Router(config-if)#ip nat outside //设置串口为出口模式

Router(config-if)#exit

第六步:配置外网路由

1、配置路由 ip

Router(config)#int f0/0

Router(config-if)#ip add 200.0.0.1 255.255.255.0

Router(config-if)#no shut

2、设置时钟

Router(config-if)#clock rate 64000 //在时钟端接口模式

第七步:路由注入

Router(config)#router ospf 1

Router(config-router)#default-information originate

第八步:配置外网

1、配置路由器ip

2、配置外网ospf

3、路由重发布

Router(config)#router ospf 1

Router(config-router)#redistribute rip subnets

Router(config)#router rip

Router(config-router)#redistribute ospf 1 metric 3

Router(config-router)#exit

4、配置rip

Router(config)#router rip

Router(config-router)#network 172.0.0.0

Router(config-router)#exit

第九步:端口MAC绑定

Switch(config)#int f0/1

Switch(config-if)#switchport mode access //更改接口模式

Switch(config-if)#swit port-security //开启端口安全

Switch(config-if)#swit port-security mac-address 00D0.586D.9680 //绑定MAC地址第十步:管理vlan

Switch(config)#ip default-network 192.168.1.254

Switch(config)#enable password 123 //设置全局密码

Switch(config)#line vty 0 4

Switch(config-line)#password 123

Switch(config-line)#login //启动管理vlan

第十一步:负载均衡

Switch(config)#spanning-tree vlan 1 root primary

Switch(config)#spanning-tree vlan 2 root primary

Switch(config)#spanning-tree vlan 3 root secondary

Switch(config)#spanning-tree vlan 4 root secondary

第十二步:PPP认证

1、主认证端

Router(config)#username benet password 123 //设置名称和密码Router(config)#int s0/3/1

Router(config-if)#encapsulation ppp //封装PPP

Router(config-if)#ppp authentication pap //将ppp更改成pap 2、被认证端

Router(config)#int s0/3/0

Router(config-if)#encapsulation ppp

Router(config-if)#ppp pap sent-username benet password 123

CCNA-OSPF协议总结

O S P F协议总结 第一部分 O S P F的一些基本概念 在链路状态路由协议中,路由器和路由器之间交换的是链路状态。而距离矢量路由协议中,路由器与路由器之间交换的是路由表。链路状态路由协议能够识别更多的网络信息,所以选出的路由比距离矢量路由协议选出的路由更优。在O S P F中,一共维护着三个数据库:所有的邻居,区域内所有的路由器(链路状态),到达目的地最佳路径。O S P F是通过链路状态表中整个区域的链路状态来计算出路由表的。 O S P F中的三张表:邻居表(a d j a c e n c y d a t a b a s e),拓扑表,路由表。 O S P F的网络在设计时应该设计为层次性的网络,这是一个强制要求。有两个级别的层次一个为主干区T r a n s i t a r e a(b a c k b o n e o r a r e a0),另一个为非主干区域R e g u l a r a r e a s(n o n b a c k b o n e a r e a s)。可以认为,在区域内部交换的是链路状态,而在区域和区域之间交换的则是路由信息。 O S P F区域的特点: 1.减小路由表的条目; 2.本地化拓扑结构,只在本区域传播,将拓扑变化影响减到最小; 3.详细的L S A的洪泛将终结在区域的边界上; 4.需要层次化的网络设计; 5.一般情况下,所有的非主干区域都应该与主干区域相连,非主干区域之间是不会交换信息的; A B R称为区域边界路由器,作用就是将非主干区域和主干区域连接起来。 链路状态数据结构(邻居表): 1.O S P F通过交换H e l l o包来发现邻居; 2.通过检查H e l l o包中的一些选项或者变量后建立邻居关系的; 3.在点到点的广域网环境中,邻居之间是全互联的; 4.在局域网环境中,所有路由器只与D R和B D R形成邻接关系(a d j a c e n c y),而其他的路由器(D R O T H E R s)之间则只是t w o-w a y的关系; 5.路由更新和拓扑信息之在邻接关系的路由器之间进行传播; 所有的路由更新,以及链路状态信息都是通过网络中的D R和B D R传输的。也就是说,所有的D R O T H E R都会与D R还有B D R建立邻接关系(a d j a c e n c y)。 S P F算法:在每个路由器的链路状态表中都应用D i j k s t r a’s S P F算法。 1.每个路由器上都会有一个链路状态数据库; 2.每个路由器都会先将自己作为一个根,然后建立起一个S P F树; 3.最优路径的计算是到达目的地的所有路径开销的总和; 4.最优路径将被放到路由表中; L S A的操作: 1.首先,与自己的链路状态表对比一下,看看是否在其中; 2.如果没有的话,把它加到自己的链路状态数据库中,同时发出一个确认包; 3.如果有的话,比较顺序号,如果顺序号相同,则忽略。如果小于自己的,则给源发送一个L S U; 4.然后洪泛传输自己的L S A给其他路由器; 5.运行S P F算法,重新计算路由表; P S:L S A传输的时候,每次只能传输一跳。 第二部分 O S P F包的类型 O P S F中几种包的类型: 1.H e l l o包,建立邻居关系; 2.数据库的描述包; 3.链路状态请求;

网关冗余和负载均衡VRRP

网关冗余和负载均衡VRRP 一、交换机SW1(R6)交换机SW2(R4)配置 R6>enable R6#conf t R6(config)#hostname SW1 SW1 (config)#int fa0/0 SW1 (config-if)#no shutdown SW1 (config-if)#exit SW1 (config)#int fa0/1 SW1 (config-if)#no shutdown SW1 (config-if)#exit SW1 (config)#int fa0/2

SW1 (config-if)#no shutdown SW1 (config-if)#exit SW1#vlan database SW1 (vlan)#vlan 2 VLAN 2 added: Name: VLAN0002 SW1 (vlan)#exit SW1#conf t SW1 (config)#int range fa0/0 - 2 SW1 (config-if-range)#switchport access vlan 2 SW1 (config-if-range)#exit SW1 (config-if-range)#exit SW1(config)#int vlan 2 SW1(config-if)#ip add 192.168.13.2 255.255.255.0 SW1(config-if)#no shutdown SW1(config-if)#exit SW1(config)#exit SW1# R4>enable R4#conf t R4(config)#host SW2 SW2(config)#int fa0/1 SW2(config-if)#no shutdown SW2(config-if)#exit SW2(config)#int f0/0 SW2(config-if)#no shutdown SW2(config-if)#exit SW2(config)#exit SW2#vlan database SW2(vlan)#vlan 2 VLAN 2 added: Name: VLAN0002 SW2(vlan)#exit SW2#conf t SW2(config)#int range fa0/0 - 1 SW2(config-if-range)#switchport access vlan 2 SW2(config-if-range)#end SW2# 二、配置PC1(R7)PC2(R5) R7>enable R7#conf t

OSPF路由协议

OSPF作为一种内部网关协议(Interior Gateway Protocol,IGP),用于在同一个自治域(AS)中的路由器之间发布路由信息。区别于距离矢量协议(RIP),OSPF具有支持大型网络、路由收敛快、占用网络资源少等优点,在目前应用的路由协议中占有相当重要的地位。 基本概念和术语 1. 链路状态 OSPF路由器收集其所在网络区域上各路由器的连接状态信息,即链路状态信息(Link-State),生成链路状态数据库(Link-State Database)。路由器掌握了该区域上所有路由器的链路状态信息,也就等于了解了整个网络的拓扑状况。OSPF路由器利用“最短路径优先算法(Shortest Path First, SPF)”,独立地计算出到达任意目的地的路由。 2. 区域 OSPF协议引入“分层路由”的概念,将网络分割成一个“主干”连接的一组相互独立的部分,这些相互独立的部分被称为“区域”(Area),“主干”的部分称为“主干区域”。每个区域就如同一个独立的网络,该区域的OSPF 路由器只保存该区域的链路状态。每个路由器的链路状态数据库都可以保持合理的大小,路由计算的时间、报文数量都不会过大。 3. OSPF网络类型 根据路由器所连接的物理网络不同,OSPF将网络划分为四种类型:广播多路访问型(Broadcast multiAccess)、非广播多路访问型(None Broadcast MultiAccess,NBMA)、点到点型(Point-to-Point)、点到多点型(Point-to-MultiPoint)。 广播多路访问型网络如:Ethernet、Token Ring、FDDI。NBMA型网络如:Frame Relay、X.25、SMDS。Point-to-Point型网络如:PPP、HDLC。 4. 指派路由器(DR)和备份指派路由器(BDR) 在多路访问网络上可能存在多个路由器,为了避免路由器之间建立完全相邻关系而引起的大量开销,OSPF 要求在区域中选举一个DR。每个路由器都与之建立完全相邻关系。DR负责收集所有的链路状态信息,并发布给其他路由器。选举DR的同时也选举出一个BDR,在DR失效的时候,BDR担负起DR的职责。 点对点型网络不需要DR,因为只存在两个节点,彼此间完全相邻。协议组成OSPF协议由Hello协议、交换协议、扩散协议组成。本文仅介绍Hello协议,其他两个协议可参考RFC2328中的具体描述。 当路由器开启一个端口的OSPF路由时,将会从这个端口发出一个Hello报文,以后它也将以一定的间隔周期性地发送Hello报文。OSPF路由器用Hello报文来初始化新的相邻关系以及确认相邻的路由器邻居之间的通信状态。 对广播型网络和非广播型多路访问网络,路由器使用Hello协议选举出一个DR。在广播型网络里,Hello 报文使用多播地址224.0.0.5周期性广播,并通过这个过程自动发现路由器邻居。在NBMA网络中,DR负

VRRP技术实现网络的路由冗余和负载均衡

1 问题的提出 随着网络应用的不断深入和发展,用户对网络可靠性的需求越来越高。网络中路由器运行动态路由协议如RIP、OSPF可以实现网络路由的冗余备份,当一个主路由发生故障后,网络可以自动切换到它的备份路由实现网络的连接。但是,对于网络边缘终端用户的主机运行一个动态路由协议来实现可靠性是不可行的。一般企业局域网通过路由器连接外网,局域网内用户主机通过配置默认网关来实 现与外部网络的访问。 图1 配置默认网关 如图一所示,内部网络上的所有主机都配置了一个默认网关 (GW:192.168.1.1),为路由器的E thernet0接口地址。这样,内网主机发出的目的地址不在本网段的报文将通过默认网关发往RouterA,从而实现了主机与外部网络通信。路由器在这里是网络中的关键设备,当路由器RouterA出现故障时,局域网将中断与外网的通信。对于依托网络与外部业务往来频繁的企业以及公司的分支机构与总部的联系、银行的营业网点与银行数据中心的连接等方面的应用将因此受到极大的影响。为提高网络的可靠性,在网络构建时,往往多增设一台路由器。但是,若仅仅在网络上设置多个路由器,而不做特别配置,对于目标地址是其它网络的报文,主机只能将报文发给预先配置的那个默认网关,而不能实现故障情况下路由器的自动切换。VRRP虚拟路由器冗余协议就是针对上述备份问题而提出,消除静态缺省路由环境中所固有的缺陷。它不改变组网情况,只需要在相关路由器上配置极少几条命令,在网络设备故障情况下不需要在主机上做任何更改配置,就能实现下一跳网关的备份,不会给主机带来任何负担。 2 VRRP技术分析

VRRP(Virtual Router Redundancy Protocol)是一种LAN接入设备容错协议,VRRP将局域网的一组路由器(包括一个Master即活动路由器和若干个Backup 即备份路由器)组织成一个虚拟路由器,称之为一个备份组,如图2所示。 图2 虚拟路由器示意图 VRRP将局域网的一组路由器,如图二中的RouterA和RouterB 组织成一个虚拟的路由器。这个虚拟的路由器拥有自己的IP地址192.168.1.3,称为路由器的虚拟IP地址。同时,物理路由器RouterA ,RouterB也有自己的IP地址(如RouterA的IP地址为192.168.1.1,RouterB的IP地址为192.168.1.2)。局域网内的主机仅仅知道这个虚拟路由器的IP地址192.168.1.3,而并不知道备份组内具体路由器的IP地址。在配置时,将局域网主机的默认网关设置为该虚拟路由器的IP地址192.168.1.3。于是,网络内的主机就通过这个虚拟的路由器来与其它网络进行通信,实际的数据处理由备份组内Master路由器执行。如果备份组内的Master路由器出现故障时,备份组内的其它Backup路由器将会接替成为新的Master,继续向网络内的主机提供路由服务。从而实现网络内的主机不间断地与外部网络进行通信。 VRRP通过多台路由器实现冗余,任何时候只有一台路由器为主路由器,其他的为备份路由器。路由器间的切换对用户是完全透明的,用户不必关心具体过程,只要把缺省路由器设为虚拟路由器的IP地址即可。路由器间的切换过程: ⑴ VRRP协议采用竞选的方法选择主路由器。比较各台路由器优先级的大小,优先级最大的为主路由器,状态变为Master。若路由器的优先级相同,则比较网络接口的主IP地址,主IP地址大的就成为主路由器,由它提供实际的路由服务。 ⑵ 主路由器选出后,其它路由器作为备份路由器,并通过主路由器发出的VRRP报文监测主路由器的状态。当主路由器正常工作时,它会每隔一段时间发送一个VRRP组播报文,以通知备份路由器,主路由器处于正常工作状态。如果

网络设备冗余和链路冗余常用技术图文

网络设备及链路冗余部署 ——基于锐捷设备 冗余技术简介 随着Internet的发展,大型园区网络从简单的信息承载平台转变成一个公共服务提供平台。作为终端用户,希望能时时刻刻保持与网络的联系,因此健壮,高效和可靠成为园区网发展的重要目标,而要保证网络的可靠性,就需要使用到冗余技术。高冗余网络要给我们带来的体验,就是在网络设备、链路发生中断或者变化的时候,用户几乎感觉不到。 为了达成这一目标,需要在园区网的各个环节上实施冗余,包括网络设备,链路和广域网出口,用户侧等等。大型园区网的冗余部署也包含了全部的三个环节,分别是:设备级冗余,链路级冗余和网关级冗余。本章将对这三种冗余技术的基本原理和实现进行详细的说明。 8.2设备级冗余技术 设备级的冗余技术分为电源冗余和管理板卡冗余,由于设备成本上的限制,这两种技术都被应用在中高端产品上。 在锐捷网络系列产品中,S49系列,S65系列和S68系列产品能够实现电源冗余,管理板卡冗余能够在S65系列和S68系列产品上实现。下面将以S68系列产品为例为大家介绍设备级冗余技术的应用。 8.2.1S6806E交换机的电源冗余技术 图8-1 S6806E的电源冗余 如图8-1所示,锐捷S6806E内置了两个电源插槽,通过插入不同模块,可以实现两路AC电源或者两路DC电源的接入,实现设备电源的1+1备份。工程中最常见配置情况是同 时插入两块P6800-AC模块来实现220v交流电源的1+1备份。 电源模块的冗余备份实施后,在主电源供电中断时,备用电源将继续为设备供电,不会造成业务的中断。 注意:在实施电源的1+1冗余时,请使用两块相同型号的电源模块来实现。如果一块是交流电源模块P6800-AC,另一块是直流电源模块P6800-DC的话,将有可能造成交换机损坏。 8.2.2 S6806E交换机的管理板卡冗余技术 图8-2 S6806E的管理卡冗余 如图8-2所示,锐捷S6806E提供了两个管理卡插槽,M6806-CM为RG-S6806E的主管理模块。承担着系统交换、系统状态的控制、路由的管理、用户接入的控制和管理、网络维护等功能。管理模块插在机箱母板插框中间的第M1,M2槽位中,支持主备冗余,实现热备份,同时支持热插拔。 简单来说管理卡冗余也就是在交换机运行过程中,如果主管理板出现异常不能正常工作,交换机将自动切换到从管理板工作,同时不丢失用户的相应配置,从而保证网络能够正常运行,实现冗余功能。 在实际工程中使用双管理卡的设备都是自动选择主管理卡的,先被插入设备中将会成为主管理卡,后插入的板卡自动处于冗余状态,但是也可以通过命令来选择哪块板卡成为主管理卡。具体配置如下

OSPF协议详情详情震荡处理地地总结

【强烈推荐】OSPF协议震荡处理总结 1.1 协议简要介绍 Ospf: 协议号:89,组播地址发包:224.0.0.5,TTL=1,只有一跳,不会被转发。Router ID,路由器的唯一标志(自治系统内唯一)。 Router ID选取规则: 如果通过命令行router id进行了配置,则按照配置结果设置; 如果没有通过命令行router id进行配置,并且已经存在配置有IP地址的loopback接口,则选择loopback接口地址中最大的作为router id;如果没有通过命令行router id进行配置,并且不存在配置有IP地址的loopback 接口,则从其他接口的IP地址中选择最大的一个作为router id(不考虑接口的UP/DOWN状态); 邻居建立后,还需要通过HELLO报文进行邻居关系的维持,有两个定时器来进行这项工作:HELLO TIME:缺省为10秒) DEAD TIME:缺省为4倍的HELLO TIME 通过Hello报文来进行邻居发现。 Hello报文中描述所有该接口上的邻居。 Hello以HelloInterval(10s)为间隔向外发送。 若间隔DeadInterval(40s)还没有收到邻居的Hello报文,则邻居Down。 1.2 协议状态机及交互 1.3 协议抓包 论坛中前边发过 1.4 常用调试手段 如何方便的了解OSPF出了什么问题,调试开关是需要打开的,其中最有效,最常用的就是debugging ospf event(IOS对应命令为debug ip ospf event)!它能让你对OSPF的大部分问题看的一目了然。当然它也不是万能的,它是在正确接收OSPF报文的基础上才能有相应的错误事件。如果没有看到任何动静,建议打开OSPF的所有报文调试开关debugging ospf packet,看看报文的收发是否正常。 打开OSPF event调试开关举例: debugging ospf event 打开OSPF packet调试开关举例: debugging ospf packet 命令 描述 display ospf peer 显示OSPF邻居信息 display ospf error 显示OSPF错误信息。 display ospf interface 显示使能OSPF的接口信息 display ospf brief

路由冗余设计

路由冗余设计 当设计一个网络架构的时候,在达到基本的互联互通的基础上,一项最基本要侧重考虑的问题是该网络要如何处理故障。这一部分的操作是尝试在经济许可的范围内建立越多越好的冗余链路和设备,同时要保持其网络的性能和可管理性。在终端的角度来看,第一个他们本地网络要连接外部网络的通讯部件是默认网关,如果默认网关失效了,那么接下来的所有通往外部的访问都是空谈。而第一跳冗余协议(first hop redundancy protocol)能够有效的处理这个问题。在Cisco 的设备上,也有几个不同的选择,包括热备用路由器协议(HSRP),虚拟路由器冗余协议(VRRP)和网关负载均衡协议(GLBP)。本文给出了这些选项的概述,以及它们之间的区别。 Hot Standby Router Protocol (HSRP) HSRP是Cisco专有的协议,能使网络工程师将多个冗余路由器配置在同一子网中,每个都可以作为一个子网网关设备使用。如果不使用HSRP,每个子网的设备需要单独配置使用特定的网关,这样就不能有效地提供冗余,但限制了因为路由器失效所受到影响的的客户数。使用HSRP时,一组路由器(网关)将配置在一起,一个HSRP的虚拟IP地址和MAC地址将被创建,以供子网设备使用。HSRP配置中的不同路由器将通信并选择一个主的单一活动网关,来处理所有通信流量。此时,一个单一的备用网关也被选出。备用网关会向主网关发送多播进行通信,检测主网关是否失效。主网关一旦失效,其中的一个备用网关就会夺取住网关的职责并在很小的延迟后转发所有数据流量。与此同时,一个新的备用网关也会被选出。 Virtual Router Redundancy Protocol (VRRP) VRRP是一个开放的标准,可用于存在多个供应商设备的环境中。VRRP的运作类似于HSRP,但在不同方面稍有不同。和HSRP相似的,多个路由器(网关)被配置进同一个组里面,其中一个被网络工程师手工指定为主网关。主网关连接终端所在接口的物理IP地址被指派为默认网关的地址。VRRP组中的备用网关会不断和主网关进行通信,而且当主网关失效后马上替代主网关以转发流量。当主网关恢复正常后,又会自动夺回主网关的身份。 在一个单独的子网中也是允许存在多个VRRP组的,可以用来做负载均衡。不过,这种方法需要在客户端的电脑中手动更改默认网关地址的配置。显然这样可行性非常低的,如果要实现相应的功能,最好还是看看以下要介绍的GLBP。 Gateway Load Balancing Protocol (GLBP)

OSPF路由协议概念及工作原理

OSPF路由协议概念及工作原理 1.概述 OSPF路由协议是一种典型的链路状态(Link-state)的路由协议,一般用于同一个路由域内。在这里,路由域是指一个自治系统(Autonomous System),即AS,它是指一组通过统一的路由政策或路由协议互相交换路由信息的网络。在这个AS中,所有的OSPF路由器都维护一个相同的描述这个AS结构的数据库,该数据库中存放的是路由域中相应链路的状态信息,OSPF路由器正是通过这个数据库计算出其OSPF路由表的。 作为一种链路状态的路由协议,OSPF将链路状态广播数据包LSA(Link State Advertisement)传送给在某一区域内的所有路由器,这一点与距离矢量路由协议不同。运行距离矢量路由协议的路由器是将部分或全部的路由表传递给与其相邻的路由器。 2.数据包格式 在OSPF路由协议的数据包中,其数据包头长为24个字节,包含如下8个字段: * Version number-定义所采用的OSPF路由协议的版本。 * Type-定义OSPF数据包类型。OSPF数据包共有五种: * Hello-用于建立和维护相邻的两个OSPF路由器的关系,该数据包是周期性地发送的。* Database Description-用于描述整个数据库,该数据包仅在OSPF初始化时发送。 * Link state request-用于向相邻的OSPF路由器请求部分或全部的数据,这种数据包是在当路由器发现其数据已经过期时才发送的。 * Link state update-这是对link state请求数据包的响应,即通常所说的LSA数据包。* Link state acknowledgment-是对LSA数据包的响应。 * Packet length-定义整个数据包的长度。 * Router ID-用于描述数据包的源地址,以IP地址来表示。 * Area ID-用于区分OSPF数据包属于的区域号,所有的OSPF数据包都属于一个特定的OSPF区域。 * Checksum-校验位,用于标记数据包在传递时有无误码。

多链路负载均衡及冗余

多链路负载均衡及冗余

目录 1.目的 (3) 2.环境拓扑 (3) 3.链路负载均衡 (3) 3.1 基于源IP的负载均衡 (4) 3.2基于权重的负载均衡 (6) 3.3基于出口流量阀值的负载均衡 (6) 3.4 其他负载均衡 (7) 3.5 策略路由 (7) 4.链路冗余 (8) 4.1 检测服务器 (8) 4.2管理距离与优先级 (8) 5.负载均衡与冗余 (9) 6.参考 (9)

1.目的 本文档针对FortiG ate在具有两条或两条以上出口时的负载均衡及链路冗余配置进行说明。Fortigate在多链路可以支持不同方式的负载均衡,在链路负载均衡的同时,也可以实现链路的冗余。 2.环境拓扑 本文使用FortiGate-VM 做演示。本文支持的系统版本为FortiOS v4.0MR3 Patch2及更高。 该配置中使用FortiGate-VM1 模拟两条WAN线路,通过FortiGate-VM2连接至外网,实际环境可以据此参考。 3.链路负载均衡 链路负载均衡功能需要为2个不同的出网接口分别配置一条默认路由,如果实现负载均衡,需要2条或多条静态路由的管理距离以及优先级保持一致。同时也需要保证配置内网去往2条出口的策略。 如果使用静态路由的话可以把出网路由的管理距离配置成相等的,也就是等价路由。如果是ADSL、DHCP等动态获取的网关的话可以把“从服务器中重新得到网关”选中同时将动态获取的路由的管理距离配置即可。在默认路由已经配置完成的情况下,如果仍然有某些特定的数据流需要从指定的出口出网的话,可

以使用策略路由功能来完成这样的需求。策略路由的优先级高于动态和静态路由,按照从上到下的次序来匹配的。 负载均衡包括三种模式: 1.基于源IP的负载均衡; 2.基于权重的负载均衡; 3.基于出口流量阀值的负载均衡。 3.1 基于源IP的负载均衡 基于源IP的负载均衡, 当路由表中有多个出网路由时,FortiGate设备会按内置的算法实现负载均衡,这个算法不能被修改。这个算法是:假设路由表中有n条出网路由,则防火墙会将内网源IP地址的最后一组数值除n取余,余1走第一条出网路由,余n-1走第n-1条出网路由,余0走第n条出网路由。 本例的出网规则是:,如果想让某些IP走特定的接口需要策略路由来实现。

第6章 OSPF路由协议

第6章 OSPF路由协议 ?OSPF的基本概念和工作过程 开放式最短路径优先协议(OSFP)是基于开放标准的链路状态路由选择协议,它完成各路由选择协议算法的两大主要功能:路径选择和路径交换。Internet 工程任务协会(IETF)于1988年开发了OSPF,其最近版本是OSPF版本2,在RFC 2328中进行了描述。 ?OSPF路由协议概述 1.OSPF是内部网关路由协议 在共同管理域下的一组运行相同路由选择协议的路由器的集合为一个自治系统(Autonomous System,AS)。在互联网中,一个自制系统是一个有权决定本系统使用哪种路由协议的单位,它可以是一个企业、一座城市或一个电信运营商。随着网络的发展,上述对AS的定义已经不是十分准确了,网络的发展使得网络之间经常出现网络合并情况,导致同一个自治系统中使用的路由协议也越来越多,所以自治系统的定义应该是在共同管理下的互联网络。 内部网关路由协议(IGP):用于在单一自治系统(Autonomous System,AS)内决策路由。内部网关路由协议包括RIP、OSPF等。 与内部网关路由协议相对应的叫做外部网关路由协议(EGP),外部网关路由协议用于在多个自治系统之间执行路由。BGP协议就是外部网关路由协议。 IGP是用来解决AS内部通信的,而EGP是解决AS间通信的。 2.OSPF是链路状态路由协议 链路状态路由协议通过与邻居路由器建立邻接关系,互相传递链路状态信息,来了解整个网络的拓扑结构。在链路状态信息中,包括有哪些链路,这些链路与哪个路由器相连,连接的路径成本是多少等信息,因此,在链路状态路由协议收敛后,一台路由器可以了解本区域完整的链路信息。 运行链路状态路由协议的路由器就好像各自“绘制”自己所了解的网段信息,然后通过与邻居路由器建立邻接关系,互相“交流”链路信息,学习整个区域内链路信息,来“绘制”出整个区域内的链路图。在一个区域内的所有路由器都保存着完全相同的链路状态数据库。 名词解释: 邻居路由器:位于同一条物理链路或物理网段上的路由器。 链路状态数据库:也称为拓扑数据库,它包含所有路由器、路由器的链路以及这些链路的状态,还包含所有网路以及到这些网络的所有路径。 邻接关系:当两台运行OSPF协议的邻居路由器的链路状态数据库达到一致(同步)时,它们就是完全邻接的。 ?OSPF的工作过程 运行RIP的路由器只需要保存一张路由器,而使用OSPF路由协议的路由器 需要保存三张表。 邻居表:列出每台路由器已经建立邻接关系的全部邻居路由器。 链路状态数据库(LSDB):列出网络中其他路由器的信息,由此显示了全网的网络拓扑。 路由表:列出通过SPF算法计算出的到达每个相连网络的最佳路径。 运行OSPF的路由器试图与邻居路由器建立邻接关系,在邻居之间互相同步 链路状态数据库。使用最短路径算法(OSPF依据的算法是Dijkstra算法),从 链路状态信息计算得到一个以自己为树根的“最短路径树”。到最后,每一台路

OSPF_协议总结(最终版)

OSPF协议总结---By Joe&东东&校长 1、邻居是否自动发现:要有广播的特点 2、DR BDR 选举:要有多点接入 3、否则就要静态指定 O 区域内LSA1. LSA2 O IA 区域间LSA3.LSA4 OE1 都是外部LSA5. LSA 7 OE2 ON1 ON2 外部路由不优先 OSPF O>OIA>OE1>OE2 DR 通告 ABR通告,整个网络泛红LSA 1 和LSA2 只在本区域泛红,其他整个OSPF网泛红。

OSPF的五个包: 1.Hello:9项内容,4个必要 2.DBD:数据库描述数据包(主要描述始发路由器数据库中的一些或者全部LSA信息),主要包括接口的MTU,主从位MS,数据库描述序列号等); 3.LSR:链路状态请求数据包(查看收到的LSA是否在自己的数据库,或是更新的LSA,如果是将向邻居发送请求); 4.LSU:链路状态更新数据包(用于LSA的泛洪扩散和发送LSA去响应链路状态请求数据包); 5.LSACK:链路状态确认数据包(用来进行LSA可靠的泛洪扩散,即对可靠包的确认)。 Hello包作用: 1.发现邻居; 2.建立邻居关系; 3.维持邻居关系; 4.选举DR,BDR 5.确保双向通信。 Hello包所包含的内容: 路由器id Hello&Dead间隔* 区域id * 邻居 DR BDR 优先级 验证* 末节区域* 注:1.“*”部分全部匹配才能建立邻居关系。 2.邻居关系为FULL状态;而邻接关系是处于TWO-WAY状态。 Hello时间间隔: 在点对点网络与广播网络中为10秒; 在NBMA网络与点对多点网络中为30秒。

OSPF路由选择协议配置

数学与计算机学院实验报告 一、实验项目信息 项目名称: OSPF 路由选择协议配置 实验时间: 2015年6月6日 实验学时: 3 学时 实验地点: 工科楼501实验室 二、实验目的及要求 1.掌握OSPF 中Router ID 的配置方法 2.掌握OSPF 的配置方法 3.掌握通过display 命令查看OSPF 运行状态的方法 4.掌握使用OSPF 发布缺省路由的方法 5.掌握修改OSPF hello 和dead 时间的配置方法 6.理解多路访问网络中的DR 或BDR 选举 7.掌握OSPF 路由优先级的修改方法 三、实验环境 Windows 、eNSP 四、实验内容及实验步骤 拓扑图 步骤一 实验环境准备 如果本任务中您使用的是空配置设备,需要从步骤1开始配置,然后跳过步 骤2。如果使用的设备包含上一个实验的配置,请直接从步骤2开始配置。 基本配置以及IP 编址。 system-view Enter system view, return user view with Ctrl+Z. [Huawei]sysname R1 [R1]interface GigabitEthernet 0/0/1 [R1-GigabitEthernet 0/0/1]ip address 10.0.12.1 24 [R1-GigabitEthernet 0/0/1]quit [R1]interface GigabitEthernet 0/0/0 [R1-GigabitEthernet0/0/0]ip address 10.0.13.1 24 [R1-GigabitEthernet0/0/0]quit [R1]interface LoopBack 0 [R1-LoopBack0]ip address 10.0.1.1 24 system-view Enter system view, return user view with Ctrl+Z. [Huawei]sysname R2 [R2]interface GigabitEthernet 0/0/1 [R2-GigabitEthernet 0/0/1]ip address 10.0.12.2 24 [R2-GigabitEthernet 0/0/1]quit [R2]interface LoopBack 0 [R2-LoopBack0]ip address 10.0.2.2 24

策略路由和NAT实现负载均衡实例(华为防火墙)

一、组网需求: 1.正常情况下10.0.0.2从出口1 2.12.12.0NAT转化成100.0.0.0的地址,20.0.0.2从出口1 3.13.13.0NAT转化成200.0.0.0的地址,实现负载均衡。 2.FW双出口的某一条链路down,所有用户NAT成同一地址段出去,实现链路冗余。 二、实验组网 四、关键配置 USG5360 (V100R003C01SPC007): ip address-set 100and200 type object address 0 10.0.0.0 mask 24 address 1 20.0.0.0 mask 24 # ip address-set 10.0.0.2 type object address 0 10.0.0.0 mask 24 # ip address-set 20.0.0.2 type object address 0 20.0.0.0 mask 24

# acl number 3001 rule 0 permit ip source 10.0.0.0 0.255.255.255 acl number 3002 rule 0 permit ip source 20.0.0.0 0.255.255.255 # nat address-group 100 NAT1 100.0.0.1 100.0.0.100 nat address-group 200 NAT2 200.0.0.1 200.0.0.100 # traffic classifier 12 if-match acl 3001 traffic classifier 13 if-match acl 3002 # traffic behavior 12 remark ip-nexthop 12.12.12.2 output-interface GigabitEthernet0/0/0 traffic behavior 13 remark ip-nexthop 13.13.13.2 output-interface GigabitEthernet0/0/1 # qos policy re classifier 12 behavior 12 classifier 13 behavior 13 # interface GigabitEthernet0/0/0 ip address 12.12.12.1 255.255.255.252 #

OSPF-协议总结(最终版)

OSPF-协议总结(最终版) OSPF协议总结---By Joe&东东&校长 1、邻居是否自动发现:要有广播的特点 2、DR BDR 选举:要有多点接入 3、否则就要静态指定 O 区域内 LSA1. LSA2 O IA 区域间 LSA3.LSA4 OE1 都是外部 LSA5. LSA 7 OE2 ON1 ON2 外部路由不优先 OSPF O>OIA>OE1>OE2 DR 通告 ABR通告,整个网络泛红 LSA 1 和LSA2 只在本区域泛红,其他整个OSPF网泛红。 OSPF的五个包: 1.Hello:9项内容,4个必要 2.DBD:数据库描述数据包(主要描述始发路由器数据库中的一些或者全部LSA信息),主要包括接口的MTU,主从位MS,数据库描述序列号等); 3.LSR:链路状态请求数据包(查看收到的LSA是否在自己的数据库,或是更新的LSA,如果是将向邻居发送请求); 4.LSU:链路状态更新数据包(用于LSA的泛洪扩散和发送LSA去响应链路状态请求数据包);

5.LSACK:链路状态确认数据包(用来进行LSA可靠的泛洪 扩散,即对可靠包的确认)。 Hello包作用: 1.发现邻居; 2.建立邻居关系; 3.维持邻居关系; 4.选 举DR,BDR 5.确保双向通信。 Hello包所包含的内容:路由器id Hello&Dead间隔 * 区域id * 邻居 DR BDR 优先级验证 * 末节区域 * 注:1.“*” 部分全部匹配才能建立邻居关系。 2.邻居关系为FULL状态;而邻接关系是处于TWO-WAY状态。 Hello时间间隔: 在点对点网络与广播网络中为10秒; 在NBMA网络与点对多点网络中为30秒。 注: 保持时间为hello时间4倍 虚电路传送的LSA为DNA,时间抑制,永不老化. OSPF的组播地址: DR将使用组播地址224.0.0.5泛洪扩散更新的数据包到DRothers DRothers使用组播地址224.0.0.6发送更新数据包组播的MAC地址分别为:0100.5E00.0005,0100.5E00.0006 OSPF的包头格式: | 版本 | 类型 | 长度 | 路由器ID | 区域ID | 验证和 | 验证类型 |验证 | 数据 | | 1 byte | 1 |

关于路由协议OSPF

关于路由选择协议OSPF协议的认识 关于对路由协议的认识,我们首先要从根本上了解什么是路由协议,路由协议的作用有哪些?在计算机网络的网络层所使用的设备叫做路由器,而路由协议就是路由器在源IP数据包发送给目的地址时所预先规定的规则和标准,路由选择协议就是运行在路由器上,起着进行路径选择的功能。对于路由选择的核心就是路由算法,路由算法应具有算法必须是正确和完整的、算法在计算上应简单、算法应适应通信量和网络拓补的变化、算法应具有稳定性、算法应是公平的、算法是最佳的等特点。 由于目前的网络规模非常大,并且许多单位不愿意外界了解本单位内部网络的布局细节和本部门所采用的路由选择协议,所以需要使用分层次路由选择协议,因此因特网把整个互联网分成了许多较小的自治系统AS,由此路由协议分成两大类(1)AS内部的内部网关协议IGP(2)AS之间的外部网关协议EGP(注:由于历史原因许多有关TCP/IP的文献把网络层所使用的路由器称为网关)。而内部路由器协议又具体分为RIP和OSPF协议。接下来了解我们的核心内容:关于OSPF的认识。 在因特网标准协议【RFC 2328】中这样规定:OSPF is a link state routing protocol. Such protocols are also referred to in the literature as SPF-based or distributed-database protocols.它的意思就是OSPF是一种链路状态路由协议,这样的协议在文献中也称为基于SPF或分布式数据库协议。所以国人翻译过来OSPF就是开放最短路径优先协议,

一台三层交换机做双链路负载均衡

一台三层交换机做双链路负载均衡(图) 关于一台三层交换机做双出口负载均衡的问题 本单位局域网内,有两个网段,分别接在两条Internet线路上,当一条线路断掉时,一半的人就不能上网。现在想在路由器下面接一台三层交换机,划分二个vlan,这二个vlan的用户可以同时通过两条Internet线路上网,并且在一条线路断掉时,也不会受到影响。 如何能做到这二条线路同时做到负载均衡和冗余呢? 设备情况是:两台艾泰路由器,分别接两根上网线路 四台Cisco2960分两个网段,接不同用户 准备增加一台cisco3560,划分二个vlan ,分别接二条线路和二个网段,并做到冗余和均衡 [本帖最后由 zhaoxinz 于 2009-9-16 13:02 编辑] 附件 - 如何获取无忧币 - 下载扣无忧币规则 网1.jpg (12.77 KB) 2009-9-16 13:02 网2.jpg (14.99 KB) 2009-9-16 13:02

搜索更多相关主题的帖子: 双链负载三层交换 本帖最近评分记录 浪迹江湖无忧币 +5 原创内容 2009-10-6 09:51 引用报告回复 TOP 维护论坛纯净人人有 责,灌水严惩!举报 有奖 gmwd18 新新人类 帖子 75 精华 0 无忧币 8 论坛积分沙发大中小发表于 2009-9-16 14:12 只看该作者 信产部权威认证:弱电安防培训 | 培训光盘免费看 | 专家门诊百期 | 勋章系统全新上线,你还等什么? 我是这样想的,利用HSRP(热备份路由协议)划分两个HSRP组,这两个路由器都是这两个组

89 ?发短消息?加为好友?当前离线?个人博客 的成员,路由1是组1 的活跃路由器,路由2 是standby,同样,路由 2是组2的活跃路由,路由1是standby,正好公司有两个VLAN,可以对 每个VLAN配置一个HSRP 组,这样可以为不同的 子网实现一定程度的负 载均衡,组1的流量由 路由1承载,组2 的流量由路由2承载,其中 有一个down掉,另一个路由立马顶上,然后配 上端口跟踪,就OK了。 不过两个HSRP组的虚拟IP不能一样,你使用的 不是CISCO路由,可能 命令有些不同,毕竟HSRP是CISCO的协议,别的厂商应该支持VRRP (虚拟路由冗余协议),还有就是,要关闭路由 器的ICMP重定向消息,以便不让局域网内的主 机发现HSRP的虚拟MAC 地址。 知道的不多,希望对你 有所帮助。 引用报告回复 TOP 维护论坛纯净人人有责,灌水严惩!举报

实验OSPF路由协议配置实验报告

浙江万里学院实验报告 课程名称:数据通信与计算机网络及实践 实验名称:OSPF路由协议配置 专业班级:姓名:小组学号:2012014048实验日期:6.6 实验内容: 1、理解OSPF路由协议。 2、在路由器上配置OSPF路由协议,组建一个简单的路由网络。 3、理解并会在路由器中配置使用OSPF协议路由。 实验目的: 1、掌握OSPF协议的配置方法。 2、掌握路由器上同时有多种路由协议时的配置方法。 实验报告内容 本实验要求读者完成一个综合实验项目。实验网络图如下所示,要求一组操作路由器A和B, 另一组操作路由器C和D。首先每组自己采用ospf路由协议实现本网段的全连通。之后,将两组路由器再互连起来,并且互连的两个路由器接口采用rip路由协议。利用上述讲解的路由引入技术实现两组的全连通。 第一组配置图第二组配置图 (一)直接在图中标注各设备接口(包括主机)的IP地址 (二)每组完成自己的配置。配置可以分成三步:(1)配置主机和路由器各接口的IP地址;(2)在路由器上配置ospf路由;(3)测试网络的连通性。如果全部连通说明配置正确,否则查找错误并纠正后 成绩: 教师:李翠莲

再测试。要求写出两台路由器上的ospf路由配置命令。

这一步配置可以分成三步:(1)在路由器上新增加配置rip路由协议,在rip协议的network中只声明新增的网段;(2)在路由器的rip协议中引入ospf协议,ospf协议中引入rip协议。注意只需要在配置了多种路由协议的路由器中需要这样做,只配置一种路由协议的路由器不需要进行路由引入操作,路由引入除了引入路由协议外,还要注意附加引入直连路由;(3)完成后测试各网段的连通性,特别是不同组的主机测试。给出部分测试结果。 要求写出两台路由器上新增的rip路由配置和路由引入配置命令。 RouteB(第一组)上的新增路由配置: [RTB]rip [RTB-rip-1]version 2 [RTB-rip-1]undo summary [RTB-rip-1]network 172.20.0.0 RouteB(第一组)上的新增路由引入配置: [RTB-rip-1]import ospf [RTB-rip-1]quit [RTB]ospf [RTB-ospf-1]import rip [RTB-ospf-1]quit RouteC(第二组)上的新增路由配置: [RTC]rip [RTC-rip-1]version 2 [RTC-rip-1]undo summary [RTC-rip-1]network 172.20.0.0 RouteC(第二组)上的新增路由引入配置:

相关文档
相关文档 最新文档