文档库 最新最全的文档下载
当前位置:文档库 › 植物数量性状基因座_QTL_的作图与克隆

植物数量性状基因座_QTL_的作图与克隆

植物数量性状基因座_QTL_的作图与克隆
植物数量性状基因座_QTL_的作图与克隆

数量性状基因座原理

数量性状基因座(QTL)定位的基本原理 数量性状基因座(quantitative trait locus,QTL)指的是控制数量性状的基因在基因组中的位置。QTL定位的理论依据是Morgan 的连锁遗传规律,通过数量性状观察值与标记间的关联分析,当标记与特定性状连锁时,不同标记基因型个体的表型值存在显著差异,来确定影响各个数量性状的基因(QTL)在染色体上的位置、效应,甚至各个QTL间的相关作用。QTL定位检测的是分子标记与QTL之间的连锁关系,通过分析整个染色体组的DNA标记和数量性状表型值的关系,将QTL逐一的定位到连锁群的相应位置,并估算出相应的QTL效应值。QTL定位实质上是基于一个特定模型的遗传假设,与数量性状基因有本质区别,是统计学上的一个概念,有可信度(如95%、99%等)。 近年来,数量性状的研究进入了崭新的QTL时代,先后提出了多种QTL定位的统计方法。可分两大类:一类是基于性状的分析方法(Trait Based Analysis,TBA),其原理是利用分离群体的两极端表型个体来分析标记与QTL的连锁关系,检验标记基因型在两极端类型内的分离比是否偏离孟德尔定律;第二类是基于标记的分析方法(Marker Based Analysis,MBA),如果某标记与QTL连锁,该标记与QTL在一定程度上共分离,分析不同标记基因型的表型值差异来推测标记与QTL的连锁关系。MBA方法通常有3类,即传统的单标记分析法(Single Marker Analysis,SMA)、性状-标记回归法和性状- QTL - 回归法。性状- QTL - 回归法又包括基于两个侧邻标记的区间作图法

基因对性状的控制教案教学设计

第四章第2节基因对性状的控制 一、教材分析: 本节包括“中心法则的提出及其发展”和“基因、蛋白质与性状的关系”两部分内容。中心法则是生物学的核心规律,“基因、蛋白质与性状的关系”是对三者关系的总结。 二、教学目标 1、知识目标: ⑴解释中心法则的基本内容 ⑵举例说明基因与性状的关系 2、能力目标 ⑴锻炼学生根据实验证据得出结论的能力 ⑵理解结构与功能相适应的生物学原理。 3、情感、态度和价值观目标 通过中心法则的修改,基因、蛋白质与性状三者关系的确立,让学生认识到科学是一个逐步完善的过程,同时科学发展是永无止境的。 三、教学重难点 重点:(1)中心法则的理解 (2)基因、蛋白质与性状的关系。 难点:基因、蛋白质与性状的关系。 四、学情分析 在初中生物课以及前三章的学习中,阐述的都是基因与性状的关系,学生对蛋白质在其中的作用并不很明确。教材中的几个实例也都是着眼与此,与前面的遗传因子等遥相呼应,是学生从整体上把握三者的关系。 五、教学方法 1、教师讲述、举例、演示、启发与学生阅读、思考、讨论探索相结合。 2、学案导学 六、课前准备 1、学生的学习准备:完成课前预习学案,提出疑惑 2、教师的教学准备:课前预习学案、课内探究学案、课后训练与提高、 七.课时安排:1课时 八.教学过程 ㈠预习检查、总结疑惑 ㈡情境导入、展示目标 〖问〗水中的叶比空气中的叶要狭小细长一些,这两种形态的叶,其细胞的基因组成应是一样的。为什么叶片细胞的基因组成相同,而叶片却表现出明显不同的形态? ㈢合作探究,精讲点拨 探究活动一:中心法则的提出及发展 引导学生阅读P69资料分析,小组内讨论交流,尝试根据提供的实验证据,分析最初的中心法则的不足,并作出适当的修改;鼓励学生展示小组讨论结果;最后阐述中心法则的基本内容。 〖提示〗1.没有。实验证据指出了原有的中心法则所没有包含的遗传信息的可能传递途径,是对原有中心法则的补充而非否定。

植物基因克隆实验指导

植物基因克隆实验规则 一、植物基因克隆实验课的目标 根据基因克隆实验操作的整体性和连贯性特点, 将该实验设计为综合性实验课程,实验内容设计上完全抛弃了原来分散的、孤立的单纯学习某一实验技术的缺陷, 将单个实验综合为系统的、连贯的系列型大实验,注重科研成果在教学中的应用,我们从以往的科研项目中选取了部分研究内容用于学生的综合性实验教学,这是基于教学实验与实际科学研究实验之间的新的实验教学模式。 整套实验围绕洋甘菊倍半萜生物合成途径中关键酶基因HMGR的克隆这一研究课题进 行操作, 设计的实验内容具有极强的连续性和综合性,让学生在独立实践操作中学习基因克隆的基本研究方法和体会科学研究的严密逻辑和培养科研理念。 我们将实验内容设置为8个部分, 实验内容前后衔接紧密, 环环相扣, 不可分割, 前一个实验的结果是下一个实验的材料。该课程使学生获得了整个类似科研实践过程的训练和体验, 学习了从事科研工作的基本功, 对完成自己的毕业论文及将来从事生命科学研究奠定了科 研基础。 二、实验的进行程序和要求 1、预习学生在课前应认真预习实验指导以及教材有关章节,必须对该次实验的目的要求、实验内容、基本原理和操作方法有一定的了解。 2、讲解教师对该实验内容的安排及注意事项进行讲解,让学生有充分的时间按实验指导的要求进行独立操作与观察。 3、独立操作与观察除个别实验分组进行外,一般由学生个人独立进行操作和观察。在实验中要按实验指导认真操作,仔细观察,作好记录。有关基本技能的训练,要按操作程序反复练习,以达到一定的熟练程度。

4、演示每次的实验都备有演示内容,其目的是帮助学生了解某些实验中的难点,扩大在实验课有限时间内获得更多感性知识的机会。 5、作业实验报告参照硕士毕业论文的格式写,必须强调科学性,实事求是地记录、分析、综合。在实验结束时呈交。 6、小结每次实验结束后,由师生共同小结本次实验的主要收获及今后应注意的问题。 三、实验规则和注意事项 1、每次上课前,必须认真阅读实验指导,明确本次实验的目的要求、实验原理和注意事项,熟悉实验内容、方法和步骤。 2、上实验课时必须携带实验指导、记录本及文具等。进入实验室要按规定座位入座。 3、实验时要遵守纪律,听从教师指导,保持肃静。有问题时举手提问,严禁彼此谈笑喧或随意走动,也不得私自进行其他活动。 4、实验时要遵守实验操作规程,严格按照教师的安排和实验指导的要求进行。操作观察要认真仔细,边做、边看、边想,认真做好实验记录。 5、要爱护仪器和器材设备,注意节约实验材料、药品和水电。如有损坏器材应立即报告并主动登记、说明情况。 6、实验结束后,应清理实验台面,认真清理好仪器、药品及其他用品,放回原处,放好凳子,方可离开实验室。值日生要负责清扫地面,收拾实验用品,处理垃圾,关好水、电、门窗后再离开。

植物基因克隆技术的研究进展

植物基因克隆技术的研究进展 随着科学技术的不断发展,人类基因组计划的不断实施,世界生命科技工作者对于植物基因克隆技术的研究不断进步,近年来,我国在基因克隆技术领域也有了长足的进步,在玉米,小麦,大豆,水稻,拟南芥等植物中,已经克隆了许许多多与植物的产量、品质、抗性及农艺性状等相关的基因。文章主要从基因芯片技术,功能克隆、定位克隆、同源序列克隆、PCR擴增技术分别介绍基因克隆技术的现状以及研究进展。 标签:植物;基因克隆技术;研究 植物基因克隆技术在生命科学技术中扮演着越来越重要的角色,而植物基因克隆技术从传统意义上来讲可分为两种不同的方式。正向以及反向的遗传学方式,正向遗传学途径是一种很早的经典的克隆方法,通过研究突变表型性状进行克隆,包括了功能以及表型克隆等较为基本的克隆的方式;反向遗传学途径和正向遗传学途径截然不同,它是通过一些特殊的方法,获得遗传基因片段,然后经过一系列的定位,将之后所研究的基因逆向研究。如定位克隆,同源序列克隆等。除了这两种克隆技术外,随着社会发展,也有一些新的克隆技术产生。 1 基因芯片技术 基因芯片技术是电子克隆技术的典型代表,基因芯片又称DNA芯片、DNA 微阵列,是以预先设计的方式将大量的基因探针固定在玻片、硅片等固相载体上组成的密集分子阵列。基因芯片技术类似于计算机的电子芯片技术,其具有高通量、微型化、连续化、自动化、快速和准确等特点。是一种随着人类基因组计划的进行而发展出的产物,这一发展使得人类对越来越多的微生物和动植物基因组取得了更长远的认识,对其的研究,是全人类对于基因组认识做出的不断地努力的成果,其中不乏许多典型的实例,用cDNA芯片技术对草莓、矮牵牛其基因是如何进行表达的进行研究,进而实现对转基因植物进行形状的观察及控制,可以更好的获悉分子对于基因表达是如何作用以及影响的也有利于获得更为优异更为良好的作物[1]。 基因芯片技术是一种新型的克隆技术,是科技创新和生命科学的很好的结合,代表着人类在基因的克隆方面进展和成就,解决了很多传统克隆不能解决的问题,也讲基因克隆技术引向一种新的思维模式。 2 功能克隆 功能克隆是人类采用最早的基因克隆策略,功能克隆技术从已知蛋白质的功能着手进行研究,其方法原理是先测知基因的编码蛋白质,利用它的信使RNA 进行反转录成cRNA,再利用cDNA做探针,从基因组中获取基因本身,进而完成克隆。

拟南芥的图位克隆技术

拟南芥基因的图位克隆技术 浙江大学生命科学学院徐冰 浙江杭州310029 1 国内外研究现状 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp)、生长周期短等特点,而且基因组测序已经完成(The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植物的一般特点,拟南芥研究中所取得成果很容易用于其它高等植物包括农作物的研究,产生重大的经济效益,特别是十字花科中还有许多重要的经济作物,与人类的生产生活密切相关,因此目前拟南芥的研究越来越多地受到国际植物学及各国ZF的重视。 从遗传学的观点来看,基因克隆的途径可概括为正向遗传学和反向遗传学两种。正向遗传学途径指的是通过被克隆基因的产物或表现型突变去进行;反向遗传学途径则指的是依据被克隆基因在染色体上的位置来实现。虽然一些模式生物(如拟南芥)的基因组测序已经完成,但还有40%的基因(在拟南芥中)的功能还是未知的。 图1 图位克隆所需努力的比较(1995年和2002年)(Jander等,2002) 图位克隆(map-based cloning)又称定位克隆(positional cloning),1986年首先由剑桥大学的Alan Coulson提出(Coulson等,1986),用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力已经大大减少了(图1)。 目前完成整个拟南芥的图位克隆过程大约需要一年时间。在这个过程中,我们从筛选突变体开始,逐渐找到和表型相关的基因。这和反向遗传学的方法正好相反。图位克隆能实现,关键在于全基因组测序计划的完成和各种分子标记的发现。这些数据被储存在专门的数据库中

第四章数量性状的遗传

第四章数量性状的遗传 目的要求 掌握数量性状与质量性状的区分、特征,多基因假说的要点,数量性状表现值的分解,遗传力的概念;了解通径系数概念与意义,基因的非加性效应与加性效应的意义,遗传力公式的推导及计算方法;掌握遗传力的应用。 第一节数量性状的遗传基础 生物的性状基本上可分为两大类: 质量性状(qualitative trait):变异可以截然区分为几种明显不同的类型,一般用语言来描述; 数量性状(quantitative trait):个体间性状表现的差异只能用数量来区别,变异是连续的。 阈性状(threshold trait):表现型呈非连续变异,与质量性状类似,但不是由单基因决定,性状具有一个潜在的连续型变量分布,遗传基础是多基因控制的,与数量性状类似。 一、数量性状的一般特征 数量性状的特点: ①数量性状是可以度量的; ②数量性状呈连续性变异; ③数量性状的表现容易受到环境的影响; ④控制数量性状的遗传基础是多基因系统。 学习数量性状的方法 ①统计学思想贯穿数量性状遗传的全部内容; ②确定性与不确定性的矛盾时时体现; ③研究对象在个体与群体间的相互转换; ④遗传与变异的矛盾。 二、数量性状的遗传基础 1.多基因假说 瑞典遗传学家尼尔迩·埃尔(Nilsson-Ehle)通过对小麦籽粒颜色的遗传研究,提出了数量性状遗传的多基因假说。 多基因假说的要点 (1)数量性状是由许多微效基因决定的,每个基因的作用的微效的; (2)基因的作用是相等的,且可以累加、呈现剂量效应,等位基因间通常无显隐关系;(3)基因在世代相传中服从孟德尔定律,即分离规律和自由组合规律,以及连锁交换规律2.基因的非加性效应 基因的非加性效应包括显性效应和上位效应。 (1)显性效应由等位基因间相互作用产生的效应。 例1:有两对基因,A1、A2的效应各为20cm,a1、a2的效应名为10cm,基因型A1A1a2a2

基因对性状的控制教案

《基因对性状的控制》教学设计 二.教学目标: 1. 知识目标:课程标准中与本节对应的要求是:“举例说明基因与性状的关系”,属于“理解水平”。这项要求包括三层含义:一是理解基因的概念和本质;二是理解基因的表达过程;三是理解从基因到性状的控制过程及其所对应的具体实例,并能运用所学知识分析相关事例。 2 .能力目标:本节以生物的具体外在性状分析入手,学生以原有知识结构为基础动脑分析事物现象背后的一般规律,培养学生从实验证据分析得出结论的能力 3.情感态度与价值观:认知科学研究是不断深入的,是一个从宏观到微观,从现象到本质而后又从微观到宏观、本质到现象的认知过程,要树立科学的认知观和发展观。 三.教学重点和难点: 教学重点: 1.中心法则 2. 基因、蛋白质与性状的关系 教学难点:基因、蛋白质与性状的关系 四.教学策略: 课堂教学过程中注意设计巧妙的学习探究情景,给予丰富的资料信息和具体事例,组织、指导启发学生,并积极的参与学生的学习、讨论过程。引导学生自主分析问题,真正培养学生初步学会从现象归纳到本质和从本质延伸到多种现象的分析解决问题的能力。 五.课时安排: 1课时 六. 教学过程

性状。 孟德尔实验中圆粒豌豆和皱粒豌豆的形成原因关于基因与性状的关系和上面的例子有和不同?从中我们又能得到什么结论? 病例三:白化病 介绍相关资料和发病机理 让学生自主分析: 根据资料分析白化病的成因。 原因: 控制酶合成的基因异常导致无法合成相关酶类,从而影响了相应的物质(黑色素)的合成。简单介绍侏儒症。(生长激素)2?基因通过控制酶或激素的合成来控制代谢过程, 控制生物体的性状。(间接控制)通过以上几种病例或现象的分析,你能否构建基因、蛋白质、性状三者关系的概念图? 该图是否代表了生物性状的所有影响方式呢?还有没有其他因素会影响生物体的性状了呢?上述实例都是单个基因对生物性状的控制,而基因与性状的关系不都是简单的线性关系。如人的身高可能是多个基因决定,同时又受后天的影响。 举例:蜜蜂,青蛙的发育过程,带领学生阅读课本P68的图例: 展示水毛茛图例 如果让你象完善“中心法则”那样去完善基因与性状的关系,你会怎么做? 3.调控生物体性状的因素 请对残翅果蝇的出现提内出假说,并进行解释? (对残翅当因素(外因)通过类比,得出两者差别,并总结训练学生横向比较的思维方法训练总结知识的方法---概念图 总结、过渡 层层补充深入,使问题分析更加严谨、科学、完善。体会科学研究是不断发展,不断进步的循序渐进过程。,同时训练批判性思维方式。 培养学生提出假说、到得出结论的科研方法,调动学生主观能动性、加深对新内容的理解和所学方法的运用。

植物基因的克隆|植物基因克隆的基本步骤

植物基因的克隆 08医用二班姚桂鹏0807508245 简介 克隆(clone)是指一个细胞或一个生物个体无性繁殖所产生的后代群体。通常所说的基因克隆是指基于大肠埃希菌的DNA片段(或基因)的扩增,主要过程包括目标DNA的获取、重组载体的构建、受体细胞的转化以及重组细胞的筛选和繁殖等。本文主要介绍植物基因的特点、基因克隆的载体、基因克隆的工具酶、基因克隆的策略以及植物目的基因的分离克隆方法等内容。 关键词 植物基因基因克隆载体工具酶克隆策略分离克隆方法 Plant gene cloning Introduction Cloning (clone) refers to a cell or an individual organisms asexual reproduction produced offspring. Usually said cloning genes means

based on escherichia coli segment of DNA (or genes), including the main course target DNA, restructuring of the carrier, transformation of receptor cells and reorganization of screening and reproductive cells. This paper mainly introduces the characteristics of plant gene and gene cloning and carrier, gene clone tool enzyme, gene cloning and plant gene strategy of separation cloning method, etc. Keywords Plant gene cloning tool enzyme gene cloning vector method of separation of cloning strategy 一、植物基因的结构和功能 基因(gene)是核酸分子中包含了遗传信息的遗传单位。一般来说,植物基因都可分为转录区和非转录的调控区两部分。 (一)植物基因的启动子 启动子(promoter)是指在位于结构基因上游决定基因转录起始的区域,植物积阴德启动子包括三个较重要的区域,一时转录起始位点,而是转录起始位点上游25~40bp的区域,三是转录起始位点上游-75bp处或更远些的区域。 (二)植物基因的增强子序列

QTL-seq:用重测序方法进行数量性状基因座(QTL)定位的方法

TECHNICAL ADVANCE/RESOURCE QTL-seq:rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations Hiroki Takagi 1,2,Akira Abe 2,3,Kentaro Yoshida 1,Shunichi Kosugi 1,Satoshi Natsume 1,Chikako Mitsuoka 1,Aiko Uemura 1,Hiroe Utsushi 1,Muluneh Tamiru 1,Shohei Takuno 4,Hideki Innan 5,Liliana M.Cano 6,Sophien Kamoun 6and Ryohei Terauchi 1,*1 Iwate Biotechnology Research Center,Kitakami,Iwate,024-0003,Japan,2 United Graduate School of Iwate University,Morioka,Iwate,020-8550,Japan,3 Iwate Agricultural Research Center,Kitakami,Iwate,024-0003,Japan,4 Department of Plant Sciences,University of California,Davis,CA 95616,USA,5 Graduate University for Advanced Studies,Hayama,Japan,and 6 The Sainsbury Laboratory,Norwich Research Park,Norwich,UK Received 7September 2012;revised 13December 2012;accepted 20December 2012;published online 05January 2013.*For correspondence (e-mail terauchi@ibrc.or.jp). SUMMARY The majority of agronomically important crop traits are quantitative,meaning that they are controlled by multiple genes each with a small effect (quantitative trait loci,QTLs).Mapping and isolation of QTLs is important for ef?cient crop breeding by marker-assisted selection (MAS)and for a better understanding of the molecular mechanisms underlying the traits.However,since it requires the development and selection of DNA markers for linkage analysis,QTL analysis has been time-consuming and labor-intensive.Here we report the rapid identi?cation of plant QTLs by whole-genome resequencing of DNAs from two populations each composed of 20–50individuals showing extreme opposite trait values for a given phenotype in a segregating progeny.We propose to name this approach QTL-seq as applied to plant species.We applied QTL-seq to rice recombinant inbred lines and F 2populations and successfully identi?ed QTLs for important agronomic traits,such as partial resistance to the fungal rice blast disease and seedling vigor.Simulation study showed that QTL-seq is able to detect QTLs over wide ranges of experimental variables,and the method can be generally applied in population genomics studies to rapidly identify genomic regions that underwent arti?cial or natural selective sweeps. Keywords:quantitative trait loci,breeding,whole genome sequencing,next generation sequencer,selective sweep,technical advance. INTRODUCTION The world’s population has already exceeded 7billion and is still growing,while the amount of land suitable for agri-culture is decreasing due to a variety of factors such as rapid climate change.Therefore there is a great demand for ef?cient crop improvement to increase yield without further expanding farmland and damaging the environ-ment (Godfray,2010;David et al.,2011). In crop plants,multiple genes each with a relatively minor effect control the majority of agronomically impor-tant traits.These genes are called quantitative trait loci (QTLs)(Falconer and Mackay,1996).Identi?cation of QTLs is an important task in plant breeding.Once a QTL control-ling a favorable trait is mapped with closely linked DNA markers,it is introduced into an elite cultivar by crossing of the recurrent elite parent to the donor plant.Following QTL a process marker-assisted selection and Matsuoka,2006).Marker-assisted selection reduces the effort and time needed for phenotype evaluation of the progeny during successive improves introgression ?2013The Authors The Plant Journal ?2013Blackwell Publishing Ltd 174 The Plant Journal (2013)74,174–183doi:10.1111/tpj.12105

植物基因克隆

来自dxy 22003luocong 植物基因全长克隆几种方法的比较 基因是遗传物质基本的功能单位,分离和克隆目的基因是研究基因结构、揭示基因功能及表达的基础,因此,克隆某个功能基因是生物工程及分子生物学研究的一个重点。经典克隆未知基因的方法比如通过筛选文库等有个共同的弊病, 即实验操作繁琐, 周期较长、工作量繁重,且不易得到全长序列。又由于在不同植物中目的基因mRNA丰度不同,所以获得目的基因的难易程度又不一样,特别是对于丰度比较低的目的基因即使使用不用的方法也不一定能获得成功。近年来随着PCR技术的快速发展和成熟.已经有多种方法可以获得基因的全长序列, 比如经典的RACE技术,染色体步移法和同源克隆法等,本文主要综述几种重要的克隆方法的原理和运用,并且比较分析这几种方法的优缺点,为你的实验节约时间和成本。 1 RACE技术 1985年由美国PE-Cetus公司的科学家Mulis等[1]发明的PCR技术使生命科学得到了飞跃性的发展。1988年Frohman等[2] 在PCR技术的基础上发明了一项新技术, 即cDNA末端快速扩增技术( rapid amplification of cDNA ends, RACE), 其实质是长距PCR( long distance, PCR)。通过PCR由已知的部分cDNA 序列, 获得5′端和3′端完整的cDNA, 该方法也被称为锚定PCR ( anchored PCR) [3] 和单边PCR( one-sidePCR) [4]。RACE技术又分为3?RACE和5?端RACE。3′RACE 的原理是利用mRNA 的3′端天然的poly(A) 尾巴作为一个引物结合位点进行PCR, 以Oligo( dT) 和一个接头组成的接头引物( adaptor primer, AP)反转录mRNA得到加接头的第一链cDNA。然后用一个正向的基因特异性引物( gene-specific primer, GSP) 和一个含有接头序列的引物分别与已知序列区和poly(A) 尾区退火, 经PCR扩增位于已知序列区域和poly( A) 尾区之间的未知序列,若为了防止非特异性条带的产生, 可采用巢式引物( nested primer) 进行第二轮扩增, 即巢式PCR( nested PCR) [5,6]。5?RACE 跟3?RACE原理基本一样,但是相对于3?RACE来说难度较大。 5'-RACE受到诸多因素的影响而常常不能获取全长,因此研究者都着手改进它。这些措施主要是通过逆转录酶、5'接头引物等的改变来实现的,因此出现了包括基于“模板跳转反转录”的SMART RACE技术( switching mechanism at 5′ end of RNA transcript) [7] , 基于5′脱帽和RNA酶连接技术的RLM-RACE技术(RNA ligase mediated RACE)[8], 利用RNA连接酶为cDNA第一链接上寡聚核苷酸接头的SLC RACE技术(single strand ligation to single-stranded cDNA)[9] , 以及以内部环化的cDNA第一链为模板进行扩增的自连接或环化RACE技术(self-ligation RACE or circular RACE)[10],和通过末端脱氧核苷酸转移酶( TdT)加尾后引入锚定引物的锚定RACE技术( anchored RACE)[11]。 笔者主要介绍两种比较新的RACE技术,基于…模板跳转?的SMART RACE 技术和末端脱氧核苷酸转移酶( TdT)加尾技术。 1.1基于‘模板跳转’的SMART RACE技术[7,12]

植物基因克隆的策略与方法

植物基因克隆的策略与方法 基因的克隆就是利用体外重组技术,将特定的基因和其它DNA顺序插入到载体分子中。基因克隆的主要目标是识别、分离特异基因并获得基因的完整的全序列,确定染色体定位,阐明基因的生化功能,明确其对特定性状的遗传控制关系。通过几十年的努力由于植物发育,生理生化,分子遗传等学科的迅速发展,使人们掌握了大量有关植物优良性状基因的生物学和遗传学知识,再运用先进的酶学和生物学技术已经克隆出了与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质及与植物发育有关的许多基因。我们实验室对天麻抗真菌蛋白基因作了功能克隆的研究(舒群芳等,1995;舒群芳等,1997),为了克隆植物基因也探讨了其它克隆方法,本文论述基因克隆的策略、方法及取得的一些进展。 1 功能克隆(functional Cloning) 功能克隆就是根据性状的基本生化特性这一功能信息,在鉴定和已知基因的功能后克隆(Collis,1995)。其具体作法是:在纯化相应的编码蛋白后构建cDNA文库或基因组文库,DNA文库中基因的筛选根据情况主要可用二种办法进行,(1)将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针从cDNA库或基因组文库中筛选编码基因,(2)将相应的编码蛋白制成相应抗体探针,从cDNA入载体表达库中筛选相应克隆。功能克隆是一种经典的基因克隆策略,很多基因的分离利用这种策略。 Hain等从葡萄中克隆了两个编码白藜芦醇合成的二苯乙烯合成酶基因(Vst1和Vst2),葡萄中抗菌化合物白藜芦醇的存在,可以提高对灰质葡萄孢(Botrytis cinerce)的抗性,在烟草和其它一些植物中无二苯乙烯合成酶,因此

5.3 基因对性状的控制

5.3 基因对性状的控制 【学习目标】:1)举例说出人类遗传病的主要类型;(2)探讨人类遗传病的监测与预防; (3)关注人类基因组计划及其意义 【学习重点难点】:。类常见遗传病的类型以及遗传病的监测与预防。人类基因组计划的意义及其人体健康的关系 【自主学习】 引入:人类很多疾病,对人类基因的研究表明,人类的大多数疾病,甚至普通感冒和肥胖都可能与基因有关。 一、人类常见遗传病的类型 人类遗传病概念: (一)单基因遗传病 1、概念:指受一对等位基因控制的遗传病。 2、分类:1)显性基因引起的常染色体显性遗传病(并指多指、软骨发育不全) X染色体显性遗传病(抗维生素D佝偻病) 2)隐性基因引起的常染色体隐性遗传病(苯丙酮尿症、白化病先天性聋哑) X染色体隐性遗传病(红绿色盲、血友病、进行性肌营养不良) 3)Y染色体上的遗传病 3、特点:在同胞中发病率较高,在群体中发病率较低 (二)多基因遗传病 1、概念:两对以上的等位基因控制的遗传病。 2、特点:1)常表现出家族聚集现象 2)起源于遗传物质,易受环境的影响 3)在群体中发病率比较高 3、病例:如原发性高血压、冠心病、无脑儿、唇裂、哮喘病和青少年型糖尿病(三)染色体异常遗传病 1、概念:由于染色体数目异常或结构畸变而引起的疾病 2、分类:常染色体病:如21三体综合征(先天性愚型),猫叫综合症 性染色体病:性腺发育不良症 3、特点:由于染色体的变异引起遗传物质较大改变,故此类遗传病症状严重,甚至胚胎时期就自然流产。 二、遗传病的监测和预防 ①对家庭成员进行,了解家庭病史,诊断是否患有某种遗传病 1、遗传咨询:②分析遗传病,判断类型 (内容与步骤)③推算出后代的再发 ④向咨询对象提出防治对策和建议,如终止、进行 ①羊水检查,B超检查 方法②孕妇血细胞检查 2、产前诊断③绒毛细胞检查,基因诊断 优点①及早发现有严重遗传病和严重畸形的胎儿 ②优生的重要措施之一 三、人类基因组计划与人体健康

图位克隆基因研究进展

图位克隆基因研究进展 宋成标 摘要图位克隆是在不清楚基因产物结构和功能的情况下,根据基因在染色体上都有稳定的基因座实现的。随着各种分子标记技术和高质量基因组文库构建技术的发展,图位克隆现已经成为分离生物体基因的一种常规技术。本文主要概述了图位克隆的一般步骤,包括目的基因的初步定位、精细定位和遗传做图、染色体步行和登陆及利用功能互补实验鉴定目的基因。最后,对图位克隆技术存在的局限和发展前景作了初步的分析。 关键词图位克隆, 分子标记, 精细定位, 基因组文库 Abstract Map-based cloning is based on the functional genes have their particular gene locus on chromosomes,when we know about the structure and function of gene products unclearly.With the rapid development of molecular marker technologies and constructing high quality genomic library technologies, map-based cloning had already become a common bio—technique for gene isolation. This article summarized mainly the processes of the map-based cloning in principle,including first-pass mapping of candidate gene、fine scale-mapping and building genetic map、chromosome walking or landing and finally complement experiment for identifing candidate gene. Finally the problems and the prospects in the map-based cloning are analyzed Keywords Map-based cloning, Molecular marker, Fine maping, Genomic library 从遗传学观点来看,基因克隆有两条途径:正向遗传学途径和反向遗传学途径。正向遗传学途径指的是通过被克隆基因的产物或表型突变去进行,如传统的功能克隆及近年来迅速发展的表型克隆;反向遗传学途径是根据被克隆的目的基因在染色体上都有稳定的位置来实现的。由于在多数情况下,我们并不清楚基因产物的结构和功能,很难通过正向遗传学途径克隆基因,而反向遗传学途径则显示了较好的前景。其中可以利用的主要有三种方法,分别是转座子标签法、随机突变体筛选法和图位克隆法。转座子标签法中受转座子的种类、转座频率及有些植物存在内源转座子等的影响,随机突变体筛选法则随机性较大且不能控制失活基因的种类和数量等,限制了它们的应用。图位克隆(map-based cloning)又称为定位克隆(positional cloning),1986年首先由剑桥大学的Coulson 等提出,用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。随着模式物种(拟南芥、水稻)全基因组测序的完成,各种分子标记技术的发展促进了高密度分子标记连锁图谱的建立和各种数据库的完善。图位克隆技术越来越成熟,已经成为分离生物基因的一种常规方法。本文将对图位克隆技术的相关策略作一介绍。 1图位克隆的策略 自1992年图位克隆技术首次在拟南芥中克隆到ABI3(Girauda et al., 1992)基因和F AD3 (Arondel et al., 1992)基因以来,图位克隆技术在其它相关技术快速发展的支持下迅速发展起来。它是依据功能基因在生物基因组中都有相对稳定的基因座,在利用分子标记技术对目的基因进行精细定位的基础上,用与目的基因紧密连锁的分子标记筛选已构建的DNA文库(如Cosmid、YAC、BAC等文库),构建出目的基因区域的遗传图谱和物理图谱,再利用此物理图谱通过染色体步行、跳跃或登陆的方式获得含有目的基因的克隆,最后通过遗传转化和功能互补实验来验证所获得的目的基因(图1)。 初步定位(First-pass maping)-------构建遗传图谱(constructing genetic map)-----精细定位(fine maping)---------构建物理图谱( constructing physical map)------染色体步移、登陆(chromosomal walking、landing)-------确定侯选基因(Consider candidate genes)----遗传互补验证目的基因(Through genetic complementation (transformation) to identify candidate gene)(请帮我画一个简易图表,把内容填进去) 图1 图位克隆的主要步骤 Figure 1 Key steps in map-based cloning process

13遗传学 课后练习 复习题 总结 第十三章 数量性状的遗传

第十三章数量性状的遗传 本章习题 1.解释下列名词:广义遗传率、狭义遗传率、近交系数、共祖系数、数量性状基因位点、主效基因、微效基因、修饰基因、表现型值、基因型与环境互作广义遗传率:通常定义为总的遗传方差占表现型方差的比率。 狭义遗传率:通常定义为加性遗传方差占表现型方差的比率。 近交系数:是指个体的某个基因位点上两个等位基因来源于共同祖先某个基因的概率。 共祖系数:个体的近交系数等于双亲的共祖系数。 数量性状基因位点:即QTL,指控制数量性状表现的数量基因在连锁群中的位置。 主效基因:对某一性状的表现起主要作用、效应较大的基因。 微效基因:指一性状受制于多个基因,每个基因对表现型的影响较小、效应累加、无显隐性关系、对环境敏感,这些基因称为微效基因。 修饰基因:对性状的表现的效应微小,主要是起增强或减弱主基因对表现型的作用。 表现型值:是指基因型值与非遗传随机误差的总和即性状测定值。 基因型与环境互作:数量基因对环境比较敏感,其表达容易受到环境条件的影响。因此,基因型与环境互作是基因型在不同环境条件下表现出的不同反应和对遗传主效应的离差。

2.质量性状和数量性状的区别在哪里?这两类性状的分析方法有何异同? 答:质量性状和数量性状的区别主要有:①. 质量性状的变异是呈间断性,杂交后代可明确分组;数量性状的变异则呈连续性,杂交后的分离世代不能明确分组。②. 质量性状不易受环境条件的影响;数量性状一般容易受环境条件的影响而发生变异,而这种变异一般是不能遗传的。③. 质量性状在不同环境条件下的表现较为稳定;而控制数量性状的基因则在特定时空条件下表达,不同环境条件下基因表达的程度可能不同,因此数量性状普遍存在着基因型与环境互作。 对于质量性状一般采用系谱和概率分析的方法,并进行卡方检验;而数量性状的研究则需要遗传学方法和生物统计方法的结合,一般要采用适当的遗传交配设计、合理的环境设计、适当的度量手段和有效的统计分析方法,估算出遗传群体的均值、方差、协方差和相关系数等遗传参数等加以研究。 3.叙述表现型方差、基因型方差、基因型×环境互作方差的关系。估计遗传协方差及其分量在遗传育种中有何意义? 答:表现型方差由基因型方差(V G)、基因型×环境互作方差(V e)和环境机误方差()构成,即,其中基因型方差和基因型×环境互作方差是可以遗传的,而纯粹的环境方差是不能遗传的。 由于存在基因连锁或基因的一因多效,生物体的不同数量性状之间常存在不同程度的相互关连。在统计分析方法中常用协方差来度量这种相互关联的变异程度。由于遗传方差可以进一步区分为基因型方差和基因型×环境互作方差等不同的方差分量,故遗传协方差也可进一步区分为基因型协方差和基因型×环境互作协方差等分量。在作物遗传改良过程中,对某一性状进行选择时常会引起另一相关性状的变化,为了取得更好地选择效果, 并使一些重要的性状能够得到同步改

最新 人教版 必修二 基因对性状的控制 教案

第2节基因对性状的控制 [学习目标] 1.了解中心法则的提出及其发展过程。2.通过中心法则图解理解遗传信息的流动方向。(难点)3.识记基因控制性状的两种方式。(重点)4.举例说明基因、蛋白质与性状的关系。 知识点1中心法则的提出及其发展 请仔细阅读教材第68~69页,完成下面的问题。 1.中心法则的提出 (1)提出者:克里克。 (2)内容

①DNA复制:遗传信息从DNA流向DNA。 ②转录:遗传信息从DNA流向RNA。 ③翻译:遗传信息从RNA流向蛋白质。2.中心法则的发展 3.完善后的中心法则,用图解表示为

知识点2基因、蛋白质与性状的关系 请仔细阅读教材第69~70页,完成下面的问题。 1.基因控制生物性状的两条途径 (1)基因对生物性状的间接控制 ①实质:基因通过控制酶的合成来控制代谢过程,进而控制生物体的性状。 ②举例

(2)基因对生物性状的直接控制 ①实质:基因通过控制蛋白质的结构直接控制生物体的性状。 ②举例:囊性纤维病。 编码CFTR蛋白(跨膜蛋白)的基因缺失了3个碱基→CFTR蛋白在第508位缺少苯丙氨酸→CFTR蛋白结构异常→支气管中黏液增多,管腔受阻,细菌在肺部大量繁殖,使人患囊性纤维病。 2.基因与性状的关系 (1)基因与性状的数量关系 错误! (2)基因与性状的对应关系

(3)影响基因控制性状的因素 生物性状是由基因和环境条件共同作用的结果,其关系如图所示 3.细胞质基因 细胞质基因指的是细胞核以外的细胞质中的基因。叶绿体和线粒体中的DNA都能够进行半自主性的自我复制,并通过转录和翻译控制某些蛋白质的合成。如线粒体疾病就是由线粒体DNA缺陷引起的,这种遗传病只能通过母亲遗传给后代。

相关文档
相关文档 最新文档