文档库 最新最全的文档下载
当前位置:文档库 › 线性代数1-5章习题教学文稿

线性代数1-5章习题教学文稿

线性代数1-5章习题教学文稿
线性代数1-5章习题教学文稿

线性代数1-5章习题

线

皖西学院金数学院编制

第一章 行 列 式

一、判断题

1.行列式如果有两列元素对应成比例,则行列式等于零. ( 1 )

2. 213

210

124121012342

=-.( 2 )

3. 134

34

121.42

042

=-

( 1) 4. 1

23213

1

232

131

2

3

213.a a a b b b b b b a a a c c c c c c =( 1 ) 5. 1

23123

1

231

231

2

3

1

2

3

.a a a a a a b b b b b b c c c c c c ---------=---( 1 ) 6. n 阶行列式n D 中元素ij a 的代数余子式ij A 为1n -阶行列式. ( 1 )

7. 312

143

245328836256

=.( 2 )

8. 11

12

13

2122

23313233a a a a a a a a a 122r r + 11

1213

21112212

231331

32

33

222+++a a a a a a a a a a a a ( 2 ) 9.如果齐次线性方程组有非零解,则它的系数行列式必等于零. ( 1 )

10. 如果方程个数与未知数个数相等,且系数行列式不为零,则方程组一定有解. (1 ) 二、选择题

1.若12532453r s a a a a a 是5阶行列式中带正号的一项,则,r s 的值为( B ). A.1,1r s == B.1,4r s ==

C.4,1r s ==

D.4,4r s ==

2.下列排列是偶排列的是( C )

A. 4312

B. 51432

C. 45312

D. 654321

3.若行列式21

120312

x --=-, 则x =( C ).

A.–2

B. 2

C. -1

D. 1

4.行列式

0000

000000

a b c

d e f

的值等于(B ).

A. abcdef

B. abdf -

C. abdf

D. cdf

5.设abc ≠0,则三阶行列式0

0000

d

c b a

的值是( C ).

A .a

B .-b

C .0

D .abc

6.设行列式

22

11b a b a =1,22

11c a c a =2,则2

22

1

11c b a c b a

++=( D ). A .-3 B .-1 C .1 D .3

7.设非齐次线性方程组1231231

23238223105

ax x x ax x x x x bx ++=??

++=??++=?有唯一解,则,a b 必须满足

( D ).

.0,0A a b ≠≠ 2.,03B a b ≠≠ 23.,32C a b ≠≠ 3

.0,2D a b ≠≠

8. 2

1

5

1525211122230302

023

-=---是按( B )展开的. A .第2列 B .第2行 C .第1列 D .第1行

9.设111211

212

n i i in n n nn

a a a D a a a a a a =L L L

L L L L L

L L L L L L L L L

则下式中( B )是正确的. 1122.0i i i i in in A a A a A a A +++=L 1122.0i j i j ni nj B a A a A a A +++=L 1122.i i i i in ni C a A a A a A D +++=L 1122.i j i j ni nj D D a A a A a A =+++L

10. 349

571214

的23a 的代数余子式23A 的值为( C ).

A. 3

B. -3

C. 5

D. -5

三、填空题

1. 排列36715284的逆序数是____13____.

2. 四阶行列式中的一项14322341a a a a 应取的符号是____正___. 3.若

,02

11

=k 则k=_1/2__________. 4.行列式16

944321

1

1中32a 元素的代数余子式A 32=____-2________.

5.5

984131

11=_____5_____. 6.行列式

00100101

0000

100=__-1____.

7.行列式0

04

0030

2001000

=______24____. 8.非零元素只有1n -行的n 阶行列式的值等于_____0_____.

9. 12

31

231

2

3

8,a a a b b b c c c =则123

1

231

2

3

222c c c b b b a a a ---=____16______.

10. n 阶行列式n D 中元素ij a 的代数余子式ij A 与余子式ij M 之间的关系是

ij A =____ (1)i j ij M +-______,n D 按第j 列展开的公式是

n D =____1122j j j j nj nj a A a A a A +++L ______.

第二章 矩 阵

一、判断题

1.若A 是23?矩阵,B 是32?矩阵,则AB 是22?矩阵. ( 1 )

2.若,AB O =且,A O ≠则.=B O ( 2 )

3. 12103425X ????

= ? ?

????

的解1

10122534X -????= ???????. ( 2 ) 4.若A 是n 阶对称矩阵,则2A 也是n 阶对称矩阵. ( 1 ) 5. n 阶矩阵A 为零矩阵的充分必要条件是0.A = ( 2 ) 6. 若,A B 为同阶可逆矩阵,则11()kA kA --=. ( 2 )

7. 42042069126232110110????

? ?

= ? ? ? ?--????

. ( 2 )

8. n 阶矩阵A 为逆矩阵的充分必要条件是0.A ≠ ( 1 ) 9.设,A B 为同阶方阵,则 A B A B +=+. ( 2 )

10.设 ,A B 为n 阶可逆矩阵,则 1

11A O A O O B O

B ---??

??=

? ?????

.( 1 )

二、选择题

1. 若,A B 为n 阶矩阵,则下式中( D )是正确的.

22.()()A A B A B A B -+=- .(),=.-=≠B A B C O A O B C 且,必有 222.(+)+2+B A B A AB B = .

D AB A B =

2.若,s n n l A B ??,则下列运算有意义的是( A ).

.T T A B A .B BA .+C A B .+T D A B 3.若,m n s t A B ??,做乘积AB 则必须满足( C ).

.=A m t .=B m s .=C n s .=D n t 4.矩阵1111A --??= ?

??

的伴随矩阵*

=A ( D ) A .????

??--1111 B .???? ??--1111 C .???? ??--1111 D .???

? ??--1111

5.设2阶矩阵a b A c d ??= ???

,则*

=A ( A )

A .????

??--a c b d B .???? ??--a b c d C .???? ?

?--a c b d

D .???

?

??--a b c d 6. 矩阵???

?

??-0133的逆矩阵是( C )

A .???? ??-3310

B .???? ??-3130

C .???? ??-13110

D .????

? ??-01311 7. 设2阶方阵A 可逆,且A -1=??

? ??--2173,则A=( B ). A .??? ??--3172 B .??? ??3172 C .??? ??--3172 D .??

? ??2173 8. n 阶矩阵A 行列式为,A 则kA 的行列式为( B ). A. k A B. n k A C. k A D. -k A 9. 设,A B 为n 阶矩阵满足=,AB A 且A 可逆,则有(C ).

.==A A B E .=B A E .=B B E .,D A B 互为逆矩阵 10.设A 是任意阶矩阵,则( C )是对称阵.

.(+)T T A A A .+T B A A .T C AA .T T D A AA 三、填空题

1.设矩阵120210001A ?? ?= ? ???,100021013B ?? ?

= ? ???

,则2+=A B

_____320252027??

?

? ???

________

2.设A=??????????

411023,B=,010201??????则AB =___326010142??

?

? ??

?

________. 3.设矩阵A=???

? ??21,B=???

?

??31,则A T

B =______7______. 4.????

? ??321(1,2,3)=______ 123246369??

?

? ???

____. 5.n 1111????

??=___1

11

1222

2n n n n ----??

???

_______. 6.????

?

??-???? ??-0410******** =________ 255

4??

???

______________. 7.设2阶矩阵A =????

??3202,则A *A =_____ 666

6??

???

________. 8.设矩阵A=??

?

??43

21

,则行列式|A 2|=_____4_____. 9.设A=???

? ??d c b a ,且det(A)=ad-bc≠0,则A -1

=____

1d b ad bc c a -??

?--??

______ . 10. 设 ,A B 为n 阶可逆矩阵,则 1

O A B O -??

= ?

?? _____ 11.--??

???

O B A O __________.

第三章 矩阵的初等变换与线性方程组

一、选择题

1.设n 元齐次线性方程组0AX =的系数矩阵的秩为r ,则0AX =有非零解的

充分必要条件是( B )

(A) r n = (B) r n < (C) r n ≥ (D) r n >

2.设A 是m n ?矩阵,则线性方程组AX b =有无穷解的充要条件是( D )

(A) ()r A m < (B) ()r A n < (C) ()()r Ab r A m =< (D) ()()r Ab r A n =<

3.设A 是m n ?矩阵,非齐次线性方程组AX b =的导出组为0AX =,若

m n <,则( C )

(A) AX b =必有无穷多解 (B) AX b =必有唯一解 (C) 0AX =必有非零解 (D) 0AX =必有唯一解

4.已知12,ββ是非齐次线性方程组AX b =的两个不同的解,12,αα是导出组

0AX =的基础解系,12,k k 为任意常数,则AX b =的通解是( B ) (A) 12

11212()2k k ββααα-+++

(B) 12

11212()2k k ββααα++-+

(C) 1211212()2k k ββαββ-+++ (D) 12

11212()2

k k ββαββ++-+

5.设A 为m n ?矩阵,则下列结论正确的是(D )

(A) 若0AX =仅有零解 ,则AX b =有唯一解 (B) 若0AX =有非零解 ,则AX b =有无穷多解 (C) 若AX b =有无穷多解 ,则0AX =仅有零解 (D) 若AX b =有无穷多解 ,则0AX =有非零解

6.线性方程组1231231

231

23047101

x x x x x x x x x ++=??

++=??++=? ( C )

(A) 无解 (B) 有唯一解 (C) 有无穷多解 (D) 其导出组只

有零解 二、判断题

1.若,αβ是线性方程组Ax b =的两个解向量, 则αβ-是方程组0Ax =的解。 1

2.设向量12,ηη是n 元线性方程组Ax b =的解向量,那么1212

33ηη+也是这个方

程组的一个解向量。 1

3.若ξ是0AX =的解,若η是(0)AX b b =≠的解,则ξη+是b AX =的解。 1

4.n 元线性方程组(0)Ax b b =≠当()R A n <时有无穷多解。 2

5.设A 是n 阶方阵,若方程组b AX =满足),()(b A R A R =,则b AX =有唯一解。 2

6.对于线性方程组Ax b = (这里A 为n 阶方阵), 如果该方程组有解,则必有

()R A n = 2

7.设A ,B 都是n 阶方阵,若k n B R n k k A R -=<<=)(),1(,)(,则必有

n B A R =+)(

8.若线性方程组b AX =有解,则A 的秩一定为零。2 9.设A 是n 阶方阵,则()()R A E R A E n ++-≥。1

10.设矩阵A 的秩为)1(>r r ,则A 中必有一个1-r 级子式不为零。1 11.设A 为n 元线性方程组b AX =,则秩n A <)(时有无穷组解。2 12.若AY AX =,且O A ≠,则Y X =。2

13.对于具相同系数矩阵的非齐次方程组(I):Ax b = 及 (II):Ax d =, 成立以下结论:

若方程组(I)有解,则方程组(II)必然也有解。2

14.方程组 1234123412

3423135322223

x x x x x x x x x x x x -+-=??

-+-=??++-=? 中,方程个数少于未知量个数,因而方程

组有无限多解。2

15.若12,ηη是(0)AX b b =≠的解,则12ηη+也是b AX =的解。2

三、填空题

1.矩阵123235471A ??

?

=- ? ???

的秩为_____2_____。

2.???? ?

?31

52

X =????

?

?-1264, 则X =____22308-??

???

______。

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

数学模型在《线性代数》教学中的应用实例(一)

数学模型在《线性代数》教学中的应用实例(一) 课 程: 线性代数 教 学 内 容: 矩阵 数 学 模 型: 生态学:海龟种群统计数据 该模型在高等数学教学应用的目的: 1. 通过生动有趣的实例激发学生的学习积极性,在分析问题和解决问题的过程中培养学生的创新意识。 2. 使学生掌握建立矩阵代数模型的基本过程,能熟练地将矩阵的知识应用于实际问题。培养学生将实际问题抽象成数学模型,又用数学模型的结果解释实际现象的能力。 3. 巩固矩阵的概念和计算。 生态学:海龟种群统计数据 管理和保护许多野生物种,依赖于我们建立种群的动态模型的能力。一个常规的建模技术是,把一个物种的生命周期划分为几个阶段。该模型假设:每阶段的种群规模只依赖于母海龟的种群数;每只母海龟能够存活到下一年的概率依赖于其处在生命周期的那个阶段,而与个体的具体年龄无直接关系。举例来说,可以用一个四阶段的模型来分析海龟种群的动态。 如果d i 表示第i 个阶段的持续时间,s i 表示该阶段的每年存活率,那么可以证明,在第i 阶段可以存活到下一年的比例是 111i i d i i i d i s p s s -??-= ?-?? 种群可以存活且在次年进入下一阶段的比例是 ()11i i d i i i d i s s q s -= - 如果用e i 表示第i 阶段的成员1年内产卵的平均数,构造矩阵

12341 2233 400000 p e e e q p L q p q p ?? ? ?= ? ??? 那么L 可以用来预测未来几年每阶段的种群数。上述形式的矩阵称为Leslie (莱斯利)矩阵,相应的种群模型有时也称为莱斯利种群模型。根据前面表格数据,我们模型的莱斯利矩阵是 0127790.670.73940000.000600000.810.8077L ?? ? ?= ? ??? 假设每阶段的初始种群数分别是200000、300000、500和1500,用向量x 0来表示,1年后 每阶段的种群数可以如下计算 100 0127792000001820000.670.73940030000035582000.000600500180000.810.807715001617x Lx ?????? ??? ? ??? ?=== ??? ? ??? ??????? (这里的计算进行了四舍五入)。为了得到2年后的种群数,再用矩阵L 乘一次。 2210x Lx L x == 一般来说,k 年后的种群数由公式0k k x L x =给出。为了了解更长时期的趋势,计算出x 10、 x 25和x 50,如下表所示。 这个模型预测50年后繁殖期的海龟总数下降了80%。 下面的文献[1]介绍了一个七阶段的种群动态模型,文献[2]是莱斯利原来那篇文章。 思考:海龟最终是否会灭绝?如果不灭绝,海龟种群数有无稳定值?该模型用到了那些数学知识?该模型可以进行怎样的推广? 参考文献 1. Crouse, Deborah T., Larry B. Crowder, and Hal Caswell, “A Stage-Based Population Model for Loggerhead Sea Turtles and Implications for Conservation,” Ecology , 68(5), 1987 2. Leslie, P. H., “On the Use of Matrices in Certain Population Mathematics,” Biometrika , 33, 1945.

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

《线性代数》课程教学大纲

《线性代数》课程教案大纲 课程代码:课程性质:专业基础理论课必修 适用专业:工科类各专业总学分数: 总学时数:修订年月: 编写年月:执笔:韩晓卓、李锋 课程简介(中文): 线性代数是理、工、经管各专业重要的基础课之一。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,是数学的一个重要分支,其理论与方法已广泛应用于其它科学领域中。主要包括:矩阵、行列式、线性方程组、秩问题、矩阵的特征值和特征向量、二次型等内容。 课程简介(英文): , . , , . . , , , , , , . 一、课程目的 《线性代数》是高等院校工科专业学生必修的一门基础理论课。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性。通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩阵、线性方程组、矩阵和向量组的秩,矩阵的特征值和特征向量等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程及进一步扩大数学知识面奠定必要的数学基础。 二、课程教案内容及学时分配 (一)教案内容 第一章行列式(学时) 教案内容:

二阶三阶行列式;阶行列式的定义;行列式的性质(证明选讲);行列式按行(列)展开(定理证明选讲,行列式按某行(列)展开选讲);克莱姆法则。 本章的重点与难点: 重点:行列式的性质;行列式按一行(列)展开定理;克莱姆法则的应用。 难点:阶行列式的定义的理解;阶行列式计算。 第二章矩阵(学时) 教案内容: 矩阵的概念;矩阵的运算(矩阵的加、减法;数乘;乘法;矩阵转置;方阵的幂;方阵的行列式);几种特殊的矩阵(对角矩阵,数量矩阵,三角形矩阵,单位矩阵,对称矩阵与反对称矩阵);分块矩阵(分块阵及其运算,分块对角阵);逆矩阵(可逆阵的定义;奇异阵,伴随阵与逆阵的关系;逆阵的性质,二阶上三角分块阵的求逆方法);本章的重点与难点: 重点:矩阵的运算规律;逆矩阵的性质以及求法; 难点:矩阵的乘积及分块矩阵的乘积;逆矩阵(抽象矩阵的逆矩阵)的求法。 第三章矩阵的初等变换与线性方程组(学时) 教案内容: 矩阵的初等变换(初等矩阵定义;初等矩阵与矩阵初等变换的关系。用初等变换求矩阵的逆);矩阵的秩(矩阵的秩的定义;矩阵的秩与其子式的关系;初等变换求矩阵的秩)。线性方程组的消元解法(消元解法与初等行变换的关系;线性方程组有唯一解、无穷多组解和无解的讨论;线性方程组有解的判别定理;齐次线性方程组有非零解的充分和必要条件); 本章的重点与难点: 重点:利用初等变换求矩阵的逆矩阵与矩阵的秩;利用初等变换求线性方程组的通解。 难点:利用初等变换求线性方程组的通解。

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

数学建模案例线性代数教学研究

数学建模案例线性代数教学研究 摘要:本文通过分析线性代数课程的特点和目前教学中出现的问题,从数学建模思想入手,结合几个案例探讨了线性代数中矩阵的概念与运算、特征值和特征向量的应用等知识点。具体阐述了将数学建模思想融入线性代数教学过程中的重要性,增强了学生利用数学建模思想解决实际问题的能力。 关键词:线性代数;数学建模;教学方法 线性代数是高校理工科专业大一新生的一门重要的公共基础课程,它不仅是很多高年级的课程的延伸和推广,而且它在数学、物理、控制科学、工程技术等领域也具有广泛的应用,特别是当前计算机科学技术人工智能的快速发展,使得线性代数的作用和地位得到更大的提升。因此,线性代数这门课程学习效果的好坏对学生知识能力的培养和后继课程的开展至关重要。但是,目前线性代数的教学仍然存在一些问题,具体表现为:第一,线性代数的教学模式偏重于理论教学,无法激起学生的学习兴趣。线性代数的概念多,理论性强,抽象晦涩,难以理解,更加加深了学生学习线性代数的难度,降低了学生的学习兴趣。第二,学生的基础较差,课程数较少,导致学生的学习困难。学生来源于不同的地区,生源素质差异较大,使得课堂出现两极分化现象,致使线性代数的教学质量无法全面提升。第三,教学中缺乏实际的应用背景,学生无法理解线性代数作为一门重要基础课程的意义。众所周知,数学建模就是根据实际问题建立数学模型,然后运用数学知识对模型求解,最后根据计算结果来解决实际问题的过程[1]。基于此,本文将数学建模的思想融入线性代数的教学过程中,通过适当引入典型的建模案例[2,3],达到吸引学生的注意力和学习兴趣的目的,从而活跃课堂教学氛围,提高教学效果。与此同时,在上课过程中讲授数学建模案例还可以增加老师和学生之间的互动性,丰富课堂教学的内容,开阔学生的眼界,使得原本抽象、枯燥乏味的概念和定理变得生动有趣,进而激发学生学习线性代数的兴趣,提升学生学习数学的素养。 1 数学建模案例在线性代数中的应用 线性代数教学中有许多定义和定理抽象晦涩、难以理解,学生上课中往往不知所云,更不知道学习了相关知识有什么作用。如果在教学过程中我们融入

昆明理工大学线性代数考试试题集及答案

《线性代数B 》 2010~ 2011 学年第 一 学期课程试卷A 一、填空 1. 125 642782516945 4321111= 12 . 2. 设A 、B 为4阶方阵,且,2||1 =-A 813=B ,则=||AB 1/2 . 3. 给定矩阵A ,且E A -可逆,满足B A E AB +=+2,则=B E A + . 4.设??????????=210110001A ,则=-1A ???? ??????--11012000 1 . 5.已知321,,ααα线性相关,3α不能由21,αα线性表示,则21,αα线性 相关 . 6.设???? ? ?????=??????????=??????????=120,61,321321αααt ,且1α,32αα,线性相关, 则=t 8 . 7.设A 是34?矩阵,且2)(=A R ,???? ? ?????=213010321B 则=)(AB R __2___ 8.设三阶方阵A 的每行元素之和均为零,又2)(=A R ,则齐次线性方程组O Ax =的通解为 )(111R k k ∈???? ?????? . 9. 向量组,11011????????????-=α,02132????????? ???-=α,31103????????????-=α???? ? ? ??????-=01014α的一个最大线性无关组为 421,,ααα . 10. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为 0 . 二、单项选择

1..若=---+=--1 2 1 203242,112 2013z y x z y x 则( A ) )A ( 1- ; )B ( 2 ; )C ( 1 ; )D ( 0. 2.设C B A ,,均为二阶方阵,AC AB =,则当(C )时,可以推出C B =. .1111)D (;0110)C (;0011)B (;0101)A (? ? ? ???=? ?? ???=? ?? ???=? ?? ???=A A A A 3. 下列结论正确的是( A ) . )A ( s ααα,,,21 线性无关的充要条件是其中任意一个向量都不是其余向量的线性组合; )B ( 若向量321,,ααα线性相关,则21,αα线性相关; )C ( 若n 阶方阵A 与对角阵相似,则A 有n 个不同的特征值; )D ( 若方程组O Ax =有非零解,则b Ax =有无穷多解. 4. 已知321,,ηηη是四元方程组b Ax =的三个解,其中,3)(=A R ? ? ??? ???????=43211η,???? ????????=+444432ηη, 则以下不是方程组b Ax =的通解为( D ) . )A (;43214202???? ?? ??????+????????????--k )B ( ;43212101????????????+????????????--k )C (;22222101???? ????????+????????????--k )D (????? ? ??????+????????????43210123k . 5. 设向量组321,,ααα线性无关,则下列向量组中线性无关的是( B ) )A (133221,,αααααα--- ; )B (1321,,αααα+ ; )C (212132,,αααα- ; )D (32322,,αααα+. 6.若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则(A )

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

线性代数教学大纲2016

中国海洋大学本科生课程大纲 课程属性:公共基础课 课程性质:必修 一.课程介绍 1.课程描述: 线性代数课程是高等院校理科(非数学类专业)、工科、经济和管理各专业(特别是需要数学基础知识较强的相关专业)的一门公共基础课。线性代数主要处理线性关系问题,它的基本概念、理论和方法,具有较强的逻辑性、抽象性和广泛的应用性。通过线性代数课程学习,要求学生掌握该课程的基本理论与方法,为学习相关课程及进一步扩大数学知识面奠定必要的基础。同时,培养学生的逻辑思维能力以及解决实际问题的能力等,还可以提升学生相应的数学素养。 2.课程内容: 主要内容包括:行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量及矩阵的对角化、二次型。 行列式和矩阵是学习解线性方程组的基础,利用行列式,根据克拉默法则可以求解某些非齐次方程组的解;利用行列式可以判定某些齐次线性方程组是否有非零解。行列式也可以判定矩阵是否可逆,并用之求可逆矩阵的逆矩阵;利用矩阵可以判定和求非齐次方程组的解,以及可以求齐次线性方程组的非零解;建立R n的基与向量在基下的坐标及坐标变换,并讨论欧式空间及其结构;讨论矩阵的特征值和特征向量及矩阵 - 1 -

的对角化问题;利用以上理论讨论二次型及其矩阵表示,合同变换与合同矩阵,二次型的秩、惯性定理、标准形和规范形,用正交变换和配方法化二次型为标准形等。 3. 课程与其他课程的关系: 先修课程:无; 并行课程:微积分,高等数学等; 后置课程:概率论与数理统计。在计算机数据结构、算法、计算机图形学、计算机辅助设计、密码学、经济学、网络技术、虚拟现实等课程中,都会涉及到线性代数的相关基础知识。由于理解及知识储备的原因,建议在一年级下学期或者二年级时,学生开始选修《线性代数》。 二、课程目标 本课程目标是为非数学类专业学生学习有关专业课程和扩大数学知识面提供必要的数学基础和基本技能,更旨在通过本课程的学习培养学生的逻辑推理和抽象思维能力、空间直观和想象能力。到课程结束时,学生应能: (1)掌握行列式、矩阵的基本定义及性质等,能够计算行列式的值; (2)理解线性方程组求解理论,掌握向量组的秩、矩阵的秩、线性相关、线性无关等概念,会分析并求解齐次、非齐次线性方程组。 (3)熟练掌握向量的运算,理解R n中的基、坐标、基变换与坐标变换及内积的相关知识; (4)掌握矩阵的特征值和特征向量,矩阵的对角化理论; (5)掌握二次型的标准型和正定二次型的基本概念和理论; (6)能够借助Matlab等计算机软件进行行列式的计算、求解线性方程组等。 三、学习要求 要完成所有的课程任务,学生必须: - 1 -

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

线性代数课程教学总结

线性代数课程教学总结 《线性代数课程教学总结》的范文,这里给大家。篇一:线性代数课程总结 线性代数精讲 曾经我学过线性代数,但是没有深入的学习,所有一直希望有一个机会能够深入学习线性代数的机会。没有想到的是,今年的选修课给了我这样一个机会。线性代数精讲,当我看到它的时候,毅然的选了这门选修课。 现在这学期快要结束了,当然这门选修课也即将结束,在这里我想总结一下这门选修课给我带来的帮助。首先从专业来说,对于学习计算机的人来说,数学的重要性不言而喻。打一个比方,数学就好比计算机的左膀右臂。对于想深入学习计算机的人来说,数学必须学得很好。所以线性代数这门课对我来说很重要,它与我们所讲的数据结构中的图有很大的联系。通过这门课程的学习,我已经深入了解了线性代数,它使我对原来学过的某些知识有种恍然大悟的感觉。以后我还会继续学习线性代数这门课程,我相信它给我带来的还远不止这些。 其次,从考研方面来说,对于考研考试中的数学试卷,线性代数占有很大的比重,这也显现出来线性代数对考研的学生来说有多么重要。我是一个将在后年要参加考研的学生,能听到线性代数精讲这样一门课,我很高兴。在这门课程的学习过程中,老

师深入地讲解了线性代数,让我的考研之路轻松了不少。而且,老师在将课的同时还插入例如考研真题,这是最让我感激的地方。有这样的辅导,我的线性代数还愁不过吗? 最后,我想从对实际生活的影响方面来说,生活中的思维模式是 数学思维模式的一种映射。从某一个方面来说吧,比如做数学中的证明题,每一步都不是凭空而来的,精品而是根据题中的实际要求一步一步推出来的,这就好比做生活中的某件事,如果没有一步一步踏踏实实的走过,是不可能有好的结果的。这门课的讲解,让我对数学的思维模式有了更深入地了解,对生活也有了更深入的认识。 通过这半学期的学习,让我学到了很多,我想说对老师说声谢谢。希望这门课能够一直的讲下去,让更多学弟学妹们受到帮助。 篇二:线性代数课程总结 线性代数课程总结 第一章行列式 1.1二阶、三阶行列式 (一)二阶行列式 (二)三阶行列式 1.2 (二)

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

线性代数教学大纲

线性代数教学大纲 一.课程基本要求 (一)矩阵 1. 理解矩阵概念。了解单位矩阵,对角矩阵,对称矩阵等特殊矩阵。 2. 熟练掌握矩阵的线性运算、乘法运算、转置运算及其运算规律。 3. 了解行列式的定义和性质,掌握行列式的计算。 4. 掌握克拉默(Cramer)法则。 5. 熟练掌握矩阵的初等变换,理解初等矩阵的概念。 6. 熟练掌握矩阵秩的求法,了解满秩矩阵的性质。 7. 理解逆矩阵的概念及其存在条件,熟练掌握求逆的方法。 8. 掌握分块矩阵的运算并能利用矩阵分快法简化矩阵运算。 (二)n维向量 1. 理解n维向量的概念。掌握向量的线性运算。 2. 理解向量组线性相关,线性无关的定义。了解有关的定理结论。 3. 理解向量组的极大无关组与向量组的秩的概念,熟练掌握向量组的的秩与极大无关组的求法。 4. 理解向量的内积及正交的定义,掌握线性无关向量组正交规范化的方法及正交矩阵的判定及性质。 5. 了解n维向量空间、子空间、基、维数、坐标等概念。 (三)线性方程组 1. 理解齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件。 2. 理解齐次线性方程组的基础解系及通解的概念。熟练掌握其求法 3. 理解非齐次线性方程组解的结构及通解的概念。 4. 熟练掌握用行初等变换求线性方程组通解的方法。 (四)矩阵的特征值与特征向量 1. 理解矩阵的特征值与特征向量的概念及性质,熟练掌握特征值与特征向量的

求法。 2. 理解相似矩阵的概念、性质,掌握矩阵相似对角化的充要条件及求法。(五)二次型 1. 掌握二次型及其矩阵表示,了解二次型的秩的概念,了解二次型的标准形,规范形的概念及惯性定理。 2. 熟练掌握用正交变换法化二次型为标准型的方法。 3. 了解二次型的分类,熟练掌握二次型及其矩阵的正定性与判别法。 二. 课程内容 第一章矩阵(8-10学时) §1 矩阵的概念 §2 矩阵的线性运算 §3 方阵的行列式及其性质 §4 初等变换与矩阵的秩 §5 初等矩阵与逆矩阵 §6 分块矩阵 习题课 第二章 n维向量(7-8学时) §1 n维向量及其运算 §2 向量组的线性相关性 §3 向量组的秩 §4 向量空间 §5 向量组的正交性与正交矩阵 习题课 第三章线性方程组(3-4学时) §1 齐次线性方程组 §2 非齐次线性方程组 习题课 第四章矩阵的特征值与特征向量(4-6学时) §1 矩阵的特征值与特征向量

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

对《线性代数》课程教学的认识

对《线性代数》课程教学的认识 【摘要】本文针对《线性代数》课程的“抽象性”的特点,从线性代数的研究对象、研究思想、概念和方法以及应用等方面,通过一些实例,提出了如何使线性代数课程生动起来的几点认识。 【关键词】线性代数;抽象性;生动;实例 《线性代数》与《高等数学》是大学数学教学中的两个最基本的课程。相比于《高等数学》,《线性代数》课程有它独有的特点,比如:学时相对较少、概念和内容比较抽象等。但是,学生通常并没有因为它的内容少,定理、公式少而觉得容易学习,反而因为线性代数的抽象性而“望而生畏”,很难入门。教师的任务就是如何化“抽象”为“生动”,引领学生走进线性代数的奇妙世界,使学生理解并掌握线性代数的思想与精髓,并能很顺利的加以应用,同时提高学生的数学素养。 1 让线性代数的研究对象和思想生动起来 每一门课程都有它的主要研究对象,线性代数的研究对象是向量空间及线性变换的理论。线性代数以代数的方法在解决几何问题,体现了代数与几何的结合。而将代数与几何互相转换的方式融入教学中去,就使得教学过程生动、形象而又直观。 (1)在学习矩阵的运算时,矩阵乘法相对来说,会使学生觉得非常“不自然”,如果适当融入一些与空间相关的例子,会产生意想不到的效果! 例1 计算cosφ sinφ-sinφ cosφ. 通过计算,我们得到:cosφ sinφ-sinφ cosφ= cos nφ sin nφ-sin nφ cos nφ. 事实上,我们知道,矩阵cosφ sinφ-sinφ cosφ可以表示二维空间,即平面上的旋转变换,指空间中的向量都旋转φ(弧度),是线性变换的一种。而cosφ sinφ-sinφ cosφ可以理解为空间做了n次这样的旋转变换,得到旋转nφ的变换,对应表示矩阵恰好为: cos nφ sin nφ-sin nφ cos nφ. 这样,我们就从几何空间的直观例子使矩阵乘法变得生动、形象。 (2)初等矩阵的理解也可以借助几何方法:如初等矩阵1 0 00 k 00 0 1可以理解为一个拉伸或压缩变换;1 0 00 1 00 c 1可以看做是一个投影平移变换等。 (3)利用正交变换使二次型化标准形,这是线性代数课程的一个难点,很多学生不理解为什么要化标准形?为什么要使用正交变换法?这样做有什么实际意义?下面我们举例说明。 例2 用正交变换法将二次型化为标准型:f=2x+3x+3x+4xx. 我们可以通过正交变换xxx=1 0 0 0 0 -yyy,使二次型化为标准形:f=2y+5y+y. 从几何角度理解,2x+3x+3x+4xx=1在三维线性空间中,表示什么样的曲面呢?我们知道正交变换保持正交性不变,即在变换后,在仍为空间直角坐标系的新坐标下,方程化为2y+5y+y=1,即表示的曲面是一个椭球! 二次型标准化问题是矩阵理论的一个应用,是将一个有中心的二次曲线(面)方程化为标准方程,从而对其进行分类,线性代数中将它推广到n维空间中,并给予了解决。如果将这种方法用到解析几何中,它可以解决有心曲线(面)的分类问题. 这充分反映了利用矩阵这个线性代数的重要工具,去研究问题的价值体现。也使得线性代数研究对象和思想的应用灵活起来。

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

关于线性代数课程教学的几点思考

关于线性代数课程教学的几点思考 游宏 2009年11月8日于杭州 hyou@https://www.wendangku.net/doc/0c18832880.html, ★课程的历史沿革与现状 ★现行的教学基本内容与要求 ★教学内容的组合与变革 ★课程建设中的成绩与问题 ★线性代数的主线与核心 一、课程的历史沿某与现状 二十世纪五、六十年代,我国工科数学基础课程统称为高等数学,以微积分教学为主,线性代数在高等数学的教学中仅占一小部分。当时仅介绍行列式与线性方程组求解;解析几何内容则相对丰富,几何向量、空间直线与平面、极坐标、二次曲面等通常放在微积分前讲授。当然,有少数大学根据某些专业的需要,讲授更多一些的线性代数(矩阵)的知识。 文革后,由于科学技术,特别是计算机与信息科学技术的发展,我国高等数学教学的理念也逐渐发生了变化。从七十年代末、八十年代初开始,一些大学的工科数学的教学增添了线性代数、概率论与数理统计等教学内容。但初期的做法,是把线性代数放在《工程数学》中讲授的。 大约在八十年代中后期,一些大学把线性代数独立出来,成为工科数学基础课的一门独立课程。进入九十年代,在多数重点大学,线性代数成为工科数学教学的三门主要课程之一。 九十年代中后期,一些大学又将空间解析几何的内容从微积分教学中剥离出来,与线性代数融汇在一起,组成《线性代数与空间解析几何》。 过去的三十年里,线性代数课程的教学发生了三次较大的改革;一是线性代数成为一门独立的工科数学的教学课程,二是内容的扩充与重组,三是注重软件的使用与该课程的实验。 但是,该课程的教学在各大专院校中是不平衡的,重视程度差异较大。以教学时数来看:少则16-24学时(不含解析几何),多则60-90学时(含解析几何),解析几何部分一般为14-20学时。

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

相关文档