文档库 最新最全的文档下载
当前位置:文档库 › 埋件计算

埋件计算

埋件计算
埋件计算

埋件计算

建筑埋件系统

设计计算书

设计:

校对:

审核:

批准:

二〇一四年三月二十二日

目录

1 计算引用的规范、标准及资料 (1)

2 幕墙埋件计算(粘结型化学锚栓) (1)

2.1 埋件受力基本参数 (1)

2.2 锚栓群中承受拉力最大锚栓的拉力计算 (1)

2.3 群锚受剪内力计算 (2)

2.4 锚栓或植筋钢材破坏时的受拉承载力计算 (2)

2.5 锚栓或植筋钢材受剪破坏承载力计算 (3)

2.6 拉剪复合受力承载力计算 (3)

3 附录常用材料的力学及其它物理性能 (4)

幕墙后锚固计算

1 计算引用的规范、标准及资料

《玻璃幕墙工程技术规范》 JGJ102-2003

《金属与石材幕墙工程技术规范》 JGJ133-2001

《混凝土结构后锚固技术规程》 JGJ145-2004

《混凝土结构加固设计规范》 GB50367-2006

《混凝土结构设计规范》 GB50010-2010

《混凝土用膨胀型、扩孔型建筑锚栓》 JG160-2004

2 幕墙埋件计算(粘结型化学锚栓)

2.1埋件受力基本参数

V=4000N

N=5000N

M=200000N·mm

选用锚栓:慧鱼-化学锚栓,FHB-A 12×80/100;

2.2锚栓群中承受拉力最大锚栓的拉力计算

按5.2.2[JGJ145-2004]规定,在轴心拉力和弯矩共同作用下(下图所示),进行弹性分析时,受力最大锚栓的拉力设计值应按下列规定计算:

1:当N/n-My

1/Σy

i

2≥0时:

N sd h=N/n+My

1

/Σy

i

2

2:当N/n-My

1/Σy

i

2<0时:

N sd h=(NL+M)y

1

//Σy

i

/2

在上面公式中:

M:弯矩设计值;

N

sd

h:群锚中受拉力最大锚栓的拉力设计值;

y 1,y

i

:锚栓1及i至群锚形心轴的垂直距离;

y 1/,y

i

/:锚栓1及i至受压一侧最外排锚栓的垂直距离;

L:轴力N作用点至受压一侧最外排锚栓的垂直距离;

…………在本例中:

N/n-My

1/Σy

i

2

=5000/4-200000×75/22500 =583.333

因为:

583.333≥0

所以:

N

sd h=N/n+My

1

/Σy

i

2=1916.667N

按JGJ102-2003的5.5.7中第七条规定,这里的N

sd

h再乘以2就是现场实际拉拔应该达到的值。

2.3群锚受剪内力计算

按5.3.1[JGJ145-2004]规定,当边距c≥10h

e

f时,所有锚栓均匀分摊剪切荷载;

当边距c<10h

e

f时,部分锚栓分摊剪切荷载;

其中:

h

e

f:锚栓的有效锚固深度;

c:锚栓与混凝土基材之间的距离;

本例中:

c=100mm<10h

e

f=800mm

所以部分螺栓受剪,承受剪力最大锚栓所受剪力设计值为:V

sd

h=V/m=2000N

2.4锚栓或植筋钢材破坏时的受拉承载力计算

N Rd,s =kN

Rk,s

RS,N

6.1.2-1[JGJ145-2004]

N Rk,s =A

s

f

stk

6.1.2-2[JGJ145-2004]

上面公式中:

N

Rd,s

:锚栓或植筋钢材破坏时的受拉承载力设计值;

N

Rk,s

:锚栓或植筋钢材破坏时的受拉承载力标准值;

k:地震作用下锚固承载力降低系数,按表7.0.5[JGJ145-2004]选取;

A

s

:锚栓或植筋应力截面面积;

f

stk

:锚栓或植筋极限抗拉强度标准值;

γ

RS,N

:锚栓或植筋钢材受拉破坏承载力分项系数;

N Rk,s =A

s

f

stk

=84.3×500 =42150N

γ

RS,N =1.2f

stk

/f

yk

≥1.4 表4.2.6[JGJ145-2004]

f

yk

:锚栓屈服强度标准值;

γ

RS,N =1.2f

stk

/f

yk

=1.2×500/400

=1.5

取:γ

RS,N

=1.5

N

Rd,s =kN

Rk,s

RS,N

=1×42150/1.5

=28100N≥N

sd

h=1916.667N

锚栓或植筋钢材受拉破坏承载力满足设计要求!2.5锚栓或植筋钢材受剪破坏承载力计算

V

Rd,s =kV

Rk,s

Rs,V

6.2.2-1[JGJ145-2004]

其中:

V

Rd,s

:钢材或植筋破坏时的受剪承载力设计值;

V

Rk,s

:钢材或植筋破坏时的受剪承载力标准值;

k:地震作用下锚固承载力降低系数,按表7.0.5[JGJ145-2004]选取;

γ

Rs,V

:钢材或植筋破坏时的受剪承载力分项系数,按表4.2.6[JGJ145-2004]选用:

γ

Rs,V =1.2f

stk

/f

yk

表4.2.6[JGJ145-2004]

按规范,该系数要求不小于1.25、f

stk ≤800MPa、f

yk

/f

stk

≤0.8;

对本例,

γ

Rs,V =1.2f

stk

/f

yk

表4.2.6[JGJ145-2004] =1.2×500/400

=1.5

实际选取γ

Rs,V

=1.5;

V

Rk,s =0.5A

s

f

stk

6.2.2-2[JGJ145-2004]

=0.5×84.3×500 =21075N

V

Rd,s =kV

Rk,s

Rs,V

=1×21075/1.5

=14050N≥V

sd

h=2000N

所以,锚栓或植筋钢材受剪破坏承载力满足设计要求!

2.6拉剪复合受力承载力计算

钢材破坏时要求:

(N

Sd h/N

Rd,s

)2+(V

Sd

h/V

Rd,s

)2≤1 6.3.1[JGJ145-2004]

代入上面计算得到的参数计算如下:

(N

Sd h/N

Rd,s

)2+(V

Sd

h/V

Rd,s

)2

=(1916.667/28100)2+(2000/14050)2 =0.025≤1.0

所以,该处计算满足设计要求!

3 附录常用材料的力学及其它物理性能

一、玻璃的强度设计值 f g(MPa)

JGJ102-2003表5.2.1

种类厚度(mm) 大面侧面

普通玻璃 5 28.0 19.5

浮法玻璃5~12 28.0 19.5 15~19 24.0 17.0 ≥20 20.0 14.0

钢化玻璃5~12 84.0 58.8 15~19 72.0 50.4 ≥20 59.0 41.3

二、长期荷载作用下玻璃的强度设计值 f g(MPa)

JGJ113-2009表4.1.9

种类厚度(mm) 大面侧面

平板玻璃5~12 9 6 15~19 7 5 ≥20 6 4

半钢化玻璃5~12 28 20 15~19 24 17 ≥20 20 14

半钢化玻璃5~12 42 30 15~19 36 26 ≥20 30 21

三、铝合金型材的强度设计值 (MPa )

GB50429-2007表4.3.4

铝合金牌号状态厚度强度设计值(mm)

抗拉、抗

抗剪

6061 T4 不区分90 55 T6 不区分200 115

6063 T5 不区分90 55 T6 不区分150 85

6063A T5 ≤10 135 75 T6 ≤10 160 90

四、钢材的强度设计值(1-热轧钢材) f s(MPa)

JGJ102-2003表5.2.3

钢材牌号厚度或直径d(mm) 抗拉、抗压、抗

抗剪端面承压

Q235 d≤16 215 125 325 Q345 d≤16 310 180 400

五、钢材的强度设计值(2-冷弯薄壁型钢) f s(MPa)

GB50018-2002表4.2.1

钢材牌号抗拉、抗压、抗弯抗剪端面承压

Q235 205 120 310

Q345 300 175 400

六、材料的弹性模量E(MPa)

JGJ102-2003表5.2.8、JGJ133-2001表5.3.9

材料 E 材料 E

玻璃0.72×105不锈钢绞线 1.2×105~1.5×105铝合金、单层铝板0.70×105高强钢绞线 1.95×105钢、不锈钢 2.06×105钢丝绳0.8×105~1.0×105消除应力的高强钢丝 2.05×105花岗石板0.8×105蜂窝铝板 10mm 0.35×105铝塑复合板 4mm 0.2×105

蜂窝铝板 15mm 0.27×105铝塑复合板 6mm 0.3×105

蜂窝铝板 20mm 0.21×105

七、材料的泊松比υ

JGJ102-2003表5.2.9、JGJ133-2001表5.3.10、GB50429-2007表4.3.7

材料υ材料υ

玻璃0.2 钢、不锈钢0.3

铝合金0.3(按GB50429) 高强钢丝、钢绞线0.3

铝塑复合板0.25 蜂窝铝板0.25

花岗岩0.125

八、材料的膨胀系数α(1/℃)

JGJ102-2003表5.2.10、JGJ133-2001表5.3.11、GB50429-2007表4.3.7

材料α材料α

玻璃0.8×10-5~1.0×10-5不锈钢板 1.80×10-5铝合金、单层铝板 2.3×10-5(按GB50429) 混凝土 1.00×10-5

钢材 1.20×10-5砖砌体0.50×10-5

铝塑复合板≤4.0×10-5蜂窝铝板 2.4×10-5

花岗岩0.8×10-5

九、材料的重力密度γg (KN/m3)

JGJ102-2003表5.3.1、GB50429-2007表4.3.7

材料γg材料γg

普通玻璃、夹层玻璃钢化、半钢化玻璃25.6

矿棉 1.2~1.5

玻璃棉0.5~1.0

钢材78.5 岩棉0.5~2.5

铝合金2700kg/m3(按GB50429)

十、板材单位面积重力标准值(MPa)

JGJ133-2001表5.2.2

板材

厚度

(mm)

q k

(N/m2)

板材

厚度

(mm)

q k

(N/m2)

单层铝板2.5

3.0

4.0

67.5

81.0

112.0

不锈

钢板

1.5

2.0

2.5

3.0

117.8

157.0

196.3

235.5

铝塑复合板4.0

6.0

55.0

73.6

蜂窝铝板(铝箔芯)10.0

15.0

20.0

53.0

70.0

74.0

花岗

石板

20.0

25.0

30.0

500~560

625~700

750~840

十一、螺栓连接的强度设计值一(MPa)

JGJ102-2003表B.0.1-1

螺栓的性能等级

锚栓和构件钢材的牌号

普通螺栓锚

承压型连接高强

度螺栓C级螺栓A、B级螺栓

压f t b f v b f c b f t b f v b f c b f t b f t b f v b f c b

普通螺栓4.6、4.8级170 140 - - - - - - - -

5.6级- - - 210 190 - - - - -

8.8级- - - 400 320 - - - - -

锚栓Q235钢- - - - - - 140 - - - Q345钢- - - - - - 180 - - -

承压型连接高强度螺栓8.8级- - - - - - - 400 250 - 10.9级- - - - - - - 500 310 -

构件Q235钢- - 305 - - 405 - - - 470 Q345钢- - 385 - - 510 - - - 590 Q390钢- - 400 - - 530 - - - 615

十二、螺栓连接的强度设计值二(MPa)

GB50429-2007表4.3.5-1

螺栓的材料、性能等级和构件铝合金牌号

普通螺栓

铝合金不锈钢钢

抗拉

f t v

抗剪

f v b

承压

f c b

抗拉

f t v

抗剪

f v b

承压

f c b

抗拉

f t v

抗剪

f v b

承压

f c b

普通螺栓铝合金

2B11 170 160 ———————

2A90 150 145 ———————不锈钢

A2-50、A4-50 ———200 190 ————

A2-70、A4-70 ———280 265 ————钢 4.6、4.8级——————170 140 —

构件

6061-T4 ——210 ——210 ——210 6061-T6 ——305 ——305 ——305 6063-T5 ——185 ——185 ——185 6063-T6 ——240 ——240 ——240 6063A-T5 ——220 ——220 ——220 6063A-T6 ——255 ——255 ——255 5083-O/F/H112 ——315 ——315 ——315

十三、焊缝的强度设计值(MPa)

JGJ102-2003表B.0.1-3

焊接方法和焊条型

构件钢材对接焊缝角焊缝牌号

厚度或直径

d(mm)

抗压

f c w

抗拉和抗弯受拉f t w抗剪

f v w

抗拉、

抗压和

一级、二级三级抗剪f f w

自动焊、半自动焊和E43型焊条的手

工焊Q235

d≤16 215 215 185 125 160 16<d≤40 205 205 175 120 160

40<d≤60 200 200 170 115 160

自动焊、半自动焊和E50型焊条的手

工焊Q345

d≤16 310 310 265 180 200 16<d≤35 295 295 250 170 200

35<d≤50 265 265 225 155 200

自动焊、半自动焊和E55型焊条的手

工焊Q390

d≤16 350 350 300 205 220 16<d≤35 335 335 285 190 220

35<d≤50 315 315 270 180 220

自动焊、半自动焊和E55型焊条的手

工焊Q420

d≤16 380 380 320 220 220 16<d≤35 360 360 305 210 220

35<d≤50 240 240 290 195 220

十四、不锈钢螺栓连接的强度设计值(MPa)

JGJ102-2003表B.0.3

类别组别性能等级σb抗拉抗剪

A(奥氏体) A1、A2 50 500 230 175 A3、A4 70 700 320 245 A5 80 800 370 280

C(马氏体) C1

50 500 230 175

70 700 320 245

100 1000 460 350 C3 80 800 370 280 C4

50 500 230 175

70 700 320 245

F(铁素体) F1 45 450 210 160 60 600 275 210

十五、楼层弹性层间位移角限值

GB/T21086-2007表20

建筑高度结构类型

建筑高度H(m)

H≤150 150<H≤250 H>250

框架1/550 ——板柱-剪力墙1/800 ——

框架-剪力墙、框架-核心筒1/800 线性插值

筒中筒1/1000 线性插值1/500

剪力墙1/1000 线性插值

框支层1/1000 ——

多、高层钢结构1/250(GB50011-2010)

十六、部分单层铝合板强度设计值(MPa)

JGJ133-2001表5.3.2

牌号试样状态厚度(mm)抗拉强度f t a1抗剪强度f v a1

2A11 T42

0.5~2.9 129.5 75.1 >2.9~10.0 136.5 79.2

2A12 T42

0.5~2.9 171.5 99.5 >2.9~10.0 185.5 107.6

7A04 T62

0.5~2.9 273.0 158.4 >2.9~10.0 287.0 166.5

7A09 T62

0.5~2.9 273.0 158.4

>2.9~10.0 287.0 166.5 上海规范表3.2.9【DGJ08-56-2012】

牌号状态规定非比例延伸应力δp0.2抗拉强度f t a1抗剪强度f v a1 1060 H14、H24 70 54 32 1050 H14、H24 75 58 34 1100 H14、H24 95 74 43 3003 H14 125 97 56 3003 H24 115 89 52 3004 O 60 47 27

5005

H14 120 93 54 H24、H34 110 86 50

5052 O 65 50 29 十七、铝塑复合板强度设计值(MPa)

JGJ133-2001表5.3.3

板厚t(mm) 抗拉强度f t a2抗剪强度f v a2

4 70 20

十八、蜂窝铝板强度设计值(MPa)

JGJ133-2001表5.3.4

板厚t(mm) 抗拉强度f t a3抗剪强度f v a3

20 10.5 1.4

十九、不锈钢板强度设计值(MPa)

JGJ133-2001表5.3.5

序号屈服强度标准值σ0.2抗弯、抗拉强度f t s1抗剪强度f v s1

1 170 154 120

2 200 180 140

3 220 200 155

4 250 226 176

后置埋件1

工程名称:桂林创业大厦 施工单位三鑫幕墙工程有限公司建设单位河北建工 分项工程名称后置埋件安装作业部位各施工班组 交底部门工程部交底人施工期限月日至月日 接受交底班组或员工签名: 交底内容: 1.后置埋件位置严格按图施工,如果遇到有现场结构域图纸相矛盾或图纸不清晰的地方应及时与设计反馈和沟通,待设计确认后方可施工。 2.从各层分格线上画出预埋件十字中心线,以便进行后期预埋件的安装,使之符合图纸施工要求。 3.化学锚栓安装时,要严格按照产品相关技术规程及相应规范要求施工,孔深要达到有效锚固深度(M12为11公分),孔洞要三吹三刷,保持干燥,飞尘清除干净后才能注入化学药剂,植入螺杆,待化学药剂凝固后,方可受力。螺杆外露混凝土面不得超过3.5公分,斜度不得超过15度,凝固时间与温度相关,具体由产品相关技术规程及相应规范确定。 4.所有后置埋件的化学锚栓中心距结构边距离应保证不小于图纸所示尺寸,起锚固深度需达到图纸所示要求。 5.当后置埋件化学锚栓孔位偏差较大时,需严格按照纠偏方案图纸进行处理。加固垫片与埋件焊接应牢固,焊缝应饱满、平滑、无气泡和裂纹。 6.左辅楼石材幕墙二层无结构梁位置必须采用螺栓对穿形式固定埋件。 7.所有后置埋件位置必须严格按图纸施工,误差左右不得大于1公分,往上不得超过1.5公分,往下不得大于0.5公分。 8.所有后置埋件必须与混凝土面贴实,不得留有缝隙,外露螺杆长度均匀一致,方垫垫片平正,螺母紧固,不得松动。 9.在结构边缘部位,列如:阴角、阳角、单元起底部位结构,要贴别注意确认结构尺寸与图纸是否一致,如有不一致地方请及时给设计反馈此信息,并提供现场尺寸。 10.化学试剂固化时间:0℃以下为240min,0—10℃为45min,10--2℃0为20min,20℃以上为10min.在潮湿混凝土中固化时间需加倍。 本表由施工单位填写,交底单位与接受交底单位各存一份。

埋件计算

埋件计算 建筑埋件系统 设计计算书 设计: 校对: 审核: 批准: 二〇一四年三月二十二日

目录 1 计算引用的规范、标准及资料 (1) 2 幕墙埋件计算(粘结型化学锚栓) (1) 2.1 埋件受力基本参数 (1) 2.2 锚栓群中承受拉力最大锚栓的拉力计算 (1) 2.3 群锚受剪内力计算 (2) 2.4 锚栓或植筋钢材破坏时的受拉承载力计算 (2) 2.5 锚栓或植筋钢材受剪破坏承载力计算 (3) 2.6 拉剪复合受力承载力计算 (3) 3 附录常用材料的力学及其它物理性能 (4)

幕墙后锚固计算 1 计算引用的规范、标准及资料 《玻璃幕墙工程技术规范》 JGJ102-2003 《金属与石材幕墙工程技术规范》 JGJ133-2001 《混凝土结构后锚固技术规程》 JGJ145-2004 《混凝土结构加固设计规范》 GB50367-2006 《混凝土结构设计规范》 GB50010-2010 《混凝土用膨胀型、扩孔型建筑锚栓》 JG160-2004 2 幕墙埋件计算(粘结型化学锚栓) 2.1埋件受力基本参数 V=4000N N=5000N M=200000N·mm 选用锚栓:慧鱼-化学锚栓,FHB-A 12×80/100; 2.2锚栓群中承受拉力最大锚栓的拉力计算 按5.2.2[JGJ145-2004]规定,在轴心拉力和弯矩共同作用下(下图所示),进行弹性分析时,受力最大锚栓的拉力设计值应按下列规定计算: 1:当N/n-My 1/Σy i 2≥0时: N sd h=N/n+My 1 /Σy i 2 2:当N/n-My 1/Σy i 2<0时: N sd h=(NL+M)y 1 //Σy i /2 在上面公式中: M:弯矩设计值; N sd h:群锚中受拉力最大锚栓的拉力设计值; y 1,y i :锚栓1及i至群锚形心轴的垂直距离; y 1/,y i /:锚栓1及i至受压一侧最外排锚栓的垂直距离; L:轴力N作用点至受压一侧最外排锚栓的垂直距离;

后置埋件计算

幕墙埋件计算 基本参数: 1:计算点标高:26.2m; 3:幕墙立柱跨度:L=4500mm,短跨L1=550mm,长跨L2=3950mm; 3:立柱计算间距:B=1300mm; 4:立柱力学模型:双跨梁,侧埋; 5:板块配置:中空玻璃; 6:选用锚栓:化学锚栓 M12*160;锚板采用Q235B的300×200×8 mm钢板。荷载标准值计算 (1)垂直于幕墙平面的分布水平地震作用: qEk=βEαmaxGk/A =5.0×0.08×0.0005 =0.0002MPa (2)连接处水平总力计算: 对双跨梁,中支座反力R1,即为立柱连接处最大水平总力。 qw:风荷载线荷载设计值(N/mm); qw=1.4wkB =1.4×0.001551×1300 =2.823N/mm qE:地震作用线荷载设计值(N/mm); qE=1.3qEkB =1.3×0.0002×1300 =0.338N/mm 采用Sw+0.5SE组合:……5.4.1[JGJ133-2001] q=qw+0.5qE =2.823+0.5×0.338 =2.992N/mm N:连接处水平总力(N); R1:中支座反力(N); N=R1 =qL(L12+3L1L2+L22)/8L1L2 =2.992×4500×(5502+3×550×3950+39502)/8/550/3950 =17370.342N (3)立柱单元自重荷载标准值: Gk=0.0005×BL =0.0005×1300×4500 =2925N (4)校核处埋件受力分析: V:剪力(N);

N :轴向拉力(N),等于中支座反力R1; e0:剪力作用点到埋件距离,即立柱螺栓连接处到埋件面距离(mm); V=1.2Gk =1.2×2925 =3510N N=R1 =17370.342N M=e0×V =106×3510 =372060N ·mm 二、埋件计算 锚板面积 A=60000.0 mm2 0.5fcA=429000.0 N N=11547.3N < 0.5fcA 锚板尺寸可以满足要求! 锚筋采用后植锚固的形式,锚筋采用2-M12化学螺栓的埋设方式,锚板采用Q235B 的300×200×8 mm 钢板。 N 拔=n z M N 1)2(?+?β<5 .1拉拔N =21)100416000210738( 25.1?+? =7969 N M12化学螺栓单个设计值为16200 N ; 可知均大于N 拔=7969 N 所以满足要求 根据以上计算,整个幕墙埋件设计满足设计要求,达到使用功能,可以正常使用。

后置埋件

第二章后置埋件 2.1概述 2.1.1基本概念 后置埋件是指安装在结构上的埋置锚固件,其中涉及到三种客体:结构基材、锚固件和被连接体。锚固件不但要完成被锚固件与原结构的连接作用,更重要的是能有效的将外加荷载直接传递到原结构上,从而达到安全、可靠的功效。近几年许多既有建筑需要进行加固,或者是被赋予了新的功能,需要进行改造,或是在原建筑物上添加新的建筑。在这些情况下,需要在建筑本身建好以后再使用一些方法将新的结构、构件、设备连接到这些建筑主体或者建筑上来,这样的方法称之为后锚固技术。后锚固是指通过相关技术手段在既有混凝土结构上的锚固。该方法具有施工简单、使用灵活,既可用于加固改造工程也可用于新建建筑物,但其受力状态复杂破坏类型较多,失效概率较大。 影响后置埋件可靠性的影响因素主要有两个,一是锚固件本身的质量,二是后埋置技术。后置埋件作用原理可以分为凸形结合(机械锁定嵌固结合),摩擦结合和材料结合。凸形结合时,荷载通过锚栓与锚固基础间的机械啮合来传递。此类结合的钻孔须专门与锚栓匹配的钻头进行拓孔,锚栓在拓孔部分与锚固基础形成凸形结合,通过啮合将荷载传给锚固基底。此类锚栓在混凝土结构中具有良好的抗震、抗冲击性能,可以在混凝土受拉区中使用。膨胀式锚栓的作用原理属摩擦结合,膨胀片张开后,使锚栓与孔壁间形成摩擦力。膨胀力可由两种途径产生:扭矩控制和位移控制。扭矩控制是用力矩板手达到规定的安装扭矩后,膨胀片张开。位移控制是把扩充锥体敲击入膨胀套管内,达到规定的打入行程后,膨胀片张开。第三种是材料结合。即通过胶合体将荷载传给锚固基础,如当今应用很广泛的植筋技术。 2.1.2后置埋件分类 后置埋件锚固的方法有很多,总的可以分为两大类:植筋和使用锚栓锚固。锚栓是将被连接件锚固到混凝土基材上的锚固组件,可分为机械锚栓和粘结型锚栓;按受力锚栓的个数可分为单锚、双锚以及群锚。 锚栓按工作原理以及构造的不同可分为:膨胀型锚栓(按照形成膨胀力来源分为扭矩控制式和位移控制式)、扩孔型锚栓(按照扩孔方式可分为自扩孔和预扩孔)、化学植筋以及长螺杆等。 1、膨胀型锚栓:利用膨胀件挤压锚孔孔壁形成锚固作用的锚栓(图4-2-1,图4-2-2)。 2、扩孔型锚栓:通过锚孔底部扩孔与锚栓膨胀件之间的锁键形成锚固作用的锚栓(图4-2-3)。 图4-2-1扭矩控制式膨胀型锚栓

后置埋件锚栓适用范围规范解析

混凝土结构后锚固用锚栓的选用分析 作者:黄潇校对:庞卫锋 随着幕墙行业的不断发展,幕墙的安全重要性已经被提上日程,开发商越来越关注幕墙的安全性,特别是幕墙主受力龙骨与主体结构之间的连接。从国家到地方,近几年新发布的规范对幕墙后锚固用锚栓的选择使用都进行了规定,比如《混凝土结构后锚固技术规程》、《混凝土结构加固设计规范》、《上海市建筑幕墙工程技术规范》、《浙建〔2013〕2号》文(关于印发《建筑幕墙安全技术要求》的通知)等。现针对各规范条文的规定来解读幕墙后锚固用锚栓的选用。 一、相关规范中对后锚固的规定原文摘录 (一)《混凝土结构后锚固技术规程》JGJ145-2013技术规程原文摘录 表4.1.1-1 锚栓用于结构构件连接时的使用范围 表4.1.1-2 锚栓用于非结构构件连接时的使用范围

《混凝土结构后锚固技术规程》中相关名词解析——概念及规范解析: 1. 扭矩控制式膨胀螺栓与位移控制式膨胀螺栓:两者的区别在于安装方式,扭矩控制式特指 螺栓的安装是借助力矩扳手达到设定的力矩值,促使螺杆入孔,进而端头膨胀片挤压混凝土的膨胀螺栓,位移控控制式特指需要使用敲击的方式促使螺杆入孔,进而端头膨胀片挤压混凝土的产生抵抗混凝土破坏时的膨胀螺栓; 2. 特殊倒锥形化学锚栓:我们比较熟悉的另一种称呼叫做定型化学锚栓,常见的锚杆呈一节 一节倒锥状或球状凸起的锚栓就是定型化学锚栓了。这种锚栓结合了普通化学锚栓和扩底锚栓的优点,一方面通过化学粘结剂保证锚栓与混凝土体的粘结强度,另一方面又通过倒锥体与混凝土机械锁键保证螺栓与混凝土体的连接强度,是一种具备较好抗震性能的化学锚栓。 3. 生命线工程:主要是指维持城市生存功能系统和对国计民生有重大影响的工程。主要包括 供水,排水系统工程;电力、燃气,石油输送管线等能源供给系统工程;电话和广播电视等情报通信系统工程;大型医疗系统工程和公路、铁路等交通系统的工程。所以针对大多数幕墙项目来说,基本均属于非生命线工程。 4. 开裂混凝土和非开裂混凝土:这两个概念其实并不是文字描述的那样以混凝土自身实际开 裂与否来区分,而是工程本身对混凝土构件在施工和使用中的不同要求。对于一般混凝土构件,允许其在内部产生一定宽度的裂缝的状态下工作,而对于一些大跨度混凝土预应力,大体积水工混凝土等重要混凝土结构,则不允许结构内部带裂缝工作,所以一般民用建筑幕墙我们推荐使用适用于开裂混凝土的锚栓。 5. 非结构构件:主要指建筑非结构构件(如维护外墙、隔墙、幕墙、吊顶、广告牌、储物柜 架等)及建筑附属机电设备支架(如电梯,照明和应急电源,通信设备,管道系统,采暖和空调系统,烟火监测和消防系统,公用天线)等。 针对幕墙行业,虽相对主体结构来说,幕墙被划入建筑非结构构件,但是作为一种持久性使用的外围护结构,它的安全性和适用性应满足住宅建筑设计要求,并应符合国家现行有关标准的规定。对其耐久性问题,由于材料性质、功能要求及更换的难易程度不同在具体设计上应予以重视。根据其重要性、破坏后果的严重性及其对建筑结构的影响程度,采取不同的设计要求和构造措施。对抗震设计要求的,尚应对非结构构件采取抗震措施或进行必要的抗震计算。对不同功能的非结构构件,应满足相应的承载能力、变形能力(刚度和延性)要求,并应具有适应主体结构变形的能力;与主体结构的连接、锚固应牢固、可靠,要求锚固承载力大于连接件的承载力。所以幕墙工程涉及到幕墙结构主受力位置的锚固,关系到工程整体的耐久性,适用性,安全性问题时,还是要严格对待对锚栓的选用的。

后置埋件的施工方案和技术措施

后置埋件的施工方案和技术措施 本工程主要施工部位位于本工程石材干挂、天棚吊顶等:一、说明 根据我国现行行业标准《金属与石材幕墙工程技术规范》JGJ133-2001规定;幕墙构件与混凝土结构通过预埋件连接,预埋件必须在主体结构混凝土施工时埋入。由于本工程的预埋件由中标公司来进行埋设,若我公司有幸中标,则中标后将对埋设部位进行全面检查、校正,对现场建筑尺寸进行复核以保证后置预埋位置准确。由于建筑结构必然存在一定的误差,所以我们的埋件在设计上就已经充分考虑了如何吸收土建误差的方法,保证预埋件的安装精度同时利用我公司的挂件系统可以吸收掉土建误差,对于土建误差较大的地方我公司将特别订制挂件,保证幕墙的安装质量和安装精度。二、幕墙后置埋件的施工方法 1范围 本施工工艺适用于幕墙工程中的后置埋件施工。 2施工准备 1)材料要求 后置埋件的品种、类型、规格、尺寸、性能、板材的壁厚、表面处理应符合设计要求,且应有出厂合格证。 化学锚栓品种、类型、规格、尺寸、性能应符合设计要求,产品且应有质保书、合格证以及检验报告。 2)主要器具 电锤10台、水准仪一台、水平尺、卷尺、紧线器、吊锤、钢丝线。施工人员30人(其中技术人员10人)。 3)作业条件: 建筑结构施工完毕,已提供幕墙施工作业面;根据建筑提供的基本线位(50线、轴线)。 3操作工艺 1)后置埋件施工工艺流程为: 熟悉现场/(埋件图)--测量放线 -–打孔清理—添加药栓--后置埋件安装—紧固—防锈处理 2)熟悉图纸: 安装作业人员在接到施工图后,先要对施工图进行全面的熟悉和了解,主要了解以下几个方面的内容: 了解施工图的页数和图号图幅,对设计后置埋的内容进行全面了解; 找出设计主导的分格尺寸,对照检查尺寸标注的准确性;对图纸进行答疑; 设计人员对现场施工技术人员进行后置埋件施工图的技术交底,对疑点难点问题进行详细解答;明确转角及异形处的处理方法; 对照土建施工图校对后置埋件施工图的轴线标注尺寸的正确性。 3)测量放线: 找出定位轴线:将图纸中标明的定位轴线与实际施工现场进行对照找出定位轴线的准确位置。在施工现场将施工图中标明的定位轴线与施工现场进行对照找出横向定位轴线,测定准确后用小钢钉在轴线两头侧模上方定位,拉上钢丝线。 找出定位点:根据在现场查找的准确定位轴线,根据图纸中提供的有关内容,工作面水平线测量完成并拉好后,主要是对后置埋位置的高度差及轴线准确性进行测量,通过测量记录结果,查找分析产生的原因,核对有关规范(施工)对误差允许值的要求。在规定误差范围内的可以消化误差,超过误差范围内应与设计方协商进行调整和分解。 确定定位点:定位点数量不得少于两点,确定定位点时要反复测量一定要保证定位准确无误。 抄平(打水平):用水准仪,对两个定位点确定水平位置,水准仪要按规范使用(使用方法略),

模板支架专项方案计算书汇总

主体结构 模板支架受力计算书 计算人: 复核人:

狮山路站模板、支架强度及稳定性验算 1、设计概况 狮山路站为地下两层,双跨整体式现浇钢筋混凝土框架结构;车站内衬墙与围护桩间设置柔性防水层。在通道、风道与主体结构连接处设置变形缝。主要结构构件的强度等级及尺寸如下: 表1 狮山路站主体结构横断面尺寸表 2、模板体系设计方案概述 狮山路站全长272m,共分10段结构施工。主体结构施工拟投入8套标准段脚手架(长27.2m×宽19.8m×6.35m)。最长段模板长32m、最短段模板长24m,每段模板平均按27.2m考虑。模板主要采用胶合板模板加三角钢模板。支架采用Φ48×3.5mm碗扣式钢管脚手架支撑,中间加强杆件、剪刀撑、扫地杆采用扣件式脚手架。 (1)狮山路站侧墙模板施工采用三角支架模板系统,三角大模板支架体系分为:三角钢架支撑和现场拼装的模板系统。三角支架分为4.0m高的标准节和0.85m高的加高节,大模板采用4000(长)×1980(宽)×6.0mm(厚)钢模板。大模板竖肋、横肋和边肋均采用[8普通型热轧槽钢,背楞采用2[10,普通型热轧槽钢。 在浇注底板混凝土时,侧墙部分要比底板顶面向上浇灌300mm高。在浇灌混凝土前水平埋入一排φ25精扎螺纹钢(外露端车丝),作为侧墙大模板的底部支撑的地脚螺栓拉结点,L=700。在施工过程中必须确保此部分侧墙轴线位置和垂直度的准确,以保证上下侧墙的对接垂直、平顺。对于单面侧墙模板,采用单面侧向支撑加固。侧向支撑采用角钢三角架斜撑,通过预埋Φ25拉锚螺栓和支座垫块固定。纵向间距同模板竖龙骨间距,距离侧墙表面200mm。

一个土建预埋件计算书

本人有一个土建预埋件计算书提供给你看看, 幕墙埋件计算(土建预埋) 基本参数: 1:计算点标高:100m; 2:立柱跨度:L=3000mm; 3:立柱计算间距(指立柱左右分格平均宽度):B=1100mm; 4:立柱力学模型:单跨简支; 5:埋件位置:侧埋; 6:板块配置:中空玻璃; 7:混凝土强度等级:C25; 1.荷载标准值计算: (1)垂直于幕墙平面的分布水平地震作用: qEk=βEαmaxGk/A =5.0×0.16×0.0005 =0.0004MPa (2)幕墙受水平荷载设计值组合: 采用Sw+0.5SE组合:……5.4.1[JGJ102-2003] q=1.4wk+0.5×1.3qEk =1.4×0.001468+0.5×1.3×0.0004 =0.002315MPa (3)立柱单元自重荷载标准值: Gk=0.0005×BL =0.0005×1100×3000 =1650N (4)校核处埋件受力分析: V:剪力(N); N:轴向拉力(N); e0:剪力作用点到埋件距离,即立柱螺栓连接处到埋件面距离(mm); V=1.2Gk =1.2×1650 =1980N N=qBL =0.002315×1100×3000 =7639.5N M=e0V =100×1980 =198000N?mm 2.埋件计算: 校核依据,同时满足以下两个条件: a:AS≥V/aravfy+N/0.8abfy+M/1.3arabfyz C.0.1-1[JGJ102-2003] b:AS≥N/0.8abfy+M/0.4arabfyz C.0.1-2[JGJ102-2003] 其中: AS:锚筋的总截面面积(mm2); V:剪力设计值(N);

后置埋件措施

1、一:工艺流程:工艺流程安装程序:钻孔——清孔——置入药剂管——钻 入螺栓——凝胶过程——硬化过程——固定物体1、钻孔:先根据设计要求,按图纸间距、边距定好位置,在基层上钻孔,孔径、孔深必须满足设计要求。 2、清孔:用空气压力吹管等工具将孔内浮灰及尘土清除,保持孔内清洁。 3、 置入药剂管:将药剂管插入洁净的孔中,插入时树脂在手温条件下能象蜂蜜一样流动时,方可使用胶管。4、钻入螺栓:用电钻旋入螺杆直至药剂流出为止。电钻一般使用冲击钻或手钻,钻速为750 转/分。这时螺栓旋入,药剂管将破碎,树脂、固化剂和石英颗粒混合,并填充锚栓与孔壁之间的空隙。 同时,锚栓也可以插入湿孔,但水必须排出钻孔,凝胶过程及硬化过程的等待时间必须加倍。5、凝胶过程:保持安装工具不动。6、硬化过程:取下安装工具静待药剂硬化。7、固定物体:待药剂完全硬化后,加上垫圈及六角螺母将物体固定便可。二:质量要求及控制1、钻孔时最好使用与锚栓相匹配的钻头,并不得损伤钢筋。2、在施工之前,必须对锚栓作材料力学性能试验,经试验合格后,方可现场使用。3、在现场施工应做锚栓现场应用条件确定试验,以充分检验承载能力。试验不仅在低强度混凝土中进行,也要在高强度混凝土中进行。在测试中,其允许荷载、相应间距、边距构件厚度按生产厂的说明埋置锚栓。试验采用轴心拉力、剪力及拉剪组合力,从而确定荷载方向对承载力的影响。4、清孔时必须将孔内尘土及浮灰清理干净。5、药管在冬施时,应提前对其进行保温处理,以保证药管在插入钻孔时有足够的流动性(在手温时,树脂象蜂蜜一样流动)。6、螺杆必须用电钻旋入,不许直接敲入。7、钻孔内不得有积水。三:检测及验收施工完毕后按规范要求进行拉拔试验,并请监理现场旁站监督,达到要求后再进行下

后置埋件的力学性能检验

后置埋件的力学性能检验

————————————————————————————————作者:————————————————————————————————日期: ?

后置埋件的力学性能检验 山东建筑大学 李安起 目录 1.概述 2.建筑结构加固工程施工质量验收规范GB50550-2010(混凝土结构加固设计规范 GB50367-2006) 3.混凝土结构后锚固技术规程JGJ145—2004 4.砌体结构工程施工质量验收规范GB50203-2011——拉结筋 5.混凝土结构工程无机材料后锚固技术规程JGJ/T271-2012 1 概述——几个概念 ?后置埋件:通过相关技术手段在既有工程结构上设置的连接件。 ?锚栓:将被连接件锚固到混凝土基材上的锚固组件。 ?植筋:以专用的结构胶粘剂将带肋钢筋或全螺纹螺杆锚固于基材混凝土中。 ?化学植筋:以化学粘结剂——锚固胶,将带肋钢筋及长螺杆等胶结固定于混凝土基材锚孔中的一种后锚固生根技术。 ?锚筋:用于后锚固工程中的光圆或带肋钢筋。 具备资料: (1)工程名称及建设单位、设计单位、施工单位和监理单位名称; (2)结构或构件名称、施工图纸、工程验收记录以及相关的施工技术资料; (3)后置埋件品种、规格、数量、分布及位置等; (4)结构或构件存在的质量问题。 1 概述——标准 ◆建筑结构加固工程施工质量验收规范GB50550-2010之附录W《锚固承载力现场检验方法及评定标准》; ◆混凝土结构后锚固技术规程JGJ145—2004之附录A《锚固承载力现场检验方法》 ◆砌体结构工程施工质量验收规范GB50203-2011(2012年5月1日实施)——9.2.3条 ◆混凝土结构工程无机材料后锚固技术规程JGJ/T271-2012 (2012年8月1日实施)——附录A 建筑结构加固工程施工质量验收规范GB50550-2010 19.4 施工质量检验 19.4.1 植筋的粘结剂固化时间达到7d的当日,应抽样进行锚固承载力检验。其检验方法及质量评定标准必须符合本规范附录W的规定。 检查数量:按本规范附录W确定。

幕墙施工预埋件和后置埋件的区别

预埋件和后置埋件的区别 先置预埋件和后置预埋件的区别取决于砼体结构施工在埋件安置的先后。 通常在确定幕墙分包前根据建筑师之图纸施设标准楼层的埋件。若投标足够早(砼体出00线前),可由幕墙公司出埋件图并配合总包施工. 预埋件是在结构还没有完成之前按照建筑师.业主的分格要求由最初的方案设计由土建进行施工,因为方案毕竟出图比较仓促,而且加上后来的修改,所以预埋件的利用率一般都不高.而后埋件则是由业主,建筑师确定分格后,由幕墙设计师再去订购后埋钢板,由幕墙施工队安装.预埋件是用锚筋来连接到结构体:而后埋件通常用膨胀螺栓固定,现在也有用化学锚栓. 普通预埋件成本很低,加工周期短,通用性大,可以库存 受力大的地方可用先置预埋件,受力小的地方可以用后置埋件,受水平剪力及施工时需要现场定位(如大玻璃)的部位可采用后置埋件,其他地方尽量采用预埋件。 后置埋件无法与主体钢筋相连,避雷不好,而预埋件可以与主体相连。先置预埋件由于是在现浇混凝土之前埋设,以扎丝及电焊与主体钢筋连接因此牢固是无庸质疑的,并且在防雷接地方面都非常好。并且成本比较低大概在20―25元左右。 后置预埋件最主要的问题就是材料和施工管理的问题: 1、现在我们一般设计是2*12不锈钢膨胀+2*12化学锚栓,以不锈钢膨胀为例,质量就相差很大。 2、施工过程中会碰到化学锚栓如果灰尘未完全清理就将影响其黏结效果、电锤打孔中打到钢筋等问题。 3、成本偏高,大概在30―35元左右。 但先置预埋件会由于混凝土的膨胀及其他因素有少数偏位,而后置预埋板在位置方面能较好的控制。

先置预埋成本低,可在板上电焊而不会影响强度;后置埋件成本高,而且在板上电焊不采取措施的话,会影响化学锚拴的强度,因为化学药剂遇热强度只有原来的十分之一,很危险。 其实目前的埋件选择较以前有了更多的选择。就形式而言有常规预埋件、哈芬槽式预埋件、槽式预埋件。埋设方式又可以分为侧面埋、平面埋、后置埋等。所以针对每个不同工程采取不同的埋件形式和埋设方式是很重要的。一定要有针对性,不能千篇一律。 从埋设方式来看如果您是侧面埋可以选择槽式埋件。如果是平面埋可以采用常规埋件(通常埋设需要衡量经济性)。 其实无论选择何种埋件形式以及埋设方式,有三点要综合考虑:安全、成本、施工方便。 如果连接件是连接幕墙和主体结构的桥,那么预埋件就是桥墩。埋件设计无论从安全角度考虑还是经济角度(设计成本)考虑,都是值得大家仔细推敲并认真考虑的。 从做幕墙的安全性考虑,我认为先置埋件要好于后置式的,但有些特殊情况,不得已才做后置埋件。

建筑幕墙施工后置埋件受力分析与设计计算

建筑幕墙施工后置埋件受力分析与设计计算 发表时间:2018-11-14T16:15:40.300Z 来源:《建筑学研究前沿》2018年第20期作者:申振嘉[导读] 埋件是连接幕墙和主体结构的主要部件,因此,埋件的准确计算对幕墙的安全性能至关重要,本文笔者根据多年的工作经验及工程实例,对建筑幕墙施工中后置埋件受力、设计计算进行了分析探讨。 申振嘉 深圳金粤幕墙装饰工程有限公司摘要:埋件是连接幕墙和主体结构的主要部件,因此,埋件的准确计算对幕墙的安全性能至关重要,本文笔者根据多年的工作经验及工程实例,对建筑幕墙施工中后置埋件受力、设计计算进行了分析探讨。 关键词:幕墙施工;后置埋件;计算;受力1、工程实例 在幕墙施工过程中,当施工未设预埋件、预埋件漏放、预埋件偏离设计位置、设计变更、旧建筑物加装幕墙、没有条件采用预埋件连接措施时,往往要使用后置埋件。但《混凝土结构后锚固技术规程》中对于后补埋件的计算仅提供了埋件在轴向力作用下的一般做法,而在实际工程中后置埋件往往同时受到拉力与弯矩的共同作用,仅考虑轴向拉力计算结果不安全,存在安全隐患。如本项目幕墙埋件采用后置埋件的形式,埋件受到水平风荷载产生的轴向拉力与竖直向下的自重荷载以及自重偏心产生的弯矩共同作用(图1),锚栓选用M12 化学锚栓,锚板固定在 C40 混凝土梁侧面,混凝土梁截面为 350*600mm,锚板上设置 9 个化学螺栓,其尺寸为400*400*15mm(图2)。 图 1 埋件荷载图 2 螺栓布置2、后补埋件计算 2.1、后补埋件化学锚栓计算 2.1.1 M12 化学锚栓的性能 抗拉承载力设计值:抗剪承载力设计值: 2.1.2 荷载计算 水平风荷载:自重荷载: 自重荷载偏心距: 自重引起的弯矩: 2.1.3 化学锚栓抗拉计算

预埋件计算书

目录 一、埋件计算概述 (1) 1.坐标轴定义 (1) 2.规范和参考依据 (1) 二、预埋件MJ01计算 (2) 1.埋件分布 (2) 2.荷载传递简图 (2) 3.埋件YMJ-01加工图中的尺寸: (2) 4.荷载计算 (3) 1)恒荷载标准值 (3) 2)风荷载标准值 (3) 3)地震荷载标准值 (3) 4)荷载工况组合: (3) 5.埋件受力分析 (4) 1)锚筋面积校核 (4) 2)锚板面积校核 (4) 3)锚筋锚固长度校核 (5)

一、埋件计算概述 1.坐标轴定义 对于位于土建梁侧的埋件:埋板的法向方向为Y轴;埋板平面内沿重力方向为Z轴;埋板平面内沿土建梁轴向方向为X轴; Z轴方向的荷载对埋件产生的效应为拉压力,记为N ;X轴和Y轴方向的荷载对埋件产生的效应为竖向剪力,记为Vx和Vy ,同理弯矩记为Mx和My 。 2.规范和参考依据 《建筑结构可靠度设计统一标准》GB50068-2001 《建筑结构荷载规范》GB50009-2012 《建筑抗震设计规范》GB50011-2010 《钢结构设计规范》GB50017-2003 《玻璃幕墙工程技术规范》JGJ102-2003 《金属、石材幕墙工程技术规范》JGJ133-2001 《混凝土结构后锚固技术规程》JGJ145-2004 《建筑结构静力计算手册》第二版

二、预埋件MJ01计算 1.埋件分布 编号为MJ01类型的埋件在本工程中标高17.8m的位置。 2.荷载传递简图 3.埋件YMJ-01加工图中的尺寸: YMJ-01 尺寸图

4.荷载计算 1)恒荷载标准值 Gk2=ρ×t+gs ρ石材的重力密度,取值为:25.6 KN/m3 t 产生重力荷载的玻璃的有效厚度,此处取0.018 m gs 连接附件等的重量,保守按照11 Kg/m2取值为:0.11 KN/m2 Gk=28×0.030+0.11=0.95 KN/m2 2)风荷载标准值 根据《建筑结构荷载规范》中的风荷载标准值计算方法得出的风荷载标准值Wk1为:Wk1=W0×μs1×μz×βgz W0基本风压取为,上海50年,取值为0.55 KN/m2 μs1局部风压体形系数,此处按照最不利取值为(1.4+0.2)=1.6 μz风压高度系数,地面粗造度为B类,埋件使用部位标高17.8m,取值为1.19 βgz阵风系数,地面粗造度为B类,埋件使用部位标高17.8m,取值为1.63 Wk1=0.55×1.6×1.19×1.63=1.707 KN/m2, 3)地震荷载标准值 Ek=Gk×αmax×βE αmax 地震影响系数放大值,抗震设防烈度为7度,水平地震影响系数α取0.08 βE 动力放大系数,取:5.0 Ek=0.95×0.08×5.0=0.380KN/m2 4)荷载工况组合: 工况1 : 1.2×Gk+1.4×1.0×Wk+1.3×0.5×Ek 水平荷载 PAh=1.4×1.0×Wk+1.3×0.5×Ek=2.637 KN/m2 竖向荷载 PAv=1.2×Gk=1.140 KN/m2 竖框承受的最不利受荷载面积Am=1.2×2.25=2.700 m2 所以竖框对埋件产生的最大支反力如下: 水平荷载:RFy=PAh×Am=2.637×2.70=7.120 KN 竖向荷载:RFz=PAv×Am=1.140×2.700=3.078 KN 最大弯矩:M=RFz×L=3.078×0.275=0.846 KN.M

后置埋件的施工工艺

在板块安装完后安装以保护防火岩棉,安装完后应在表面同样用钢板封闭。九、后置埋件的施工工艺 埋件选用国内优质产品,具体施工工艺如下: 1、后置埋件安装前要对每个埋件进行质量检查,确保符合要求方可使用。埋件所用材料要符合设计要求;焊缝高度设计要求一致并且焊角没有咬边现象;埋件表面热浸镀锌处理要合格;加工尺寸与图纸相符;必要时应抽测作拉拔试验,不合格的绝对不可使用。最后填写后置埋件进场验收表。 2、熟悉图纸:安装作业人员在接到图纸后,先要对图纸进行熟悉了解,主要了解以下几个方面内容: 1)图纸的页数及图号图幅;对图纸内容进行全面的了解,找出设计的主导尺寸(分格),不可调整尺寸和可调节尺寸,制定预埋施工方案和技术交底;明确转角及异形处的处理方法。 2)按照后置埋件点位布置图及标高尺寸,根据土建梁柱尺寸控制线,在钢筋上视具体情况用色笔划出后置埋件埋设控制线。 3)在埋设埋件之前,进行分格,将后置埋件分格线弹在底模外檐口处。 4)根据埋件施工图埋件分布的情况,对埋件以轴线右边起第一个埋件进行编号,并记录埋件埋设的情况。埋件埋设后填写《隐蔽验收单》报监理验收。 后置埋件埋设的要求 材料:本工程后置埋件锚板采用国内优质产品。 工艺流程说明 工艺流程:熟悉了解图纸要求→在施工现场找准预埋区域→找出定位轴线→找出定位点→打水平→拉水平线→查证误差→调整误差→水平分割→验证分割准确性→后置预埋铁件。 定型化学螺栓施工步骤及要求: 1)确认打定型化学螺栓位置,测量组进行放样。 2)施工人员按照定位十字线进行打孔。 3)打孔深度,孔径依据标准进行。冲击钻上设立标尺确保孔深。 4)打孔完毕吹清孔内灰尘。 1400为速,转拌搅行进杆螺入。放物合混的剂化固与脂树氧环入)放5. 砼孔直径(适应砼强度为C25~C60)

后补埋件计算~~

后补埋件 设计计算书 设计: 校对: 审核: 批准: ---- 二〇一七年十月十九日

目录 1 计算引用的规范、标准及资料 (1) 2 幕墙埋件计算(后锚固结构-特殊倒锥形化学锚栓) (1) 2.1 埋件受力基本参数 (1) 2.2 锚栓群中锚栓的拉力计算 (1) 2.3 群锚受剪内力计算 (2) 2.4 锚栓钢材破坏时的受拉承载力计算 (2) 2.5 混凝土锥体受拉破坏承载力计算 (3) 2.6 混凝土劈裂破坏承载力计算 (4) 2.7 锚栓钢材受剪破坏承载力计算 (5) 2.8 混凝土楔形体受剪破坏承载力计算 (6) 2.9 混凝土剪撬破坏承载能力计算 (7) 2.10 拉剪复合受力承载力计算 (8) 2.11 混凝土基材厚度、群锚锚栓最小间距及最小边距计算 (8) 3 附录常用材料的力学及其它物理性能 (9)

幕墙后锚固计算 1计算引用的规范、标准及资料 《玻璃幕墙工程技术规范》JGJ102-2003 《金属与石材幕墙工程技术规范》JGJ133-2001 《混凝土结构后锚固技术规程》JGJ145-2013 《混凝土结构设计规范》GB50010-2010 《混凝土用膨胀型、扩孔型建筑锚栓》JG160-2004 2幕墙埋件计算(后锚固结构-特殊倒锥形化学锚栓) 2.1埋件受力基本参数 V=3398.063N N=6177.6N M=0N·mm 选用锚栓:慧鱼-化学锚栓,FHB-A 12×100/100 锚栓排数×列数:2×2; 锚栓最外排间距×最外列间距:150mm×200mm; 混凝土等级:C30;; 2.2锚栓群中锚栓的拉力计算 按5.2.2[JGJ145-2013]规定,在轴心拉力和弯矩共同作用下(下图所示),进行弹性分析时,受力最大锚栓的拉力设计值应按下列规定计算: 1:当N/n-My1/Σy i2≥0时: 5.2.2-1[JGJ145-2013] N sd h=N/n+My1/Σy i2 5.2.2-2[JGJ145-2013] 2:当N/n-My1/Σy i2<0时: N sd h=(NL+M)y1//Σy i/2 5.2.2-3[JGJ145-2013] 在上面公式中: M:弯矩设计值; N sd h:群锚中受拉力最大锚栓的拉力设计值; y1,y i:锚栓1及i至群锚形心轴的垂直距离; y1/,y i/:锚栓1及i至受压一侧最外排锚栓的垂直距离; L:轴力N作用点至受压一侧最外排锚栓的垂直距离;

预埋件、后置埋件、植筋等锚固性能检验实施细则

121 第四章 后置埋件的力学性能检测 1 总 则 1.0.1 后置埋件的力学性能检测依据标准为《混凝土结构后锚固技术规程》(JGJ145-2004)、《建筑装饰装修工程质量验收规范》(GB50210—2001)、《玻璃幕墙工程质量检验标准》(JGJ/T139—2001)、《金属与石材幕墙工程技术规范》(JGJ/T133—2001)。 1.0.2 本规程适用于后置埋件力学性能现场检测;不适用于试验室内的模拟检测。 1.0.3 后置埋件的力学性能检测,除满足本规程的规定外,尚应符合国家现行有关强制性标准的规定。 2 术语、符号 2.1 术语 2.1.1 后置埋件 通过相关技术手段在既有工程结构上设置的连接件。 2.1.2 锚栓 将被连接件锚固到混凝土基材上的锚固组件。 2.2 符号 c Rm N —— 锚栓极限抗拔力实测平均值; Sd N —— 锚栓拉力设计值; c R N min —— 锚栓极限抗拔力实测平均值; Rk N —— 锚栓极限抗拔力标准值,根据破坏类型的不同,分别按有关规定计算; []u γ —— 锚固承载力检验系数允许值,近似取[]u γ=1.1R γ,R γ按表 取用; 0D —— 加荷设备支撑环内径; ef h —— 锚栓有效锚固深度,对于膨胀型锚栓及扩孔型锚栓,为膨胀锥体与孔壁最大 挤 压点的深度; s A —— 锚栓应力截面面积和截面抵抗矩; yk f —— 锚栓屈服强度标准值; c Rk N , —— 非钢材破坏承载力标准值。 stk f —— 锚栓极限抗拉强度标准值;

122 3 基本规定 3.1 检测方法及适用范围 3.1.1 检测前宜具有下列资料; 1 工程名称及建设单位、设计单位、施工单位和监理单位名称; 2 结构或构件名称、施工图纸、工程验收记录以及相关的施工技术资料; 3 后置埋件品种、规格、数量、分布及位置等; 4 结构或构件存在的质量问题。 3.1.2 锚栓抗拔承载力现场检验可分为非破坏性检验和破坏性检验。对于一般结构及非结构构件,可采用非破坏性检验;对于重要结构构件及生命线工程非结构构件,应采用破坏性检验。 3.2 仪器设备 3.2.1 现场检验用的仪器、设备,如拉拔仪、x-y 记录仪、电子荷载位移测量仪等,应定期检定或校准。 3.2.2 加荷设备应能按规定的速度加荷,测力系统整机误差不应超过全量程的±2%。 3.2.3 加荷设备应能保证所施加的拉伸荷载始终与锚栓的轴线一致。 3.2.4 位移测量记录仪宜能连续记录。当不能连续记录荷载位移曲线时,可分阶段记录,在到达荷载峰值前,记录点应在10点以上。位移测量误差不应超过0.02mm 。 3.2.5 位移仪应保证能够测量出锚栓相对于基材表面的垂直位移,直至锚固破坏。 3.3 试样选取 3.3.1 锚固抗拔承载力现场非破坏性检验可采用随机抽样办法取样。 3.3.2 同规格,同型号,基本相同部位的锚栓组成一个检验批。抽取数量按每批锚栓总数的1‰计算,且不少于3根。 3.4 检测方法 3.4.1 加荷设备支撑环内径0D 应满足下述要求:化学植筋0D ≥max (12d ,250mm),膨胀型锚栓和扩孔型锚栓0D ≥4ef h 。 3.4.2 锚栓拉拔检验可选用以下两种加荷制度: 1 连续加载,以匀速加载至设定荷载或锚固破坏,总加荷时间为2min ~3min 。 2 分级加载,以预计极限荷载的10%为一级,逐级加荷,每级荷载保持1min ~2min ,至设定荷载或锚固破坏。 3 非破坏性检验,荷载检验值应取0.9s A yk f 及0.8c Rk N ,计算之较小值。c Rk N ,为非钢材破坏承载力标准值。

预埋件和后置埋件技术交底

A3.1施工组织设计/方案报审表 工程名称:昆山农村商业银行新办公大楼幕墙工程编号:A3.12-

首道工序施工方案 1.概述 本工程预埋铁件采用的钢材规格、种类为:锚板采用Q235B;锚筋采用HRB335热轧月牙勒钢筋。 2.埋件需提供的质保资料 (1)钢材材质证明单; (2)埋件出厂合格证; (3)埋件的拉拔试验报告 3.预埋件的检查 (1)焊缝高度必须达到设计要求; (2)焊角没有咬边现象; (3)所用材料是否符合设计要求; (4)加工尺寸与图是否一致; 4.预埋件埋设方法 (1)预埋件埋设之前,首先进行技术交底,特别要说明转角位置埋件的埋设方案,并填写《技术交底》表备案。 (2)当每一层楼土建梁柱钢筋绑扎完毕后,按照预埋件点位布置图及标高尺寸,根据土建梁柱尺寸控制线,在钢筋上视具体情况用红笔划出预埋件埋设控制线。如下图所示: (3)在埋设预埋件之前,当土建支模时,就进行分格,将预埋件分格线弹在底模外檐口处。如下图所示:

(4)根据埋件施工图埋件分布的情况,对埋件以轴线右边起第一个埋件进 行编号,从1至若干个进行埋设并以本公司的埋件检查表填写埋件埋设的情况。上下、左右、前后将埋设的情况记录下来,埋件埋设后填写《隐蔽验收单》报监理验收。 预置件 5.预埋件埋设的要求 (1)预埋件在埋设过程中,要以多轴线进行埋设,相对来说轴线之间的精 确度足以满足埋件的几何尺寸,若以单轴线定位,丈量过程中尺寸误差会积累,造成埋件的偏位,相对轴线偏差小于20mm。 预置件 (2)幕墙与主体结构连接的预埋件,应在主体结构施工时按设计要求埋设;预埋件位置偏差上下不应大于10mm,上下测量依据底模用卷尺进行测量。 (3)当土建梁柱钢筋绑扎完毕后,将预埋件用铁丝临时固定在钢筋上,或 点焊在箍筋上。 (4)若预埋件埋设中碰到埋件在箍筋的空档处,则可添加辅助钢筋,或用 铁丝与主筋扎牢。 (5)预埋件在埋设过程中,一定要紧贴模板,上下、左右偏差到20mm影 响不大,而前后倾斜将造成角码与埋件之间接触减少,施工难度加大。采取措施,加垫铁块等均为点接触,受力将受影响。这时候只能采用楔型铁块辅助修正,这

后置埋件计算

内江百科园二期工程 预埋件 设计计算书 设计: 校对: 审核: 批准: 内江百科科技有限公司 年月日内江百科园二期工程后锚固连接设计计算书

本设计采用膨胀型锚栓作为后锚固连接件。 本计算主要依据《混凝土结构后锚固技术规程》JGJ 145-2004。 后锚固连接设计,应根据被连接结构类型、锚固连接受力性质及锚栓类型的不同,对其破坏型态加以控制。本设计只考虑锚栓钢材抗剪复合破坏类型和混凝土破坏类型。并认为锚栓是群锚锚栓。 1 后锚固载荷信息 本工程锚栓受拉力和剪力 V g sd : 总剪力设计值: V g sd =5.112KN N g sd : 总拉力设计值: N g sd =10.612KN M: 弯矩设计值: M=2.045000KN ·m 本设计的锚栓是在拉剪复合力的作用之下工作,所以拉剪复合受力下锚栓或植筋钢材破坏和混凝土破坏时的承载力,应按照下列公式计算: 1)()(2,2,≤+s Rd h Sd s Rd h Sd V V N N N Rs s Rk s Rd N N ,,,γ= V Rs s Rk s Rd V V ,,,γ= 1)()(5.1,5.1,≤+c Rd g Sd c R d g Sd V V N N N Rc c Rk c Rd N N ,,,γ= V Rc c Rk c Rd V V ,,,γ=

式中 h Sd N ---- 群锚中受力最大锚栓的拉力设计值; g Sd N ---- 群锚受拉区总拉力设计值; h Sd V ---- 群锚中受力最大锚栓的剪力设计值; g Sd V ---- 群锚总剪力设计值; s Rd N , ---- 锚栓受拉承载力设计值; s Rk N , ---- 锚栓受拉承载力标准值; s Rd V , ---- 锚栓受剪承载力设计值; s Rk V , ---- 锚栓受剪承载力标准值; c Rd N , ---- 混凝土锥体受拉破坏承载力设计值; c Rk N , ---- 混凝土锥体受拉破坏承载力标准值; c Rd V , ---- 混凝土楔形体受剪破坏承载力设计值; c Rk V , ---- 混凝土楔形体受剪破坏承载力标准值; γRs,N ----锚栓钢材受拉破坏,锚固承载力分项系数=2.00; γRs,V ----锚栓钢材受剪破坏,锚固承载力分项系数=2.00; γRc,N ----混凝土锥体受拉破坏,锚固承载力分项系数=2.15; γRc,V ----混凝土楔形体受剪破坏,锚固承载力分项系数=1.80; γRcp ----混凝土剪撬受剪破坏,锚固承载力分项系数=1.80; γRsp ----混凝土劈裂受拉破坏,锚固承载力分项系数=2.15; 锚栓的分布如下图所示: 锚板: X=300.0mm Y=250.0mm

相关文档