文档库 最新最全的文档下载
当前位置:文档库 › 高速公路岩质高边坡的稳定性评价

高速公路岩质高边坡的稳定性评价

高速公路岩质高边坡的稳定性评价
高速公路岩质高边坡的稳定性评价

文章编号:1009-6825(2010)17-0271-03

高速公路岩质高边坡的稳定性评价

收稿日期:2010-02-25

作者简介:杨中方(1975-),男,工程师,中铁二十局集团第三工程有限公司,重庆 401121

杨绪祥(1984-),男,昆明理工大学硕士研究生,云南昆明 650093

杨中方 杨绪祥

摘 要:以工程地质调查成果为基础,合理选取计算参数,采用Bishop 法对某高速公路郧西段内分布的坡高在30m~50m 之间的岩质边坡进行了稳定性研究,并对边坡的稳定性进行了对比分析,所得结论为设计院进一步完善设计工作提供了科学依据,并为后期施工奠定了基础。

关键词:高速公路,岩质边坡,稳定性评价,地震荷载,强度折减法中图分类号:U 417.1

文献标识码:A

1 概述

岩质高边坡稳定性成为山区公路建设工程中常见和重要的岩土工程问题之一。它在很大程度上影响着公路工程建设投资和运营效益[1,2]。某高速公路位于西北部山区,由于境内崇山峻岭,山川河谷交错,垂直变化大,分布岩质边坡坡高多在30m ~50m 之间,属规范规定必须专门研究的超高边坡。对超高边坡的稳定性进行研究,其研究结果为完善设计工作和采取相应的防护措施提供科学依据。

2 工程地质、水文地质概况

根据钻孔柱状图及相关资料,可以确定本区为构造剥蚀中低山区,上覆第四纪残坡积物,下为第一、第二组白云钠长片岩及第三组绢云母片岩。钻探揭露的地质资料表明:坡面多有1m~4m 的残坡积物,开挖后的边坡坡角多在45b 左右。地下水资料,共有

7孔出现地下水,其中3孔为坡脚-8m ~-9m,分布在K15+038,K15+860和K35+720断面;4孔为坡脚-1.5m,分布在K 45+300,K45+320,K 51+819.5和K 57+315.9断面。

3 边坡稳定性评价方法

目前工程中常用的边坡稳定性评价方法为极限平衡法,如费伦纽斯法、Bishop 法、简布法、SA RMA 法、M -P 法等,另外还有有限元数值分析法等。这些方法都有各自的优缺点,极限平衡法是目前工程上用的最多的方法。本文即采用极限平衡方法的Bish -op 法和FL AC3D 软件对边坡的稳定性进行对比研究,使得计算过程更加合理,计算结果更加符合实际。

3.1 计算参数的确定

计算参数取值见表1(仅以K15+860,K 26+420,K 53+649三处边坡为例,下同)。

表1 计算参数取值表

边坡编号1

2

3

4

C /kN #m -3

200.121

220.224

280.4K26+42020

250.0221

180.0822

220.225

300.5K53+649

20

15

0.02

22

25

0.3

24

30

0.5

22

25

0.3

3.2 计算模型及工况的选择

1)计算模型的建立。根据钻孔资料,除K45+300,K45+320需要考虑软弱夹层的影响外,其他边坡岩层均按均质考虑,仅考虑风化壳的差异,各边坡计算参数,按表1取值。地表水在采取完善的防地表水措施后不再考虑;地下水在坡脚以下的岩质边坡不再考虑。软弱夹层产状根据岩层真实产状计算。地震采用7级烈度予以考虑。2)计算工况的选择。按G B 50330-2002建筑边坡工程技术规范规定,采用两种工况计算对比。即:a.天然状态;b.天然+地震(7级);对不能满足稳定性要求的,采用锚杆加固方案对边坡进行防护的还要验算;c.锚杆+天然;d.锚杆+地震(7级)两种工况时的稳定性。

3.3 计算结果及分析3.3.1 极限平衡计算结果分析

1)计算结果。所有边坡模型原点均选在坡脚与路面相交处。计算采用:a.天然状态;b.天然+地震(7级)两种工况,按照G B 50330-2002建筑边坡工程技术规范,永久性超高边坡按一级边坡进行安全设计,设计安全系数为1.30。Bi shop 方法计算结果见表2。2)计算结果分析。根据表2的结果,可以确定K15+860边坡具有足够的稳定性,在做好坡顶及坡面防水措施后可以不必采取加

固措施,另两个边坡均不能满足稳定性要求,必须进行加固。加固方案采用预应力锚杆加格构护坡方案。

表2 Bishop 法计算结果表

编号工况安全系数

天然状态天然+地震K15+860 1.39 1.34K26+420 1.15 1.1K53+649

0.81

0.77

3.3.2 FL AC 法计算结果分析

边坡稳定性安全系数的计算结果见表3。

表3 FLAC 计算结果表

边坡号天然+地震

地震+锚杆K15+860 1.30 1.35K26+420 1.18 1.44K53+649

1.02

1.40

在地震荷载作用下,采用强度折减法计算出的加固前边坡的

安全系数为1.3,加固后的安全系数为1.35,从图1中可以看出滑坡面与简化Bishop 方法计算出滑坡位置基本一致。

在地震荷载作用下,采用强度折减法计算出的加固前边坡的安全系数为1.18,加固后的安全系数为1.44,从图2,图3中可以

#

271#

第36卷第17期2010年6月 山西建筑SHANXI ARCH ITECTURE

Vol.36No.17Jun. 2010

看出滑坡面与简化Bishop方法计算出滑坡位置基本一致。

在地震荷载作用下,加固前边坡基本上无塑性区,加固后基本上也无塑性区,说明边坡加固后处于安全状态,并有较大安全储备。

在地震荷载作用下,采用强度折减法计算出的加固前边坡的安全系数为1.02,加固后的安全系数为1.4,从图4,图5中可以看出滑坡面与简化Bishop方法计算出滑坡位置基本一致。

3.3.3极限平衡法及FLA C法计算结果对比分析

1)对于采用锚杆进行加固处理的边坡。通过FLA C计算了在地震荷载作用下,高边坡在锚杆加固前后边坡的响应情况。计算结果表明:采用锚杆加固后,最大位移、最大剪应力较加固前减小。加固前塑性破坏区呈贯通态势,加固后由于预应力锚杆的作用,塑性破坏区变小,且未贯通,并且最大位移较小,说明加固后,即使在地震的作用下,边坡也处于安全状态。

采用强度折减法计算了临界失稳情况下高边坡在地震荷载作用下,锚杆加固前后的安全系数。计算结果表明:采用锚杆加固后,临界失稳时,加固后的滑坡速度要小于加固前的。

2)对于未采用锚杆进行加固处理的边坡。通过FL AC计算了在地震荷载作用下,高边坡的响应情况。计算结果表明:最大位移、最大剪应力较小,塑性破坏区未呈贯通态势,说明即使在地震的作用下,边坡也处于安全状态。

采用强度折减法计算了临界失稳情况下高边坡在地震荷载作用下的安全系数。计算结果表明:滑坡面的位置与简化Bi sho p 方法计算出滑坡位置基本一致。

4结语

1)岩质边坡的稳定性评价工作必须建立在翔实的地质勘察、岩土力学参数试验、现场施工条件调查的基础上。

2)用极限平衡方法的Bishop法对边坡进行稳定性研究,再运用FLA C3D软件进行数值模拟,将其结果与Bishop法进行对比分析,此法计算过程更加合理,计算结果更加符合实际。

3)边坡的防护应根据边坡的岩体结构特征、稳定性状况及潜在的变形失稳方式具体实施,由这一原则可知边坡的地质勘察和分析是边坡防护设计的基础,应充分重视,同时安全耐久、经济美观也是边坡防护的重要原则。

参考文献:

[1]曾宪明,林润德,易平.基坑与边坡事故警示录[M].北

京:中国建筑工业出版社,1999:203-207.

[2]杨航宇,颜志平,朱赞凌,等.公路边坡防护与治理[M].北

京:人民交通出版社,2002.

[3]陈宇基.公路边坡稳定性分析与加固处理[J].山西建筑,

2009,35(23):316-317.

#

272

#第36卷第17期

2010年6月

山西建筑

文章编号:1009-6825(2010)17-0273-02

山区高速公路的高路堤设计

收稿日期:2010-02-27

作者简介:郑茂营(1980-),男,硕士,助理工程师,中交第二公路勘察设计研究院有限公司,湖北武汉 430056

郑茂营

摘 要:介绍了高速公路高路堤的概念,形成原因及特点,结合杭瑞高速公路对山区高速公路高路堤的设计进行了详细论述,具体阐述了高路堤划分原则,高路堤稳定性验算,路堤基底处理,稳定与沉降的监测设计等内容,为同类项目设计提供了一定的指导。

关键词:高速公路,高路堤,设计内容,稳定性,边坡坡率中图分类号:U 416.12

文献标识码:A

1 高路堤的形成原因、概念和特点

近年来,我国高速公路建设蓬勃发展,已经从平原发展到山区。由于山区地形起伏变化复杂,路线纵坡受到构造物及地形制

约,一些狭窄的/V 形0沟谷和傍山的地段不可避免的出现高填方路堤,也称作高路堤。我国现行公路规范中对高路堤没有明确、严格的定义,一般情况认为水稻田或长年积水地带,用细粒土填筑的路堤高度在6m 以上,其他路堤填筑高度超过12m(碎石、粗

砂、中砂为路堤填料)或20m(其他材料)可视为高填路堤[1]

。与一般路堤比较而言,高填路堤具有以下几个特点[2]

:1)填筑高度大,需要对路堤边坡进行验证,要求路堤本身具有足够的整体强度和边坡稳定性;2)由于高路堤填筑断面面积很大,填筑工程量巨大,路堤的填筑缺陷相对较多,填筑质量保证较为困难;3)路堤本身累积沉降大,对路堤单位填筑高度的工后沉降量要求更严格;4)由于荷载相对较大,需对地基强度进行验算,要求地基承载力高、稳定性好;5)地基沉降大,填筑过程中需对地基进行监测,控制总沉降量和沉降速率,确保高路堤地基的稳定。

2 高路堤设计内容

1)填料的确定与压实标准;2)确定路基横断面的边坡形式与边坡坡率;3)稳定性验算;4)路堤基底的处理;5)高路堤稳定与沉降的监测设计。下面本文以杭州)瑞丽高速公路湖北省阳新)通城段(通山)通城段,以下简称/杭瑞高速0)为实例,论述山区高速公路的高路堤设计。

3 高路堤实例设计

3.1 项目区地形地貌与地质概况

本项目地貌单元属鄂南低山丘陵区,由一系列褶皱山地构成,地形地貌骨架主要受东西向及部分北东向构造所控制,山脉走向、地形地貌单元总体呈近东西向展布。线位区地势从东往西总体呈现高低相间的串珠状展布,即四个山地串联三个呈东西向展布的盆地。微地貌类型以碳酸盐岩、碎屑岩分布区的低山丘陵地貌和以松散岩、侵入岩为主的丘陵垄岗地貌交互出现,呈现低山、丘陵、垄岗、洼地相间组合。沿线出露地层岩性主要为:震旦

系硅质灰岩,寒武系白云质灰岩、炭质灰岩,奥陶系灰岩,白云质灰岩,志留系粉砂岩、粉砂质页岩、页岩,白垩及第三系砾岩、含砾砂岩,砂砾岩,花岗岩、花岗闪长岩等中生代侵入岩。

3.2 高路堤划分原则

本项目以路堤边坡高度或中心填高是否不小于20m 来作为

主要判定高路堤的原则,局部高度在15m~20m 间的路堤,由于地基土的性质比较差,为设计安全考虑,也作为了高路堤来设计,本项目单独作为工点设计的高路堤共有17处。

3.3 填料的确定与压实标准

填料级配要求应满足部颁规范要求。路基压实采用重型压实标准,路基填料最小CBR 值、填料最大粒径及压实度指标应符合表1规定的要求。为提高路堤的强度与均匀性,避免路面的早期损坏,提高路面的服务水平,高路堤在施工至地面以上每4m 高时及上路堤顶面时,分别采用25kJ 三边形冲击式压路机进行补压,碾压遍数为20遍。路堤的压实度标准相应在规范要求的基础上提高1%。为保证路基边缘部分的压实度,路堤两侧填筑宽各增加30cm,最后削坡。

表1 高路堤填料最小CBR 值、最大粒径及压实度标准

填挖类型

路面底面计起深度范围/cm

最小CBR 值/%

压实度/%填料最大粒径/cm

填方

路基

上路床

0~308\9710下路床30~805\9710上路堤80~1504\9515下路堤

150以下

3

\94

15

3.4 确定路基横断面的边坡形式与边坡坡率

目前在工程中,高路堤的横断面有两种形式:折线型和平台

型。采用何种形式,需根据项目实际特点决定。本项目高路堤边坡高度高,为增加路堤的稳定性,故采用有平台折线型形式,即初步拟定在边坡高度为8m,20m 处设置2m 宽平台,边坡坡率上部第一级为1B 1.5,中间第二级为1B 1.75,下部第三级为1B 2。

3.5 高路堤稳定性验算

3.5.1 高路堤稳定性分析内容及方法

高路堤稳定性分析一般包括路堤堤身的稳定性、路堤和地基

Highway rock slope stability evaluation

YANG Zhong -fang YANG Xu -xiang

Abstract:Based on the results of geological survey,reasonably selecting calculat ion parameters,using the Bishop method,this thesis studies

t he rock slope in 30m~50m hig h stability within the western sect ion of hig hway ,and makes a comparative analysis on the edge slo pe stabil-i

ty.T he conclusions prov ide a scientific basis for further improv ing the desig n w ork,meanwhile lays the foundation for later construction.Key words:hig hw ays,ro ck slope,stability evaluation,seismic loading,str ength reduction

#

273#

第36卷第17期2010年6月 山西建筑SHANXI ARCH ITECTURE

Vol.36No.17Jun. 2010

边坡稳定性分析

第9章边坡稳定性分析 学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。 重点:1边坡的变形与破坏类型; 2影响边坡稳定性的因素; 3边坡稳定性分析与评价。 9.1 边坡的变形与破坏类型 9.1.1 概述 随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。 在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。在我国,目前的露天采矿的人工边坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。 因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。 在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的

公路边坡稳定性评价方法及滑坡防治措施实用版

YF-ED-J2674 可按资料类型定义编号 公路边坡稳定性评价方法及滑坡防治措施实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

公路边坡稳定性评价方法及滑坡 防治措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 引言 近年来,随着国民经济的飞速发展,“村 村通公路”工程的进一步实施,在地形困难路 段修建的公路越来越多。受各种条件的限制, 大填、大挖方路段频繁出现,相伴而来出现了 较多的路堤边坡失稳,边坡及路堑边坡坍塌等 地质灾难现象,给公路建设、运营带来巨大的 经济损失。因此在公路建设中需要选用合理的 方法评价其边坡稳定性,根据评价结果确定合 理的边坡治理措施进而做到既保证公路运营的

安全,又节约投资。由此看来,稳定性评价的方法显得至关重要。本文对边坡稳定性评价方法和滑坡防治措施进行研究,为二程技术人员在实际工程中选用合理的评价方法和防治措施提供参考。 1、公路边坡病害的分类 边坡病害可分为以下3类。 1、1滑坡 滑坡是路基山坡土体或岩体由于长期受地下水、地表水活动的影响使其结构逐渐失去支撑力,在自重的作用下,整体沿着一定软弱面向下滑动。滑坡按其引起滑动的力学特性来区分,可分为牵引式和推移式滑坡。牵引式滑坡是下部先滑动,使上部失去支撑而变形滑动,一般速度较慢,可延续相当长时间,横向张性

边坡稳定分析与计算例题

边坡工程计算例题1. Consider the infinite slope shown in figure. (1) Determine the factor of safety against sliding along the soil-rock interface given H = 2.4m. H, will give a factor of safety, F, of 2 against sliding along (2) What height, s the soil-rock interface?. ??25?1k k1H Soil Rock Solution ⑴Equation is ?naCt?F?, s2???natna?r?H?cost?? Given ,,,r,HC We have 24?F1.s(2) Equation is C, ?H?nat2??n??cotsa?r?(F) s?nta??,,F,C,r Given s We have m11?1.H32??. 2. A cut is to be made in a soil that has,, and mkN/16.5?m?29kN/c?15?The side of the cut slope will make an angle of 45°with the horizontal. What FS, of 3?depth of the cut slope will have a factor of safety,S2?.If, and then Solution We are given 3FS?mkN/c?29??15C FSFS andshould both be equal to 3. We have?C c?FS c c d Or cc292mkN/??c??9.67d FSFS3SC Similarly, ?tan?FS??tan d??tan15tantan???tan?d3FSFS?s Or tan15???1?tan5.1?????d3?? ?into equation givesand Substituting the preceding values of c dd??????cos4csin45cos5.19.67sin?4dd m?H?7.1????? ???????5.1??1cos1?16.5cos45?????d 某滑坡的滑面为折线,其断面和力学参数如图和表所示,拟设计抗滑结构物,3.。,

边坡稳定性计算说明

边坡稳定性计算 一、编制依据 为保证挖方施工安全,施工现场做到“安全、文明”,满足施工进度要求,以下列法律、法规、标准、规范、规程、相关文件为强制性前提,进行边坡稳定性计算。 1、现有施工图设计; 2、《公路桥涵施工技术规范》(JTJ041-2000); 3、《路桥施工计算手册》(人民交通出版社); 4、《土力学与地基基础》; 二、工程概况及地质情况 岢岚至临县高速公路是《山西省高速公路网规划》“3纵11横11环”中西纵高速公路的重要组成部分,也是山西省西部把第四横(保德-五台长城岭)和第五横(平定杨树庄—佳县)高速公路窜连起来的重要路段。 项目区路线走廊带地形起伏极大,总体地势为东北高西南低,地貌主体为隆起的基岩中山与黄土梁峁,部分区域为海拔较低的河流沟谷及冲沟,。受构造活动和水流侵蚀作用的影响,本区地形切割剧烈,河谷发育,沟壑纵横,依据地貌成因类型及其显示特征,将本区划分为黄土丘陵区、侵蚀堆积河川宽谷区、山岭区、黄土覆盖中低山区四个地貌单元,岩性主要为第四系冲、坡积及风积粉土及粉质粘土等。 三、计算 本项目地形复杂,涵洞、桩基及路基施工作业面比较多。根据挖方路段在全线的分布情,选择有代表性路段进行分析计算。由于项目地质挖方为风积粉土及粉质粘土,是典型的黄土地貌。根据施工图纸给出的计算参数,对于黄土挖方路段,拟定边坡参数γ=19g/cm3,C=40 Kpa,φ=29°,采用瑞典条分法进行计算,稳定安全系数达到1.2以上。 3.1 瑞典条分法原理 如图所示边坡,瑞典条分法假定可能滑动面是一圆弧AD,不考虑条块两侧的作用力,即假设Ei和Xi的合力等于Ei+1和Xi+1的合力,同时它们的作用线

岩石边坡稳定性分析方法_贾东远

文章编号:1001-831X(2004)02-0250-06 岩石边坡稳定性分析方法 贾东远1,2,阴 可1,李艳华3 (1.重庆大学土木工程学院,重庆 400045;2.秦皇岛市建筑设计院,河北秦皇岛 066001; 3.河北农经学院工业工程系,河北廊坊 065000) 摘 要:通过综述岩石边坡稳定性分析方法及其研究的一些新近展,并具体从极限平衡法、数值计算方法、流变分析、动力分析等方面进行详细论述,对岩石边坡稳定性分析中涉及到的岩体参数取值、计算模型、各种方法的优缺点等方面进行了探讨,最后提出对岩石边坡稳定性分析的建议。 关键词:岩石边坡;稳定性;极限平衡;数值计算 中图分类号:TU457 文献标识码:A 前言 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果,现分别对其中主要的研究方向和成果作简要介绍并分析各自特点和适用条件,为岩石边坡稳定性分析的工程应用和理论研究提供参考意见。 1 岩体参数及计算模型 极限平衡、数值计算等计算方法在岩石边坡稳定性分析中得到广泛应用,其中如何选择计算所需的工程岩体力学参数成为关键的问题。对于重大工程,可通过现场大型岩体原位试验取得岩体力学参数,但由于时间和资金限制,原位试验不可能大量进行,因而该方法仍有一定的局限性。另外,选取岩性特别均匀的试样几乎是不可能的,多数情况下,是用经验公式来确定岩体抗剪强度参数。但是,经验公式是以一定数量的室内和现场实验资料为依据,通过回归分析求出的,而未能把较多的地质描述引入其中。各个经验公式计算同一岩体的参数时,普遍存在因经验程度不同而确定出的抗剪强度相差较大。由于这些原因,许多文献提出了用其它方法来确定岩体的抗剪强度参数[1-4]。其中张全恒(1992)[1]讨论了确定岩体结构面抗剪强度参数常规方法存在的问题,提出了经验公式和实验相结合的试件法;何满潮(2001)[2]根据工程岩体的连续性理论,提出了根据室内完整岩块试验参数,结合野外工程岩体结构特点进行计算机数值模拟试验,从而确定工程岩体力学参数的方法;周维垣(1992)[3]提出确定节理岩体力学参数的计算机模拟试验法,该方法基于节理裂隙岩体的野外勘察资料,建立岩体损伤断裂模型,在计算机上模拟试验过程,获得所需数据;杨强等(2002)[4]在样本有限的情况下,采用可靠度理论,求出某保证率下的岩体抗剪强度值。 岩体作为复杂的地质体,其力学特性是多种因素共同作用的结果,如形成过程、地质环境和工程环境等。为了能将所有控制因素作为一个整体来考虑,而不仅局限于定量因素,许多文献利用人工 第24卷 第2期2004年6月 地 下 空 间 UNDERGROUND SPACE Vol.24 No.2 Jun.2004 收稿日期:2003-12-11(修改稿) 作者简介:贾东远(1975-),男,河北唐山人,硕士,主要从事岩土工程设计、检测方面的工作。

公路边坡稳定性评价方法及滑坡防治措施

公路边坡稳定性评价方法及滑坡防治措施摘要:本文介绍了公路边坡稳定性评价方法及滑坡防治措施。 引言 近年来,随着国民经济的飞速发展,“村村通公路”工程的进一步实施,在地形困难路段修建的公路越来越多。受各种条件的限制,大填、大挖方路段频繁出现,相伴而来出现了较多的路堤边坡失稳,边坡及路堑边坡坍塌等地质灾难现象,给公路建设、运营带来巨大的经济损失。因此在公路建设中需要选用合理的方法评价其边坡稳定性,根据评价结果确定合理的边坡治理措施进而做到既保证公路运营的安全,又节约投资。由此看来,稳定性评价的方法显得至关重要。本文对边坡稳定性评价方法和滑坡防治措施进行研究,为二程技术人员在实际工程中选用合理的评价方法和防治措施提供参考。 1、公路边坡病害的分类 边坡病害可分为以下3类。 1、1滑坡 滑坡是路基山坡土体或岩体由于长期受地下水、地表水活动的影响使其结构逐渐失去支撑力,在自重的作用下,整体沿着一定软弱面向下滑动。滑坡按其引起滑动的力学特性来区分,可分为牵引式和推移式滑坡。牵引式滑坡是下部先

滑动,使上部失去支撑而变形滑动,一般速度较慢,可延续相当长时间,横向张性裂隙发育,表面多呈阶梯状或陡坎状。推移式滑坡是上部岩土挤压下部岩土体产生变形,滑动速度较快,滑体表面波状起伏,多见于有堆积分布的斜坡地段。 1.2崩塌 所谓崩塌是整体岩土块脱离母体,忽然从较陡的斜坡上崩落下来,并顺斜坡猛烈翻转、跳跃,最后堆落在山脚。其具有突发性,危害较大,与滑坡的区别是崩塌发生急促,破坏体散开,并有倾倒、翻滚现象。而滑坡体一般总是沿着固定滑动面整体、缓慢地向下滑动。 1.3剥落 所谓剥落是指边坡表层受风化,在冲刷和重力作用下,不断沿斜坡滚落。2边坡稳定性评价依据 在对边坡进行稳定性评价之前,需要搜集工程地质环境资料,这既是选取边坡稳定性评价方法的依据,也是边坡稳定性评价的基础性资料。它包括自然地理条件、地层岩性、地质构造及地震、水文地质条件等,可以通过查阅历史资料、调查访问及地质勘探获得”。 2边坡稳定性分析 边坡稳定性分析主要采用定性与定量相结合的评价方法,根据2种方法的评价结果,得出统一结论,确定该边坡的治理措施。

边坡稳定计算

附件四:边坡稳定性计算书 1、汽机房区域边坡稳定性计算书(适用于基坑基底标高为-7.00m~-9.00m)H=8.5m 天然放坡支护 ---------------------------------------------------------------------- [ 基本信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 超载信息 ] ----------------------------------------------------------------------

---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 整体稳定验算 ] ---------------------------------------------------------------------- 天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法 基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 1.00m 天然放坡计算结果:

边坡稳定性计算方法11111

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗 剪度指标为c、φ。如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析 该滑动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为: T=W · sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为 从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当 F s =1时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于 0.1时,可以把它当作一个无限边坡进行分析。 图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条 进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的 剪应力等于土的抗剪强度,即 得 式中N s =c/ γ H 称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无粘性 土。α =φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图 9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O为圆心,R 为半径。假定 边坡破坏时,滑体ABC在自重W 作用下,沿AC绕O 点整体转动。滑动面 AC 上的力 系有:促使边坡滑动的滑动力矩 M s =W · d ;抵抗边坡滑动的抗滑力矩,它应该包括由 粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里 假定φ= 0 。边坡沿AC的安全系数F s 用作用在 AC面上的抗滑力矩和下滑力矩之比表 示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ= 0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法 前述圆弧滑动法中没有考虑滑面上摩擦力的作用,这是由于摩擦力在滑面的不同位置其方向和大小都在改变。为了将圆弧滑动法应用于φ> 0 的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者 Fellenius 提出了圆弧条分析法,也称瑞典条分法。条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式( 9-5 )求土坡的稳定安全系数。 采用分条法计算边坡的安全系数F ,如图 9 - 4 所示,将滑动土体分成若干土条。土条的宽度越小,计算精度越高,为了避免计算过于繁

岩质边坡稳定性设计与监测分析

岩质边坡稳定性设计与监测分析 发表时间:2019-05-23T11:29:32.640Z 来源:《防护工程》2019年第3期作者:王平 [导读] 边坡稳定性问题一直是道路工程中的重点问题,而且边坡一旦失稳,造成的损失和伤害不可估量,因此对它的监测与研究工作势在必行。 中冶沈勘秦皇岛工程设计研究总院有限公司河北省秦皇岛市 066004 摘要:边坡稳定性问题一直是道路工程中的重点问题,而且边坡一旦失稳,造成的损失和伤害不可估量,因此对它的监测与研究工作势在必行。文中结合边坡地质条件,详细分析了边坡锚杆拉力的变化,使用多点位移计对边坡的变形进行长期的跟踪监测,对锚杆应力计和多点位移计的监测数据进行总结和反馈。分析结果表明:文中边坡的锚杆拉力及坡内多点位移均趋于稳定,说明该边坡整体上处于相对稳定的状态,提出的锚杆设计方法是成功的。断面的坡顶位置在雨季最为危险,在雨季存在发生滑动的风险,应作为重点监测对象。连续降雨对边坡的稳定性有重要影响。降雨会增加边坡的锚杆拉力和坡内位移。随着雨季结束,锚杆内力和坡内位移会逐渐下降并趋于稳定。 关键词:边坡;锚杆应力计;多点位移计;稳定性分析 锚杆由于其安全可靠、施工简单、成本较低,已成为当前边坡支护工程中最基本的组成部分之一,在各类边坡支护工程中得到广泛应用。它实质上是位于岩土体内部并与岩土体形成一个新的复合体。通过锚杆杆体的纵向拉力作用,克服岩土体抗拉能力远远低于抗压能力的缺点,从而使得岩土体自身的承载能力大大加强。锚杆加固边坡时,依赖其与周围岩土体相互作用传递锚杆拉力,限制岩土体变形与发展,改善岩土体的力学参数和应力状态,以使边坡保持稳定。由于边坡地质条件和锚杆荷载传递机理都很复杂,而前期的工程实地勘测不能完全准确揭示边坡的地质情况,因此对实际边坡工程的变形特征和应力状态进行检测,为认识边坡稳定性提供途径。部分学者基本是通过对锚杆受力的数值分析,来研究锚杆对边坡稳定性的影响。某市一个靠海边坡位置较为特殊,使用锚杆应力计和多点位移计的结合对该边坡稳定性进行综合评价有一定的借鉴意义。 1边坡稳定性监测方法 从目前来看,对人工边坡的整体监测可分为三大类: (1)地面监测:监测手段主要有,三角网、沉降水准和视准线测量以及收敛计、倾斜仪监测; (2)地下监测:监测手段主要有,钻孔倾斜仪、多点位移计、地下水位孔、渗压计等; (3)支护结构物监测:监测手段主要有,钢筋计、预应力锚索测力计、土压力盒、测缝计等。此外根据不同工程具体特点,尚有一些简易观测手段,如:量水堰、简易测桩、平硐底部浇低标号素混凝土观测变形和地面地质巡视等,并有部分工程边坡监测与地震监测相结合进行及常规仪与全球定位系统相结合。“八五”国家科技攻关项目《岩质高边坡勘测及监测技术方法研究》已经研制出4种先进的仪器设备和5种新的技术方法,即钻孔彩色电视孔壁成像系统、直接横波测井研究偶极子井下声系和声波仪、钻孔多点渗压仪及压模系统、岩质高边坡快速摄像微机地质素描成图、层析成像技术、近坝库段安全监测技术、边坡监测数据处理预报软件研究、高精度大地测量监测自动化系统。这些新技术和新方法已达到世界先进水平。 2边坡稳定性计算 本工程为某市某道路扩建工程,道路全长约8km,规划为城市主干道。本路段南面临海,北侧靠山,地理位置较为特殊,设计范围内有多段边坡需进行护坡处理。C坡岩质较差,易发生破坏,故以C坡作为研究对象。C坡原始山体坡度为25°左右,坡长约178m,高度为7.3~18.8m,属岩石坡面。岩性为安山岩、硅化安山岩,可见斑状结构,块状构造。裂隙发育,发育为压扭性断裂,断裂走向N65°E,倾向NW,倾角60°~70°,宽度100~135m,延伸长度大于500m。断裂两侧岩石较破碎,风化蚀变较强,主要为高岭土化、褐铁矿化,岩石含水性差。坡体在震动和强降雨条件下有形成滑塌的可能,总体评价稳定性较低。坡体自上而下分为杂填土、强风化安山岩、中风化安山岩3个岩土层。依据《建筑边坡工程技术规范》(GB50330-2002),采用平面滑动法,对现状边坡临空面进行稳定性验算,边坡工程安全等级为二级,边坡稳定安全系数KS=1.30。 3监测结果分析。 3.1锚杆应力计分析 该边坡各处共安装了15个锚杆应力计,其应力测量值却相差悬殊,变化规律也各不相同。各锚杆应力状态与锚杆所处位置的地质、工程条件以及锚杆长度有密切关系。本文选取C2、C3、C4等3个典型断面进行分析。发现所有锚杆从2013-05-30到2014-06-27这一年多的时间里,锚杆应力逐渐上升。而在2014-06-27到2015-04-16的时间里,锚杆应力虽然基本在持续增长中,但增速缓慢,逐渐趋于稳定。 处于边坡顶部的C2C1锚杆内力最大,处于边坡中部的C2C2锚杆内力次之,处于边坡下部的C2C3锚杆应力计出现问题,没能连续测到数据。根据前两个测量数据来看,C2C2锚杆内力应该最小。C2C1锚杆内力最大时达到29kN,应力达到59MPa。此时对应20144年9月5日。根据天气记录,7月份、8月份、9月份,该市进入夏季,雨量充沛。2014年7月23日至2014年9月5日之间,雨水天气达到16d之多。特别是2014年7月25日,天气状况是大到暴雨。9月5日之前的9月2日、9月3日也是连续中雨。这种雨水天气最有可能引起断裂结构面发生滑动。由C2C2锚杆可见,2014年9月5日C2C1锚杆内力突然增加,然后随着雨季过去,层间滑移状态减弱,C2C1锚杆内力也逐渐下降。C2C2锚杆内力也于2014年10月27日突然增加,随后逐渐下降。 但总体上,锚杆应力后期逐渐稳定下来,稳定在20kN附近,说明C2断面趋于稳定。仍然是处于边坡顶部的C3C1锚杆内力最大,处于边坡中部的C3C1锚杆内力次之,处于边坡下部的C3C3锚杆内力最小。这与C2断面测量结果类似。但也有不同之处,C3C1锚杆拉力最大值为18kN,比C2C1锚杆拉力低得多。另外不同之处是,该市气候进入夏季,经过7月份、8月份、9月份雨水的作用,2014年9月5日之后的锚杆拉力值继续增加,没有下降的趋势,一直持续到2015年4月16日,锚杆内力才开始下降。 4结论 (1)岩质高边坡的稳定性监测主要包括地面监测、地下监测和支护结构物监测三个部分,随着科技的进展,新的高科技手段如钻孔彩色电视孔壁成像系统、直接横波测井研究偶极子井下声系和声波仪、钻孔多点渗压仪及压模系统、岩质高边坡快速摄像微机地质素描成图、

公路边坡稳定性评价方法及滑坡防治措施示范文本

公路边坡稳定性评价方法及滑坡防治措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

公路边坡稳定性评价方法及滑坡防治措 施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 引言 近年来,随着国民经济的飞速发展,“村村通公路” 工程的进一步实施,在地形困难路段修建的公路越来越 多。受各种条件的限制,大填、大挖方路段频繁出现,相 伴而来出现了较多的路堤边坡失稳,边坡及路堑边坡坍塌 等地质灾难现象,给公路建设、运营带来巨大的经济损 失。因此在公路建设中需要选用合理的方法评价其边坡稳 定性,根据评价结果确定合理的边坡治理措施进而做到既 保证公路运营的安全,又节约投资。由此看来,稳定性评 价的方法显得至关重要。本文对边坡稳定性评价方法和滑 坡防治措施进行研究,为二程技术人员在实际工程中选用

合理的评价方法和防治措施提供参考。 1、公路边坡病害的分类 边坡病害可分为以下3类。 1、1滑坡 滑坡是路基山坡土体或岩体由于长期受地下水、地表水活动的影响使其结构逐渐失去支撑力,在自重的作用下,整体沿着一定软弱面向下滑动。滑坡按其引起滑动的力学特性来区分,可分为牵引式和推移式滑坡。牵引式滑坡是下部先滑动,使上部失去支撑而变形滑动,一般速度较慢,可延续相当长时间,横向张性裂隙发育,表面多呈阶梯状或陡坎状。推移式滑坡是上部岩土挤压下部岩土体产生变形,滑动速度较快,滑体表面波状起伏,多见于有堆积分布的斜坡地段。 1.2崩塌 所谓崩塌是整体岩土块脱离母体,忽然从较陡的斜坡

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

理正岩土6.5-岩质边坡稳定分

理正岩土6.5-岩质边坡稳定分 析软件帮助

目录 1.第一章功能概述 (3) 2.第二章快速操作指南 (3) 2.12.1操作流程 (3) 2.22.2快速操作指南 (4) 3.第三章操作说明 (9) 3.13.1关于计算例题的编辑 (9) 3.23.2计算简图辅助操作菜单 (9) 3.33.3快速查询图形结果 (10) 3.43.4计算书的编辑修改 (10) 3.53.5说明 (10) 3.63.6关于数据和结果文件 (14) 4.第四章编制依据 (15) 5.第五章编制原理 (16) 5.15.1概述 (16) 5.25.2简单平面稳定分析 (16) 5.2.15.2.1极限平衡法 (16) 5.2.25.2.2建筑边坡工程技术规范 (24) 5.35.3复杂平面稳定分析 (30) 5.3.15.3.1概述 (30) 5.3.25.3.2Sarma法 (33) 5.3.35.3.3通用方法 (35) 5.3.45.3.4Sarma改进法 (35) 5.45.4三维楔形体稳定分析 (37) 5.4.15.4.1计算条件 (37) 5.4.25.4.2计算安全系数 (38) 5.4.35.4.3给定大小的荷载E以最不利的方向施加时产生的最小安全系数 (45) 5.4.45.4.4将安全系数提高到某个规定值F所需的最小锚杆(索)张力 (47) 5.55.5赤平投影分析 (49) 5.5.15.5.1概述 (49) 5.5.25.5.2基本功能 (49) 5.5.35.5.3判定岩体稳定性 (51) 5.5.45.5.4结构面统计 (54) 6.附录1系统环境与安装 (57) 7.附录2技术支持感谢您选用了理正软件! (58)

某边坡稳定性评价分析

某边坡稳定性评价分析 作者简介:张帆(1968-),男,高级工程师,浙江温州人,主要从事岩土工程勘察设计等 方面工作。 摘要:该边坡主要由志留系龙马溪组泥质砂岩和粉砂质泥岩与第四系洪坡积碎石土等构成,高边坡为I 型,本文某高边坡的工程地质条件进行了分析,并结合稳定性计算方对其提出了 2 防治措施。 关键词:边坡;稳定性;评价分析 该边坡主要由志留系龙马溪组泥质砂岩和粉砂质泥岩与第四系洪坡积碎石土等构成,高边坡型,坡长100m,坡面积2500 m2。按照相关《技术要求》,该边坡安全等级为三级。地 为I 2 貌上属构造侵蚀、剥蚀中、低山区,切坡顶处高程约190~210m左右,自然斜坡坡角一般30°左右。 1工程地质概况 边坡区地层主要有志留系龙马溪组(S1l)和第四系(Q)。 ①志留系(S)。志留系地层分布于北东部和东部,呈南北向延伸,在本区出露的为罗惹坪 组(S1lr)。下部为灰绿色、黄绿色细粒长石石英砂岩、粘土质粉砂岩、粉砂质粘土岩(或 页岩),含生物碎屑泥灰岩;上部为灰绿色、黄绿色粘土质粉砂岩夹粉砂质粘土岩(或页岩)。 ②第四系(Q)。工作区出露的第四纪地层有残坡积层(Q el+dl),崩坡积层(Q col+dl)、洪积 层(Q dl+pl)、滑坡堆积层(Q del)和人工堆积层(Q ml)等类型,其中残坡积层分布最广,其岩性 为碎石夹(及)土;崩坡积层为块石夹少量土;滑坡堆积层为碎块石夹(及)土和滑动岩体。除此以外,其他成因的第四系厚度较薄,一般厚度数十厘米至数米。 高边坡区地下水主要有第四系孔隙水及基岩裂隙水。其中孔隙水主要赋存于第四系堆积物中,埋深浅,无承压,受大气降水补给,无统一地下水位,季节变化明显。基岩裂隙水主要赋存 在砂岩、泥质粉砂岩、粉砂质泥岩风化带和基岩裂隙中,地下水位埋深相对较大。 根据地下水水质分析资料,地下水对混凝土不具有腐蚀性。 2地质特征及主要地质问题 高边坡区目前尚未发现整体的大面积变形破坏现象,由于修建移民公路切坡,使原有的斜坡 应力平衡状态破坏,导致边坡顶部产生卸荷裂隙,加剧岩体风化破碎,在降雨及其它外荷载 作用下,将导致边坡岩体表面剥落、掉块。Ⅰ段、Ⅱ段和Ⅲ段边坡由于卸荷裂隙发育、岩体 破碎,不排除边坡表层岩体卸荷、风化、剥落与掉块的可能。第Ⅳ段边坡也存在浅表层碎石 土的滑动。

平面、折线滑动法边坡稳定性计算书

平面、折线滑动法边坡稳定性计算书计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑边坡工程技术规范》GB50330-2002 3、《建筑施工计算手册》江正荣编著 一、基本参数 边坡稳定计算方式折线滑动法边坡工程安全等级三级边坡边坡土体类型填土土的重度γ(KN/m3) 20 土的内摩擦角φ(°)15 土的粘聚力c(kPa) 12 边坡高度H(m) 11.862 边坡斜面倾角α(°)40 坡顶均布荷载q(kPa) 0.2 二、边坡稳定性计算 计算简图 滑动面参数 滑动面序号滑动面倾角θi(°)滑动面对应竖向土条宽度bi(m) 1 35 5.67 2 35 5.6 3 35 5.67 土条面积计算:

R1=(G1+qb1)cosθ1×tanφ+c×l1=(156.213+0.2×2.803)×cos(35°)×tg(15°)+12×6.922=117.474 kN/m T1=(G1+ qb1)sinθ1 =(156.213+0.2×2.803)×sin(35°)=89.922 kN/m R2=(G2+qb2)cosθ2×tanφ+c×l2=(131.759+0.2×0)×cos(35°)×tg(15°)+12×6.836=110.952 kN/m T2=(G2+ qb2)sinθ2 =(131.759+0.2×0)×sin(35°)=75.574 kN/m R3=(G3+qb3)cosθ3×tanφ+c×l3=(44.652+0.2×0)×cos(35°)×tg(15°)+12×6.922=92.865 kN/m T3=(G3+ qb3)sinθ3 =(44.652+0.2×0)×sin(35°)=25.611 kN/m K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n),(i=1,2,3,...,n-1) 第i块计算条块剩余下滑推力向第i+1计算条块的传递系数为: ψi=cos(θi-θi+1)-sin(θi-θi+1)×tanφi K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n)=(117.474×1×1+110.952×1+92.865)/(89.922×1×1+75.574×1+25.611)=1.681≥1.25 满足要求!

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑内侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度(m) 坑壁土的重 度γ(kN/m3) 坑壁土的内 摩擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式:

某高速公路软质岩高边坡稳定性分析

某高速公路软质岩高边坡稳定性分析 【摘要】为了确保高速公路的安全,采取经济有效的加固防护工程措施和正确进行高边坡稳定性分析是高边坡设计的两个重要方面。本文阐述影响边坡稳定性的因素,结合某山区高速公路路堑高边坡工程实例,对该边坡原有防治措施及施工过程中出现的问题进行分析评价,为类似的工程提供一定的设计和施工借鉴经验。 【关键词】高边坡软质岩稳定性 随着我国高速公路建设的发展,高速公路逐渐向山区发展。在山区高速公路工程建设过程中,作为连续带状建筑物,高速公路将不可避免地会完整穿越或部分穿越山体。其中部分穿越山体的路段需要对山体进行开挖,开挖后将形成高陡边坡,致使山体边坡应力重分布。根据以往工程经验,高陡路堑边坡可能会出现变形破坏,如滑动、边坡崩塌等,这将增大公路建设的工程总投资,甚至延误施工进度及工期,并影响日后运营安全。因此,对深挖路堑边坡的稳定性及防治措施的效果进行分析评价就有着非常重要的意义。本文以某高速公路软质岩高边坡为例,对软质岩深挖路堑的稳定性及防治措施进行简要分析,希望对类似的工程能够提供一定的借鉴经验。 1 影响边坡稳定性的主要因素 一个边坡的失稳往往是多种因素共同作用的结果,我们通常将导致边坡失稳的这些因素归结为两大类。一是外界力的作用破坏了岩土体原来的应力平衡状态,如路堑或基坑开挖、路堤填筑或边坡顶面上作用外荷载,以及岩土体内水的渗流力、地震力的作用等,改变原有应力平衡状态,使边坡坍塌;另一是边坡岩土体的抗剪强度由于受外界各种因素的影响而降低,促使边坡失稳破坏,如气候等自然条件使岩土时干时湿、收缩膨胀、冻结融化等,水的渗入、软化效应、地震引起砂土液化等均将造成强度降低。 边坡是否稳定受多种因素[1-3]的影响,主要有: (1)岩土性质。岩土的成因类型、组成的矿物成分、岩土结构和强度等是决定边坡稳定性的重要因素。由(密实)坚硬、矿物稳定、抗风化性好、强度较高的岩土构成的边坡,其稳定性一般较好;反之就较差。 (2)岩体结构。岩体的结构类型、结构面形状及其与坡面的关系是岩质边坡稳定的控制因素。岩层的构造与结构的影响,表现在节理裂隙的发育程度及其分布规律、结构面的胶结情况、软弱面和破碎带的分布与边坡的关系、下伏岩土界面的形态以及坡向、坡角等。 (3)水的作用。水文地质条件的影响,包括地下水的埋藏条件、地下水的流动及动态变化等;水的渗入使岩土体质量增大,岩土因被软化而抗剪强度降低,

岩质边坡稳定性例题

作业题1:简单平面滑动稳定分析 边坡高度40.000m,结构面倾角30.0°,结构面粘聚力30.0kPa,结构面内摩擦角30.0°,张裂隙离坡顶点的距离10.000m,裂隙水的埋深5.000m。边坡分4级,每级设2m宽平台,坡率分别为1:0.5,1:0.75,1:1,1:1。 岩层层数4层,各层参数如下: 序号控制点Y坐标容重锚杆和岩石粘结强度 (m) (kN/m3) frb(kPa) 1 32.000 18.0 80.0 2 18.000 16.8 100.0 3 4.800 17.0 150.0 4 -10.400 20.0 200.0 试求该人工边坡安全系数,如不稳定(<1.2),则请根据边坡锚固设置原则,设计适当的加固措施。

作业题2:二广高速某楔形体边坡稳定性验算 根据现场边坡开挖情况,地层揭露岩性主要由亚粘土及白垩系砾岩组成。第一、二级边坡为强~弱风化砾岩,褐红色,巨厚层状,强度较高;第三、四级边坡亚粘土~全风化砾岩,残坡积,红褐色。节理裂隙较发育,有多条X形节理,产状分别为(1)213°∠38°、(2)305°∠52°。裂隙(1)局部岩屑与泥质充填,胶结程度一般;贯通裂隙(2)岩屑与泥质充填,胶结程度较差。两组裂隙延伸长度不等,长者达30m左右,裂隙水沿楔形体底部渗出。X节理相互切割,极易发生楔形体滑动破坏。 根据地质调查结果,初步根据砾岩结构面结合程度和夹岩屑与泥的情况,取结构面粘结强度25kPa,内摩擦角28°。坡面倾向250°,倾角55°,破顶面倾向250°,倾角18°,岩体容重取为22 kN/m3。请计算安全系数与楔形体高度之间的关系,求临界的楔形体高度。

相关文档
相关文档 最新文档