文档库 最新最全的文档下载
当前位置:文档库 › 管道内天然气水合物形成的判断方法

管道内天然气水合物形成的判断方法

管道内天然气水合物形成的判断方法
管道内天然气水合物形成的判断方法

管道流量计算汇总

请教:已知管道直径D,管道压力P,能否求管道中流体的流速和流量?怎么求 已知管道直径D,管道压力P,还不能求管道中流体的流速和流量。你设想管道末端有一阀门,并关闭的管有压力P,可管流量为零。管流量不是由管压力决定,而是由管沿途压力下降坡度决定的。所以一定要说明管道的长度和管道两端的压力差是多少才能求管道的流速和流量。 对于有压管流,计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=0.001736/d^5.3 或用s=10.3n2/d^5.33计算,或查有关表格; 2、确定管道两端的作用水头差H=P/(ρg),),H 以m为单位;P为管道两端的压强差(不是某一断面的压强),P以Pa为单位; 3、计算流量Q:Q = (H/sL)^(1/2) 4、流速V=4Q/(3.1416d^2) 式中:Q――流量,以m^3/s为单位;H――管道起端与末端的水头差,以m^为单位;L――管道起端至末端的长度,以m为单位。 管道中流量与压力的关系 管道中流速、流量与压力的关系 流速:V=C√(RJ)=C√[PR/(ρgL)] 流量:Q=CA√(RJ)=√[P/(ρgSL)] 式中:C――管道的谢才系数;L――管道长度;P――管道两端的压力差;R――管道的水力半径;ρ――液体密度;g――重力加速度;S――管道的摩阻。 管道的径和压力流量的关系 似呼题目表达的意思是:压力损失与管道径、流量之间的关系,如果是这个问题,则正确的答案应该是:压力损失与流量的平方成正比,与径5.33方成反比,即流量越大压力损失越大,管径越大压力损失越小,其定量关系可用下式表示: 压力损失(水头损失)公式(阻力平方区) h=10.3*n^2 * L* Q^2/d^5.33 上式严格说是水头损失公式,水头损失乘以流体重度后才是压力损失。式中n――管壁粗糙度;L――管长;Q――流量;d――管径 在已知水管:管道压力0.3Mp、管道长度330、管道口径200、怎么算出流速与每小时流量? 管道压力0.3Mp、如把阀门关了,水流速与流量均为零。(应提允许压力降) 管道长度330、管道口径200、缺小单位,管道长度330米?管道径200为毫米?其中有无阀门与弯头,包括其形状与形式。 水管道是钢是铸铁等其他材料,其壁光滑程度不一样。 所以无法计算。 如果是工程上大概数,则工程中水平均流速大约在0.5--1米/秒左右,则每小时的流量为:0.2×0.2×0.785×1(米/秒,设定值)×3600=113(立方/小时) 管道每米的压力降可按下式计算:

天然气水合物地球化学勘查方法

第35卷第3期物 探 与 化 探Vo.l35,N o.3 2011年6月GEOPHY SI CA L&GEOCHE M ICAL EX PLORAT I ON Jun.,2011 天然气水合物地球化学勘查方法 杨志斌,孙忠军 (中国地质科学院地球物理地球化学勘查研究所,河北廊坊 065000) 摘要:天然气水合物是一种潜在的新能源,广泛分布在大陆架边缘的深海沉积物和陆域多年冻土区。地球化学勘查技术作为天然气水合物勘探的重要手段之一,愈来愈受到极大的关注。笔者综合国内外研究现状,分别介绍海域和永久冻土带天然气水合物勘查中应用的主要地球化学方法,并详述各种方法的机理和研究进展。 关键词:天然气水合物;地球化学勘查;海底;永久冻土带 中图分类号:P632 文献标识码:A 文章编号:1000-8918(2011)03-0285-05 天然气水合物是由水和小客体气体分子(主要是甲烷)在低温、高压条件下形成的一种固态结晶物质,俗称 可燃冰 ,广泛分布于大陆架边缘的海底沉积物和陆上永久冻土带中。1967年,前苏联在西伯利亚麦索亚哈油气田区首次发现天然产出的天然气水合物,之后美国、加拿大也相继在阿拉斯加、马更些三角洲等陆上冻土区发现了天然气水合物,获得了大量极宝贵的数据和资料[1-3]。 20世纪70年代末,美国借助深海钻探计划(DSDP)在中美洲海槽9个海底钻孔中发现水合物,自此海洋水合物在科技界引起了日益增长的兴趣,一直保持着一种方兴未艾的势头[4]。 从80年代开始,随着深海钻探计划和大洋钻探计划(ODP)的进一步实施,海洋水合物研究进入了新的发展阶段,地球化学方法也开始运用于水合物的形成标志、赋存特征及成矿气体来源等研究方面。水合物进入了多学科、多方法的综合研究阶段。1995年11~12月,ODP在大西洋西部的布莱克海台专门组织了164航次水合物调查,在994、996、997钻孔均采集到水合物样品,地球化学家对布莱克海台水合物进行了广泛深入的研究[5-6]。 2007年5月我国首次在南海北部钻获水合物实物样品,2008年又在青海木里永久冻土带钻获天然气水合物,使得我国天然气水合物研究进入新的发展阶段。 地球化学作为一种勘查手段,在水合物勘探和开发中发挥着越来越重要的作用。笔者通过广泛调研,总结了目前地球化学在勘查海底和陆域冻土带天然气水合物,应用比较广泛的几种方法,并分别对其机理及研究进展进行了简单的介绍。 1 海底天然气水合物地球化学勘查 海底天然气水合物地球化学的研究范围,涉及水合物组成、沉积物气体及孔隙水的化学成分和同位素组成、气体成因、物质来源、成矿机制、资源量计算、环境变化等方面。 研究表明,海底已发现的天然气水合物中,气体分子以甲烷为主(约占总量的99%),还有少量的乙烷、丙烷、异丁烷、正丁烷、氮、二氧化碳和硫化氢等。因此存在天然气水合物的地区,底层海水、海底沉积物及孔隙水中的甲烷等烃类气体和H 2 S、CO 2 等非烃类气体的含量必然会出现异常[7-8]。根据水合物形成的异常特征,将海底天然气水合物地球化学识别技术分为底层海水烃类异常,海底沉积物气体、孔隙水异常,自生碳酸盐矿物异常,同位素组成异常等[9-10]。 1.1 底层海水的烃类异常 底层海水中甲烷的高异常可能是天然气水合物分解或深水常规油气渗漏所致。水合物的形成、赋存与下伏游离气体处于一种动态平衡状态。当有断裂切穿水合物稳定带,将下伏游离气体带与海底连通时,甲烷气体便会排至海底水体中形成气体羽[11],从而引起底层海水的甲烷浓度异常。例如在H ydrate R idge洋底喷溢的甲烷气体羽中,甲烷含量高达74000 10-9,然而正常底层海水的甲烷含量都小于20 10-9。同时,在底层海水柱状剖面中, 收稿日期:2010-03-30 基金项目:国土资源部公益性行业科研专项经费项目(201111019)和中央级公益性科研院所基本科研业务费专项资金项目(AS2009J04)联合资助

天然气水合物的危害与防止(2021年)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 天然气水合物的危害与防止 (2021年) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

天然气水合物的危害与防止(2021年) 一、天然气水合物 在一定的温度和压力条件下,含水天然气可生成白色致密的结晶固体,称为天然气水合物(NGHnaturalgashydrate),其密度约为0.88~0.99g/cm3 。天然气水合物是水与烃类气体的结晶体,外表类似冰和致密的雪,是一种笼形晶状包络物,即水分子借氢键结合成笼形晶格,而烃类气体则在分子间作用力下被包围在晶格笼形孔室中。NGH共有两种结构,低分子的气体(如CH4 ,C2 H6 ,H2 S)的水合物为体心立方晶格;较大的气体分子(如C3

H8 ,iC4 H10 )则是类似于金钢石的晶体结构。当气体分子充满全部晶格的孔室时,天然气各组分的水合物分子式可写为CH4 ·6H2 0,C2 H6 ·6H2 0,C3 H8 ·17H2 0,iC4 H10 ·17H2 0,H2

S·6H2 0,CO2 ·6H2 0。水合物是一种不稳定的化合物,一旦存在的条件遭到破坏,就会分解为烃和水。天然气水合物是采输气中经常遇到的一个难题之一。 二、天然气水合物的危害及成因 1.天然气水合物的危害 在天然气管道输送过程中,天然气水合物是威胁输气管道安全运行的一个重要因素。能否生成水合物与天然气组成(包括含水量)、压力、温度等条件有关。天然气通过阻力件(如节流阀、调压器、排污阀等)时,天然气压力升高,气体温度下降。温度的降低会使管路、阀门、过滤器及仪表结霜或结冰降低管道的输送效率,严重时甚至会堵塞管道,以导致管道上游压力升高,引起不安全的事故发生,造成设备及人员的伤害,从而影响正常供气。天然气水合物一旦形成后,它与金属结合牢固,会减少管道的流通面积,产生节流,加

管道过流计算方法

管道过流计算方法标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

第四章有压管道恒定流 第一节概述 前面我们讨论了水流运动的基本原理,介绍了水流运动的三大方程,水流形态和水头损失,从第五章开始,我们进入实用水利学的学习,本章研究有压管道的恒定流. 一.管流的概念 1.管流是指液体质点完全充满输水管道横断面的流动,没有自由水面存在。 2.管流的特点.①断面周界就是湿周,过水断面面积等于横断面面积;②断面上各点的压强一般不等于大气压强,因此,常称为有压管道。③一般在压力作用而流动. 1.根据出流情况分自由出流和淹没出流 管道出口水流流入大气,水股四周都受大气压强作用,称为自由出流管道。 管道出口淹没在水面以下,则称为淹没出流。 2.根据局部水头损失占沿程水头损失比重的大小,可将管道分为长管和短管。 在管道系统中,如果管道的水头损失以沿程水头损失为主,局部水头损失和流速水头所占比重很小(占沿程水头损失的5%~10%以下),在计算中可以忽略,这样的管道称为长管。否则,称为短管。必须注意,长管和短管不是简单地从管道长度来区分的,而是按局部水头损失和流速水头所占比重大小来划分的。实际计算中,水泵装置、水轮机装置、虹吸管、倒虹吸管、坝内泄水管等均应按短管计算;一般的复杂管道可以按长管计算。 3.根据管道的平面布置情况,可将管道系统分为简单管道和复杂管道两大类。

简单管道是指管径不变且无分支的管道。水泵的吸水管、虹吸管等都是简单管道的例子。由两根以上管道组成的管道系统称为复杂管道。各种不同直径管道组成的串联管道、并联管道、枝状和环状管网等都是复杂管道的例子。 工 程实践中为了输送流体,常常要设置各种有压管道。例如,水电站的压力引水隧洞和压力钢管,水库的有压泄洪洞和泄洪管,供给城镇工业和居民生活用水的各种输水管网系统,灌溉工程中的喷灌、滴灌管道系统,供热、供气及通风工程中输送流体的管道等都是有压管道。研究有压管道的问题具有重要的工程实际意义。 有压管道水力计算的主要内容包括:①确定管道的输水能力;②确定管道直径;③确定管道系统所需的总水头;④计算沿管线各断面的压强。 第二节 简单管路的水力计算 以通过出口断面中心线的水平面为基准面,在离开管道进口一定距离处选定1—1过水断面(该断面符合渐变流条件),管道出口断面为2—2过水断面,1—1与2—2过水断面对基准面建立能量方程,即可解决简单管道的水力计算问题,并可建立一般计算公式。 简单管道自由出流水力计算公式 02gH A Q c μ= 式中,c μ称为管道系统的流量系数,它反映了沿程水头损失和局部水头损失对过流能力的影响。计算公式为 当行近流速水头很小时,可以忽略不计,上述流量公式将简化为 二.二

蒸汽管道温度损失计算及分析

蒸汽管道温度损失计算 及分析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

bw k p g f C G t t k l t ?-=?)(热水供热管道的温降 1.计算基本公式 温损计算公式为: 式中: g k —管道单位长度传热系数C m w ο?/ p t —管内热媒的平均温度 C ? k t —环境温度C ? G —热媒质量流量s Kg / C —热水质量比热容 C Kg J ??/ l ——管道长度 m 由于计算结果为每米温降,所以L 取1m .管道传热系数为 式中: n a ,w a —分别为管道内外表面的换了系数C m w ο?2/ n d ,w d —分别为管道(含保温层)内外径m i λ—管道各层材料的导热系数 C m w ο?/(金属的导热系数很高,自身热阻很小,可以忽略不计)。 i d —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算: Pr 为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: t λ—管道埋设处的导热系数。

t h —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢(%5.1≈w ) B. 查表得:碳钢在75和90摄氏度时的导热系数λ都趋近于 C m w ο?/ C.土壤的导热系数t λ= C m w ο?/ D. 由于本文涉及到的最大管径为,所以取t h = E.保温材料为:聚氨酯,取λ= C m w ο?/ F. 保温层外包皮材料是:PVC ,取λ= C m w ο?/ G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为: 管径为300mm 时,保温层厚度为:50mm ,保温外包皮厚度为:7mm ; 管径为400mm 时,保温层厚度为:51mm ,保温外包皮厚度为:; 管径为500mm 时,保温层厚度为:52mm ,保温外包皮厚度为:9mm ; 管径为600mm 时,保温层厚度为:54mm ,保温外包皮厚度为:12mm ; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量q 1是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析 总传热系数k 式中:h 1—蒸汽对工作钢管内壁的换热系数 λ1—蒸汽管道各层材料的导热系数 1 1 1 1 1 1 ln 2 1 1 1 ? ? ? ? ? ? ? n i i n i i d d d d h k ?? ?? ?

天然气水合物形成条件和影响因素研究进展

天然气水合物形成条件及影响因素研究进展 陈德栋 (荆楚理工学院化工与药学院,湖北荆门 448000) 摘要:目前能源资源的开发和利用变得日益重要,世界各国加大力度对天然气水合物的研究和探索。本文综述了温度、压强、气体成分和含量及其他因素对天然气水合物的形成和影响。 关键词:天然气水合物;能源开发;形成条件;影响因素;综述 The research progress of Natural gas hydrate formation conditions and influencing factors CHEN De-dong (The college of chemical engineering and pharmacy Jingchu university of technology ,Hubei province Jingmen city 448000,China ) Abstract: At present, it have become extraordinary significant to exploit and utilize of the new energy resource. All the countries in the world spare no effort to explore as well research about natural gas hydrate. The article summarize the factors, including temperature、pressure、the contend and constituent of the gas and other factors, which are connected to the influence and formation of natural gas hydrate. Keyword:Natural gas hydrate,energy resource exploitation,formation Conditions,influence factor,summarization 天然气水合物 ,也称为气体笼形化合物 ,是天然产出的包裹天然气分子的刚性固体物质 ,笼形结构由氢键连接的水分子组成[1]。石油资源是不可再生资源,世界上的煤炭存储量也有限,燃烧石油和天然气会造成环境的污染,而地球上的天然气水合物的含量巨大。据估计 ,目前世界海域内有 60 余处直接或间接发现了天然气水合物,在单个海域天然气水合物的资源量就可达数万至几百万亿立方米。为了经济的可持续发展和环境的保护,所以对天

天然气水合物勘探开发技术研究

天然气水合物勘探开发技术研究 摘要:天然气水合物广泛分布于陆域的永久冻土与深海沉积物内,是人类十分理想的替代能源。本文重点探讨了我国天然水合物资源在勘探开发技术方面的进展,并以此为基础,对我国天然气水合物的开发技术提出几点建议。 关键词:天然水合物;开发技术;勘探技术;进展 天然气水合物又被称作可燃冰,具体指低温高压环境下,水与天然气所形成的笼形、冰态化合物,其实质是天然气在自然界中特殊的存在形式,广泛分布于水深300米以下的海洋与陆地中的永久冻土中,其显著特点为储量大、分布广。本文将对我国天然水合物资源的勘探开发技术展开探讨。 1 天然水合物资源的勘探开发技术进展 1.1 成藏机理的研究 我国于2008年9月,正式开始研究南海天然气水合物资源的开采基础和富集规律,将此项研究命名为“973”项目,分别从地质条件、热力学条件以及气源条件等不同的角度,对我国天然气水合物的成藏机理进行了分析与探讨,以便对其成藏规律展开更详尽的

研究。最后通过汇集研究成果,形成了一本详明的专集,并获得国内外一致好评与认可。 1.2 勘探技术的研究 我国于1999年在南海的北部陆坡区域对天然气水合物进行了深度调查与研究,其工作量相当庞大,主要包括对4470千米的近海区域进行高分辨率多道地震的采集与处理,在海底浅表层设置138个站位进行地质取样,设置59个站位进行海底摄影,其中,浅层剖面的厚度达到2100千米。此项调查与研究取得了一定的成果,终于发现天然气水合物资源所存在的一些地球化学、物理以及地质方面的异常标志,并初步证实:在我国海域中有天然气水合物资源的存在。 我国于2002年正式启动了被命名为“118专项”的天然气水合物的调查与研究项目,专门对其关键技术展开深入研究。2006年,我国启动“”计划,再次对如何勘探与开发天然气水合物资源的一些关键技术展开研究,此计划被定义为重大专项,并设置了7个相关课题,主要包括如何勘探、取心、成藏以及开采天然气水合物等方面的内容。此项研究最大的收获就是分别从陆上与海上获得了天然气水合物的真实样品,为我国勘探技术的进展奠定了扎实的基础。 国土资源部于2007年5月在南海神狐进行钻探取

水流量计算公式

水管网流量简单算法如下: 自来水供水压力为市政压力大概平均为0.28mpa。 如果计算流量大概可以按照以下公式进行推算,仅作为推算公式, 管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。 水力学教学辅导 第五章有压管道恒定流 【教学基本要求】 1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。 2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道的压强分布。 3、了解复杂管道的特点和计算方法。 【容提要和学习指导】 前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。本章理论部分容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。 有压管流水力计算的主要任务是:确定管路过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。 5.1 有压管道流动的基本概念 (1)简单管道和复杂管道 根据管道的组成情况我们把它分为简单管道和复杂管道。直径单一没有分支而且糙率不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。复杂管道又可以分

为串联管道、并联管道、分叉管道、沿程泄流管和管网。 (2) 短管和长管 在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管: 短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道; 长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管 道为,一般认为( )<(5~10)h f %可以按长管计算。 需要注意的是:长管和长管不是完全按管道的长短来区分的。将有压管道按长管计算,可以简化计算过程。但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。 5.2简单管道短管的水力计算 (1)短管自由出流计算公式 (5—1) 式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。 μ称为短管自由出流的流量系数。 (5—2) (2)短管淹没出流计算公式 (5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数 (5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。我们比较短管自由出流和淹没出流的流量系数(5—2)和(5—4)式,可以看到(5—2)式比(5—4)式在分母中多一项“1”,但是计算淹没出流的流量系数μc 时,局部水头损失系数中比自由出流多一项管道出口突然扩大的局部水头损失系数“1”,在计算中不要遗忘。 (3)简单管道短管水力计算的类型 简单管道短管水力计算主要有下列几种类型: 1)求输水能力Q:可以直接用公式(5—1)和(5—3)计算。 2)已知管道尺寸和管线布置,求保证输水流量Q 的作用水头H 。 这类问题实际是求通过流量Q 时管道的水头损失,可以用公式直接计算,但需要计算管流速,以判别管是否属于紊流阻力平方区,否则需要进行修正。 3)已知管线布置、输水流量Q 和作用水头H ,求输水管的直径 d 。 j h g v ∑+22 02gH A c Q μ=ζλμ∑++= d l 11 z g A c Q 2μ=ζλμ∑+=d l c 1

管道流量计算公式

已知1小时流量为10吨水,压力为0.4 水流速为1.5 试计算钢管规格 题目分析:流量为1小时10吨,这是质量流量,应先计算出体积流量,再由体积流量计算出管径,再根据管径的大小选用合适的管材,并确定管子规格。(1)计算参数,流量为1小时10吨;压力0.4MPa(楼主没有给出单位,按常规应是MPa),水的流速为1.5米/秒(楼主没有给出单位,我认为只有单位是米/秒,这道题才有意义) (2)计算体积流量:质量流量m=10吨/小时,水按常温状态考虑则水的密度ρ=1吨/立方米=1000千克/立方米;则水的体积流量为Q=10吨/小时=10立方米/小时=2777.778立方米/秒 (3)计算管径:由流量Q=Av=(π/4)*d*dv;v=1.5m/s;得: d=4.856cm=48.56mm (4)选用钢管,以上计算,求出的管径是管子内径,现在应根据其内径,确定钢管规格。由于题目要求钢管,则: 1)选用低压流体输送用镀锌焊接钢管,查GB/T3091-2008,选择公称直径为DN50的钢管比较合适,DN50镀锌钢管,管外径为D=60.3mm,壁厚为 S=3.8mm,管子内径为d=60.3-3.8*2=52.7mm>48.56mm,满足需求。 2)也可选用流体输送用无缝钢管D57*3.0,该管内径为51mm 就这个题目而言,因要求的压力为0.4MPa,选用DN50的镀锌钢管就足够了,我把选择无缝钢管的方法也介绍了,只是提供个思路而已。 具体问题具体分析。 1、若已知有压管流的断面平均流速V和过流断面面积A,则流量Q=VA 2、若已知有压流水力坡度J、断面面积A、水力半径R、谢才系数C,则流量Q=CA(RJ)^(1/2),式中J=(H1-H2)/L,H1、H2分别为管道首端、末端的水头,L 为管道的长度。 3、若已知有压管道的比阻s、长度L、作用水头H,则流量为 Q=[H/(sL)]^(1/2) 4、既有沿程水头损失又有局部水头损失的有压管道流量: Q=VA=A√(2gH)/√(1+ζ+λL/d) 式中:A——管道的断面面积;H——管道的作用水头;ζ——管道的局部阻力系数;λ——管道的沿程阻力系数;L——管道长度;d——管道内径。 5、对于建筑给水管道,流量q不但与管内径d有关,还与单位长度管道的水头损失(水力坡度)i有关.具体关系式可以推导如下: 管道的水力坡度可用舍维列夫公式计算i=0.00107V^2/d^1.3 管道的流量q=(πd^2/4)V 上二式消去流速V得: q = 24d^2.65√i ( i 单位为m/m ), 或q = 7.59d^2.65√i ( i 单位为kPa/m )

863计划海洋技术领域天然气水合物勘探开发关键技术

附件1: 863计划海洋技术领域 “天然气水合物勘探开发关键技术”重大项目 2006年度课题申请指南 一、指南说明 “天然气水合物勘探开发关键技术”是“十一五”863计划海洋技术领域重大项目之一。项目总体目标是:重点开发天然气水合物成矿区带的高精度地球物理和地球化学勘探技术,自主研发水合物钻探取样技术与装备,开展水合物钻探、开发及环境影响评价等关键技术研究,集成海域天然气水合物目标快速探测系统平台,初步形成天然气水合物资源勘探技术系列和装备,有效评价1~2个天然气水合物有利矿区,为天然气水合物开发作技术储备。 重点任务是: ●开发海域天然气水合物矿体目标的三维地震与海底高频地震(HF-OBS)联合探测技术、水合物成矿区带的流体地球化学探测技术,以及水合物成矿区带的高精度海洋人工源电磁探测技术及海底热流原位探测技术,实现水合物成矿区带的高效综合勘探技术系列,为我国海域天然气水合物成矿区带勘探提供高技术支撑。 ●研制水合物的保真取样(芯)器,开发样品处理分析技术,集成天然气水合物保真取样及样品后处理系统,为实现水合物样品采集提供支撑。 ●研制天然气水合物保压保温钻探取芯装备,形成天然气水合物钻探取样系统;开展水合物开发前的实验合成条件模拟、水合物形成的相平衡实验模拟、三维水合物藏生成模拟与开采实验研究平台,以及水合物开发的环境影响评价技术,为水合物开发提供技术储备。 ●通过上述技术的研发,预期获得专利及软件著作版权登记20~30项,培养一支天然气水合物科技研发队伍。

根据上述任务,项目分解为以下10个课题: 1.天然气水合物矿体的三维与海底高频地震联合探测技术 2.天然气水合物的海底电磁探测技术 3.天然气水合物的热流原位探测技术 4.天然气水合物流体地球化学现场快速探测技术 5.天然气水合物原位地球化学探测系统 6.天然气水合物重力活塞式保真取样器研制及样品后处理技术 7.天然气水合物钻探取芯关键技术 8.天然气水合物成藏条件实验模拟技术 9.天然气水合物开采技术平台与开采技术预研究 10.天然气水合物探测技术系统集成 本项目2006年启动除“天然气水合物探测技术系统集成”课题外的9个课题,均为公开发布课题申请指南,采用择优委托方式确定承担单位。 本指南面向全国发布,自由申报、专家评审、公平竞争、滚动发展;申请单位应围绕指南设置的研究目标、研究内容和技术指标等要求,提出课题申请。鼓励产学研单位联合共同申请课题。 依据“阶段目标、滚动支持”的原则,本次指南发布的课题的研究周期不超过四年。 二、指南内容 课题1. 天然气水合物矿体的三维与海底高频地震联合探测技术 (1)研究目标: 开发海域天然气水合物成矿区带三维地震与海底高频地震(HF-OBS)联合探测关键技术;研究天然气水合物矿

蒸汽管道损失理论计算及分析

1.计算基本公式 温损计算公式为: 式中:—管道单位长度传热系数 —管内热媒的平均温度 —环境温度 —热媒质量流量 —热水质量比热容 ——管道长度由于计算结果为每米温降,所以L取1m .管道传热系数为 式中: ,—分别为管道内外表面的换了系数 ,—分别为管道(含保温层)内外径 —管道各层材料的导热系数(金属的导热系数很高,自身热阻很 i 小,可以忽略不计)。 —管道各层材料到管道中心的距离m 内表面换热系数的计算 根据的研究结果,管内受迫流动的努谢尔特数可由下式计算:

Pr为普朗特常数查表可得,本文主要针对供水网温度和回水网温度进行查找得: 90摄氏度时Pr=;在75摄氏度时Pr=; 外表面换热系数的计算 由于采用为直埋方式,管道对土壤的换热系数有: 式中: —管道埋设处的导热系数。 —管道中心到地面的距离。 3.假设条件: A. 管道材料为碳钢() B. 查表得:碳钢在75和90摄氏度时的导热系数都趋近于 C.土壤的导热系数= D. 由于本文涉及到的最大管径为,所以取= E.保温材料为:聚氨酯,取= F. 保温层外包皮材料是:PVC,取= G.在75到90摄氏度之间水的比热容随温度的变化很小,可以忽略不计。 4.电厂实测数据为:

管径为300mm时,保温层厚度为:50mm,保温外包皮厚度为:7mm; 管径为400mm时,保温层厚度为:51mm,保温外包皮厚度为:; 管径为500mm时,保温层厚度为:52mm,保温外包皮厚度为:9mm; 管径为600mm时,保温层厚度为:54mm,保温外包皮厚度为:12mm; 蒸汽管道损失理论计算及分析 1、蒸汽管道热损失公式推导 稳态条件下,通过单位长度的蒸汽管道管壁的热流量是相同的。 根据稳态导热的原理,可得出蒸汽保温管道的导热热流量式为: 2、总传热系数及其影响因素分析

管道过流计算方法

第四章有压管道恒定流 第一节概述 前面我们讨论了水流运动的基本原理,介绍了水流运动的三大方程,水流形态和水头损失,从第五章开始,我们进入实用水利学的学习,本章研究有压管道的恒定流. 一.管流的概念 1.管流是指液体质点完全充满输水管道横断面的流动,没有自由水面存在。 2.管流的特点.①断面周界就是湿周,过水断面面积等于横断面面积;②断面上各点的压强一般不等于大气压强,因此,常称为有压管道。③一般在压力作用而流动. 1.根据出流情况分自由出流和淹没出流 管道出口水流流入大气,水股四周都受大气压强作用,称为自由出流管道。 管道出口淹没在水面以下,则称为淹没出流。 2.根据局部水头损失占沿程水头损失比重的大小,可将管道分为长管和短管。 在管道系统中,如果管道的水头损失以沿程水头损失为主,局部水头损失和流速水头所占比重很小(占沿程水头损失的5%~10%以下),在计算中可以忽略,这样的管道称为长管。否则,称为短管。必须注意,长管和短管不是简单地从管道长度来区分的,而是按局部水头损失和流速水头所占比重大小来划分的。实际计算中,水泵装置、水轮机装置、虹吸管、倒虹吸管、坝内泄水管等均应按短管计算;一般的复杂管道可以按长管计算。 3. 根据管道的平面布置情况,可将管道系统分为简单管道和复杂管道两大类。 简单管道是指管径不变且无分支的管道。水泵的吸水管、虹吸管等都是简单管道的例子。由两根以上管道组成的管道系统称为复杂管道。各种不同直径管道组成的串联管道、并联管道、枝状和环状管网等都是复杂管道的例子。 工 程实践中为了输送流体,常常要设置各种有压管道。例如,水电站的压力引水隧洞和压力钢管,水库的有压泄洪洞和泄洪管,供给城镇工业和居民生活用水的各种输水管网系统,灌溉工程中的喷灌、滴灌管道系统,供热、供气及通风工程中输送流体的管道等都是有压管道。研究有压管道的问题具有重要的工程实际意义。 有压管道水力计算的主要内容包括:①确定管道的输水能力;②确定管道直径;③确定管道系统所需的总水头;④计算沿管线各断面的压强。

天然气水合物

化学选修3《物质结构与性质》P85选题2 天然气水合物 (一种潜在的能源) 天然气水合物——可燃冰 一、可燃冰相关概念 可燃冰:天然气与水在高压低温条件下形成的类冰状结晶物质。(又称笼形化合物)甲烷水合物(Methane Hydrate):用M·nH2O来表示,M代表水合物中的气体分子,n为水合指数(也就是水分子数)。组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物。 又因外形像冰,而且在常温下会迅速分解放出可燃的甲烷,因而又称“可燃冰”或者“固体瓦斯”和“气冰”)。 因为可燃冰的主要成分为甲烷,为甲烷水合物,而甲烷在常温中为气体,熔、沸点低,所以甲烷为分子晶体,因而可燃冰也为分子晶体。 可燃冰存在之处:天然气水合物在自然界广泛分布在大可燃冰 陆、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。 天然气水合物在全球的分布图 在标准状况下,一单位体积的气水合物分解最多可产生164单位体积的甲烷气体,因

而其是一种重要的潜在未来资源。 笼状化合物(Clathrate):在天然气水合物晶体中,有甲烷、乙烷、氮气、氧气二氧化碳、硫化氢、稀有气体等,它们在水合物晶体里是装在以氢键相连的几个水分子构成的笼内,因而又称为笼状化合物。 天然气分子藏在水分子中 水分子笼是多种多样的 二、可燃冰的性质 可燃冰的物理性质: (1)在自然界发现的天然气水合物多呈白色、淡黄色、琥珀色、暗褐色亚等轴状、层状、小针状结晶体或分散状。 (2)它可存在于零下,又可存在于零上温度环境。 (3)从所取得的岩心样品来看,气水合物可以以多种方式存在: ①占据大的岩石粒间孔隙; ②以球粒状散布于细粒岩石中; ③以固体形式填充在裂缝中;或者为大块固态水合物伴随少量沉积物。 可燃冰的化学性质: 1、在冰的空隙(“笼”)中可以笼合天然气中的分子的原因: (1)气水合物与冰、含气水合物层与冰层之间有明显的相似性: ①相同的组合状态的变化——流体转化为固体; ②均属放热过程,并产生很大的热效应——0℃融冰时需用的热量,0~20℃分解天然气 水合物时每克水需要~的热量; ③结冰或形成水合物时水体积均增大——前者增大9%,后者增大26%~32%; ④水中溶有盐时,二者相平衡温度降低,只有淡水才能转化为冰或水合物; ⑤冰与气水合物的密度都不大于水,含水合物层和冻结层密度都小于同类的水层; ⑥含冰层与含水合物层的电导率都小于含水层; ⑦含冰层和含水合物层弹性波的传播速度均大于含水层。 (2)天然气水合物中,水分子(主体分子)形成一种空间点阵结构,气体分子(客体分子) 则充填于点阵间的空穴中,气体和水之间没有化学计量关系。形成点阵的水分子之间靠较强的氢健结合,而气体分子和水分子之间的作用力为范德华力。 2、经发现的天然气水合物结构有三种: 即结构 I 型、结构 II 型和结构H型。结构 I 型气水合物为立方晶体结构,其在自然界分布最为广泛,仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S 等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·的几何格架;结构 II 型气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类;结构H型气水合物为

国内外海洋天然气水合物勘探与探测技术方法研究

国内外海洋天然气水合物勘探与探测技术方法研究 江飞 (14地质工程 21140433001) 摘要:21世纪是开发利用海洋的新时代,海洋将为人类社会可持续发展做出越来越大的贡献。我国是一个人口众多、资源相对不足的发展中国家.能源短缺是制约我国经济和社会发展的瓶颈之一。能源安全已成为国家三大经济安全问题之首。开展海域天然气水合物资源的勘探开发,是缓解能源、资源供需矛盾的重要途径。 天然气水合物(俗称可燃冰)具有能量密度高、分布广、埋深浅、成藏物化条件好、清洁环保等特点,是未来石油天然气的理想接替能源。我国的南海及东海广大地区具有天然气水合物形成所需的物源、温压及地质构造等成矿条件,资源前景广阔。本文概述了国外天然气水合物调查研究的进展情况,介绍了我国在天然气水合物调查研究的历史、工作过程及日前取得的进展,并提出我国天然气水合物调查研究中存在的主要问题。 关键词:天然气水合物;勘探技术方法;研究存在问题 0引言 在世界资源储备不断枯竭、生态环境破坏严重、资源竞争日趋激烈的今天,天然气水合物已引起越来越多专家学者和政府的广泛关注和高度重视。20世纪70年代以来,在各国政府的高度重视下,天然气水合物的研究得到快速发展,美国、日本、俄罗斯、加拿大、英国、挪威、德国、印度、巴西等国家相继投入巨资进行海洋天然气水合物调查与研究,其中美国、日本、印度等将其列入国家级研究开发计划,对天然气水合物的物化性质、产出条件、分布规律、勘查技术、开采工艺方法、经济评价及开采应用可能造成的环境影响等进行了广泛而深入地研究。 我国是一个人口众多、资源相对不足的发展中国家,能源短缺是制约我国经济发展的瓶颈之一。2005年原油进口超过1.2亿吨,列居世界第二;预计到2020年,进口将占到50%。能源安全已经成为国家三大经济安全问题之一,寻找新的能源,调整能源结构已成为当前面临的重要任务。 天然气水合物具有能量密度高、分布广、埋深浅、成藏物化条件好、清洁环保等特点,是石油天然气的理想接替能源。我国的南海陆坡、陆隆区及东海冲

天然气水合物形成条件预测及防止技术

天然气水合物形成条件预测及防止技术 李长俊 西南石油学院 四川省南充市 637001 杨 宇 西南地质局川西采输处 【摘要】在天然气的输送和处理过程中,经常会形成水合物堵塞管道和设备而严重地影响正常生产。本文介绍了输气管道中形成水合物的原因。为了避免水合物堵塞,需要知道水合物压力及温度条件。综述了水合物压力、温度预测的经验图解法、相平衡计算法和统计热力学方法。简述防止水合物的常用四种方法。 关键词:天然气 管道 水合物 形成条件 技术状况 中图分类号:TE83212 1 天然气水合物的结构 天然气水合物(Gashydrates)也称水化物。它是一种包裹着小气体分子的水的固体结晶物,是一种复杂的、但又不稳定的白色结晶体,一般用M?nH2O表示, M为水合物中的气体分子,n为水分子数,如CH4?6H2O,CH4?7H2O,C2H6?7H2O等。也有多种气体混合的水合物。大量研究水合物结构表明,水合物是由氢键连接的水分子结构形成笼形结构,气体分子则在范德华力作用下,被包围在晶格中。气体水合物有Ⅰ型和Ⅱ型两种结构,如图1所示。有关水合物晶格的构造与特性列于表1中。   图1 气体水合物晶体结构 表1 水合物的结构数据 参 数 结构Ⅰ结构Ⅱ 单位晶胞中水分子数46136 单位晶胞中小孔穴数216 单位晶胞中大孔穴数68 小空穴平均直径3191!3190! 大空穴平均直径4133!4168! 单位水分子中小孔穴数,γ11/232/17 单位水分子中大孔穴数,γ23/231/172 天然气水合物形成预测 形成水合物的主要条件有两个:天然气必须处于适当的温度和压力下;天然气必须处于或低于水汽的露点,出现“自由水”。因此对于一定组分的天然气,在给定压力下,就有一水合物形成温度,低于这个温度将形成水合物。而高于这个温度则不形成水合物。随着压力升高,形成水合物的温度也随之升高。如果天然气中没有自由水,则不会形成水合物。除此之外,形成水合物还有一些次要的条件,包括气体流速及扰动,晶种的存在等。 天然气形成水合物有一个最高温度,即临界温度,若超过这个温度,再高的压力也不能形成水合物。表2列出各种天然气组分形成水合物的临界温度。 表2 天然气组分形成水合物的临界温度名 称CH4C2H6C3H8iC4H10nC4H10CO2H2S 形成水 合物临界 温度(℃) 21151415515215110102910 天然气在管道中流动,随着压力、温度变化,有可能形成水合物。如图2所示,曲线1、2分别代表气体沿管线压力和温度变化曲线,曲线3为根据天然气组分和压力沿线分布所确定的生成水合物的温度曲线。设天然气的露点为T d,当天然气输入管道后,由于温度高于露点,气体未被水蒸汽饱和,因此,当x

天然气水合物勘探技术综述.

天然气水合物勘探技术综述 摘要天然气水合物是本世纪最具开发前景的替代能源,开发天然气水合物资源,对我国宏观能源战略决策和可持续发展具有重大的现实意义。因此发展天然气水合物勘探技术,准确分析天然气水合物的分布和蕴藏量,对我国天然气水合物产业的建立有至关重要的作用。本文简要介绍了几种天然气水合物的勘探技术。 关键词天然气水合物地球物理勘探技术地球化学方法技术关键探测技术 1引言 天然气水合物因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。它是在一定条件(合适的温度、压力、气体饱和度、水的盐度、pH值等)下由水和天然气在中高压和低温条件下混合时组成的类冰的、非化学计量的、笼形结晶化合物。它可用M·nH2O来表示,M代表水合物中的气体分子,n为水合指数(也就是水分子数)。组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物。 天然气水合物在自然界广泛分布在大陆、岛屿的斜坡地带、活动和被动大陆边缘的隆起处、极地大陆架以及海洋和一些内陆湖的深水环境。在标准状况下,一单位体积的气水合物分解最多可产生164单位体积的甲烷气体,因而其是一种重要的潜在未来资源。 天然气水合物使用方便,燃烧值高,清洁无污染。据了解,全球天然气水合物的储量是现有天然气、石油储量的两倍,具有广阔的开发前景,美国、日本等国均已经在各自海域发现并开采出天然气水合物,据测算,我国南海天然气水合物的资源量为700亿吨油当量,约相当我国目前陆上石油、天然气资源量总数的二分之一。 2天然气水合物地球物理勘探技术 2.1地震勘探法 地震勘探是目前进行天然气水合物勘探最常用的、也是最重要的普查方法。地震方法的原理是利用不同地层中地震反射波速率的差异进行目的层探测。由于声波在天然气水合物中传播速率比较高,是一般海底沉积物的2倍,故能够利用

管道的水力计算

第三章管道的水力计算及强度计算 第一节管道的流速和流量 流体最基本的特征就是它受外力或重力的作用便产生流动。如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。 图3—1水在管道内的流动 为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。 图32管流的过流断面 a)满流b)不满流

流量是指单位时间内,通过过流断面的流体体积。以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。 流速是指单位时间内,流体流动所通过的距离。以符号。表示,其单位为m/s或cm/s。 图3—3管流中流速、流量、过流断面关系示意图流量、流速与过流断面之间的关系如下: 以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。 由上可知,流量、流速和过流断面之间的关系式为 q v=vA (3—1) 式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是

相关文档