文档库 最新最全的文档下载
当前位置:文档库 › 人类最伟大的十个科学发现之九:热力学四大定律

人类最伟大的十个科学发现之九:热力学四大定律

人类最伟大的十个科学发现之九:热力学四大定律

人类最伟大的十个科学发现之九:热力学四大定律18世纪,卡诺等科学家发现在诸如机车、人体、太阳系和宇宙等系统中,从能量转变成“功”的四大定律。没有这四大定律的知识,很多工程技术和发明就不会诞生。

热力学的四大定律简述如下:

热力学第零定律——如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

热力学第一定律——能量守恒定律在热学形式的表现。

热力学第二定律——力学能可全部转换成热能,但是热能却不能以有限次的实验操作全部转换成功(热机不可得)。

热力学第三定律——绝对零度不可达到但可以无限趋近。

热力学第一定律试题

热力学第一定律试题 (一)填空题(每题2分) 1.1-1-1-9 理想气体等温可逆膨胀过程,ΔU 0,ΔH 0,Q 0,W 0。 (填>、=、<) 2.1-1-1-11 气体分子数增加的反应,在恒容无非体积功的条件下,ΔU ΔH,ΔH Q,ΔU Q,W 0。(填>、=、<) 3.1-1-1-9 将热量Q传给一定量的理想气体,(1)若体积不变,则这热量转变为;(2)若温度不变,则这热量转变为;(3)若压 力不变,则这热量转变为。 4.1-1-1-9 在一个绝热箱内装有浓硫酸和水,开始中间用隔膜分开,然后弄破隔膜,使水和浓硫酸混合,以水和浓硫酸为体系,则Q 0,W 0,ΔU 0。(填>、=、<) 5.1-1-1-13 1mol液态苯在298K时置于恒容氧弹中完全燃烧,生成水和二氧化碳气体,同时放热3264KJ·mol-1。则其等压燃烧热为 。 .1-1-1-13 反应C(石墨) + O2 CO2(g)的ΔH,是CO2(g)的热,是C(石墨)的热。 7.1-1-1-9 有3molH2(可视为理想气体),由298K加热到423K,则此过程的ΔU为。 8.1-1-1-9 1mol双原子理想气体,从温度300K绝热压缩到500K,则焓变为。 9. 1-1-1-3 体系经历不可逆循环后,ΔU 0,ΔH 0。 (二)选择题(每题1分) 10.1-4-2-1 有一敞口容器中放有水溶液,如果以此溶液为体系,则为:() (A) 孤立体系 (B) 封闭体系 (C) 敞开体系 (D) 绝热体系 11.1-4-2-1把一杯水放在刚性绝热箱内,若以箱内热水及空气为体系,则该体系为:() (A) 敞开体系 (B) 封闭体系 (C)孤立体系 (D)绝热体系 12.1-4-2-2 以下性质为容量性质的是() (A) 温度 (B) 密度 (C) 压力 (D) 体积 13.1-4-2-2 以下性质为强度性质的是() (A) 内能 (B) 温度 (C) 体积 (D) 焓 14.1-4-2-3下列不符合热力学平衡状态含义的叙述是() (A) 系统内各部分之间及系统与环境间有不平衡作用力存在 (B) 系统内部各处温度相同,且不随时间变化

对热力学第三定律的理解及应用

对热力学第三定律的理解及应用 在学习了物理书中的“热学”篇后,对于书中提到的热力学四大定律很感兴趣。其中热力学第一定律与热力学第二定律在书中都有了较为详尽的介绍,并且我们也认真地做了相关的习题,可以说对于这两个定律较为熟悉,而对于热力学第零定律与第三定律却了解不多。因此,在课下,我查阅了相关资料。对于这两个定律有了一定了解。 热力学第零定律表述为:“如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。” 热力学第三定律表述为:“热力学系统的熵在温度趋近于绝对零度时趋于定值,特别地,对于完整晶体,这个定值为零。”可以用这一公式表达,0)(lim 0=?=s t 而另一种表述为:“不可能通过有限的步骤,将一个物体冷却到绝对温度的零度。” 对于第三定律中提到的,“不能通过有限步骤,达到绝对零度”我感到了困惑与好奇。 对于这一定律有这么一种解释:理论上,若粒子动能低到量子力学的最低点时,物质即达到绝对零度,不能再低。然而,绝对零度永远无法达到,只可无限逼近。因为任何空间必然存有能量和热量,也不断进行相互转换而不消失。所以绝对零度是不存在的,除非该空间自始即无任何能量热量。 另一种解释是:当原子达到绝对零度后,就会处于静止状态,而这违反了海森堡不确定原理指出的“不可能同时以较高的精确度得知一个粒子的位置和动量”。

尽管,绝对零度在实际生活中似乎无法达到,但科学家还是不遗余力的尝试着接近绝对零度。据报道,由德国、美国、奥地利等国科学家组成的一个国际科研小组在实验室内创造了仅仅比绝对零度高0.5纳开尔文的温度纪录,而此前的纪录是比绝对零度高3纳开。这是人类历史上首次达到绝对零度以上1纳开以内的极端低温。 而通过研究物体在接近绝对零度度过程中材料属性的变化,可以为工程应用提供材料,而在微观领域也可研究低温环境对于原子产生的影响,比如原子在接近绝对零度时是如何运动的,物体呈现一种什么样的状态,这对于原子物理的发展有巨大促进作用。 热力学第三定律在生活中也得到了应用。比如在研究过程中,发现了一些物体存在着超导现象,这一发现对于降低能耗,减少能源浪费都有着不可估量的意义。将一个金属样品放置在通有高频电流的线圈上时,高频电磁场会在金属材料表面产生一高频涡流,这一高频涡流与外磁场相互作用,使金属样品受到一个洛沦兹力的作用。在合适的空间配制下,可使洛沦兹力的方向与重力方向相反,通过改变高频源的功率使电磁力与重力相等,即可实现电磁悬浮。即磁悬浮。对于磁悬浮技术的应用,主要是磁悬浮列车,其优点在于耗能不仅低于普通火车,更大大低于汽车和飞机。在驱动功率相同时,其耗能仅为汽车的1/3,飞机的1/4,而降低能耗是环境保护的最主要问题。 通过科学家对于绝度零度都不断的追求,我们可以看出科学永无止境,作为科学工作者要有一种锲而不舍的精神。

热力学第二定律的建立

热力学第二定律的建立

热力学第二定律的建立 1850年克劳修斯提出热力学第二定律以后,至20世纪初,一直被作为与热力学第一定律并列的热力学两大基本定律,引起学术界特别是物理学界的极大重视。这两个基本定律的发现,使热力学在19世纪50年代初时起,被看作近代物理学中的一个新兴的学科,和物理学家们极其热衷的重要领域,得到物理学家和化学家们的关注。 1、热力学第二定律产生的历史背景 18世纪末惠更斯和巴本(Dents Papin,1647~1714)实验研究的燃气汽缸,塞维利(Thomas Savery,1650~1715)于1798年制成的“矿工之友”,及纽可门(Newcomen Thomas,1663~1729)于1712年发明的“大气机”等早期的蒸汽机,都是利用两个不同温度的热源(锅炉和水)并使部分热量耗散的方法使蒸汽机作功的,也可以说不自觉地运用热力学第二定律的思想,进行设计的。瓦特改进纽可门蒸汽机的关键,是以冷凝器取代大气作为第二热源,因而使耗散的热量大大降低。为了进一步减少热的耗散量和

提高热效率与功率,18世纪末和19世纪40年代又先后研制成中低压和高低压二级膨胀式蒸汽机。热机的整个发展史说明,它的热效率可以不断提高和耗散的热量可以逐渐减少。但是,热机的热效率至今虽然逐渐有所提高,但耗散的热量永远也不可能消除。因此,卡诺的可逆循环只可趋近而永远也无法达到。这就提出了一个十分重要的问题,就是卡诺提出的“在蒸汽机内,动力的产生不是由于热质的实际消耗,而是由热体传到冷体,也就是重新建立了平衡”的论断中,最后的话是不正确的,这不仅因为他相信热质说引起的,而且因为在无数事实中,这种热平衡在一个实际热机中是不可达到的。事实说明,机械功可以完全转化为热,但在不引起其他变化的条件下,热却不可能完全转化为机械功。 人们设想,如果出现一个制成这样永动机的先例,即一个孤立热力学系统会从低温热源取热而永恒地做功,那么大地和海洋几乎可以作为无尽的低温热源,做功将是取之不尽的。事实上这与热力学原理相矛盾的,这就意味着可能有一个新的热力学基本定律在起着作用。综上可见,虽然有的事件是不违背热力学第一定律的但也不可

第一章 热力学第一、二定律试题及解答

第一章 热力学第一定律 一、选择题 1.下述说法中,哪一种正确( ) (A)热容C 不是状态函数; (B)热容C 与途径无关; (C)恒压热容C p 不是状态函数;(D)恒容热容C V 不是状态函数。 2.对于内能是体系状态的单值函数概念,错误理解是( ) (A) 体系处于一定的状态,具有一定的内能; (B) 对应于某一状态,内能只能有一数值不能有两个以上的数值; (C) 状态发生变化,内能也一定跟着变化; (D) 对应于一个内能值,可以有多个状态。 3.某高压容器中盛有可能的气体是O 2 ,Ar, CO 2, NH 3中的一种,在298K 时由5dm3绝热可逆膨胀到6dm3,温度降低21K ,则容器中的气体( ) (A) O 2 (B) Ar (C) CO 2 (D) NH 3 4.戊烷的标准摩尔燃烧焓为-3520kJ·mol -1,CO 2(g)和H 2O(l)标准摩尔生成焓分别为-395 kJ·mol -1和-286 kJ·mol -1,则戊烷的标准摩尔生成焓为( ) (A) 2839 kJ·mol -1 (B) -2839 kJ·mol -1 (C) 171 kJ·mol -1 (D) -171 kJ·mol -1 5.已知反应)()(2 1)(222g O H g O g H =+的标准摩尔反应焓为)(T H m r θ ?,下列说法中不正确的是( )。 (A). )(T H m r θ?是H 2O(g)的标准摩尔生成焓 (B). )(T H m r θ ?是H 2O(g)的标准摩尔燃烧焓 (C). )(T H m r θ?是负值 (D). )(T H m r θ?与反应的θ m r U ?数值相等 6.在指定的条件下与物质数量无关的一组物理量是( ) (A) T , P, n (B) U m , C p, C V (C) ΔH, ΔU, Δξ (D) V m , ΔH f,m (B), ΔH c,m (B) 7.实际气体的节流膨胀过程中,下列那一组的描述是正确的( ) (A) Q=0 ΔH=0 ΔP< 0 ΔT≠0 (B) Q=0 ΔH<0 ΔP> 0 ΔT>0 (C) Q>0 ΔH=0 ΔP< 0 ΔT<0 (D) Q<0 ΔH=0 ΔP< 0 ΔT≠0 8.已知反应 H 2(g) + 1/2O 2(g) →H 2O(l)的热效应为ΔH ,下面说法中不正确的是( ) (A) ΔH 是H 2O(l)的生成热 (B) ΔH 是H 2(g)的燃烧热 (C) ΔH 与反应 的ΔU 的数量不等 (D) ΔH 与ΔH θ数值相等 9.为判断某气体能否液化,需考察在该条件下的( ) (A) μJ-T > 0 (B) μJ-T < 0 (C) μJ-T = 0 (D) 不必考虑μJ-T 的数值 10.某气体的状态方程为PV=RT+bP(b>0),1mol 该气体经等温等压压缩后其内能变化为( )

热力学定律及其微观本质读后感

《热力学定律及其微观本质》读后感 能电院电气四班丁小柳0905020414 读了《热力学定律及其围观本质》这篇论文,体会和收获还是蛮多的。它很有条理的从它的宏观表达和具体应用后,然后应用分子动理论和统计物理学知识揭示了他们的微观本质。 一、热力学四大定律(虽然我们现在只学了两大定律): 1、热力学第零定律——能量守恒定律在热学形式的表现。 如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。这一结论称做“热力学第零定律”。热力学第零定律的重要性在于它给出了温度的定义和温度的测量方法。定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。它为建立温度概念提供了实验基础。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。而温度相等是热平衡之必要的条件。 另一种表述:处于热力学平衡状态的所有物质均具有某一共同的宏观物理性质。 2、热力学第一定律——能量守恒定律在热学形式的表现。 我们知道热力学第一定律的表达式是ΔU = Q+ W(这里的W是外界对系统做的功),也就是说物体吸收的热量等于物体对外界做的功与物体内能增加之和。这从另一个角度体现了能量守恒定律 (1)能量守恒定律 大量事实证明:各种形式的能都可以相互转化,并且在转化过程中守恒。 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体;在转化和转移过程中其总量不变.这就是能量守恒定律。在学习力学知识时,学习了机械能守恒定律。机械能守恒定律是有条件限制的定律,而且实际现象中是不可能实现的。而能量守恒定律是存在于普遍自然现象中的自然规律。这规律对物理学各个领域的研究,如力学、电学、热学、光学等都有指导意义。它也对化学、生物学等自然科学的研究都有指导作用。 (2)永动机不可能制成 历史上不少人希望设计一种机器,这种机器不消耗任何能量,却可以源源不断地对外做功。

热力学第二定律

第二章热力学第二定律 2.1 自发变化的共同特征 自发变化某种变化有自动发生的趋势,一旦发生就无需借助外力,可以自动进行,这种变化称为自发变化。 自发变化的共同特征—不可逆性任何自发变化的逆过程是不能自动进行的。例如: (1)焦耳热功当量中功自动转变成热; (2)气体向真空膨胀 (3)热量从高温物体传入低温物体; (4)浓度不等的溶液混合均匀; (5)锌片与硫酸铜的置换反应等, 它们的逆过程都不能自动进行。当借助外力,体系恢复原状后,会给环境留下不可磨灭的影响。 2.2热力学第二定律(T h e S e c o n d L a w o f T h e r m o d y n a m i c s) 克劳修斯(Clausius)的说法:“不可能把热从低温物体传到高温物体,而不引起其它变化。” 开尔文(Kelvin)的说法:“不可能从单一热源取出热使之完全变为功,而不发生其它的变化。” 后来被奥斯特瓦德(Ostward)表述为:“第二类永动机是不可能造成的”。 第二类永动机:从单一热源吸热使之完全变为功而不留下任何影响。 2.3卡诺循环与卡诺定理 2.3.1卡诺循环(C a r n o t c y c l e) 1824 年,法国工程师N.L.S.Carnot (1796~1832)设计了一个循环,以理想气体为工作物质,从高温T h热源吸收Q h的热量,一部分通过理想热机用来对外做功W,另一部分Q c的热量放给低温热源T c。这种循环称为卡诺循环. 1mol 理想气体的卡诺循环在pV图上 可以分为四步:

过程1:等温T h 可逆膨胀由 p 1V 1到p 2V 2(A B) 10U ?= 2 1h 1 ln V W nRT V =- h 1Q W =- 所作功如AB 曲线下的面积所示。 过程2:绝热可逆膨胀由 p 2V 2T h 到p 3V 3T c (B C) 20Q = c h 22,m d T V T W U C T =?=? 所作功如BC 曲线下的面积所示。 过程3:等温(T C)可逆压缩由p 3V 3 到p 4V 4(C D) 30U ?=4 3c 3 ln V W nRT V =- 环境对体系所作功如DC 曲线下的面积所示 过程4:绝热可逆压缩由 p 4V 4T c 到p 1V 1 T h (D A)40Q = h c 44,m d T V T W U C T =?=? 环境对体系所作的功如DA 曲线下的面积所示 整个循环:0U ?= Q h 是体系所吸的热,为正值,Q Q Q =+c h Q c 是体系放出的热,为负值。 2413 (W W W W W =+和对消) 即ABCD 曲线所围面积为热机所作的功。 根据绝热可逆过程方程式过程2:11h 2c 3T V T V γγ--= 过程4:11h 1c 4T V T V γγ--= 相除得 3 214 V V V V = 24c h 13 13ln ln W W V V nRT nRT V V =--+ 所以 2 c h 1 ()ln V nR T T V =-- 2.3.2 热机效率(efficiency of the engine )

热力学第二定律练习题及答案

热力学第二定律练习题 一、是非题,下列各题的叙述是否正确,对的画√错的画× 1、热力学第二定律的克劳修斯说法是:热从低温物体传给高温物体是不可能的 ( ) 2、组成可变的均相系统的热力学基本方程 d G =-S d T +V d p +d n B ,既适用于封闭系统也适用于敞 开系统。 ( ) 3、热力学第三定律的普朗克说法是:纯物质完美晶体在0 K 时的熵值为零。 ( ) 4、隔离系统的熵是守恒的。( ) 5、一定量理想气体的熵只是温度的函数。( ) 6、一个系统从始态到终态,只有进行可逆过程才有熵变。( ) 7、定温定压且无非体积功条件下,一切吸热且熵减少的反应,均不能自发发生。 ( ) 8、系统由状态1经定温、定压过程变化到状态2,非体积功W ’<0,且有W ’>G 和G <0,则此状态变化一定能发生。( ) 9、绝热不可逆膨胀过程中S >0,则其相反的过程即绝热不可逆压缩过程中S <0。( ) 10、克-克方程适用于纯物质的任何两相平衡。 ( ) 11、如果一个化学反应的r H 不随温度变化,则其r S 也不随温度变化, ( ) 12、在多相系统中于一定的T ,p 下物质有从化学势较高的相自发向化学势较低的相转移的趋势。 ( ) 13、在10℃, kPa 下过冷的H 2O ( l )凝结为冰是一个不可逆过程,故此过程的熵变大于零。 ( ) 14、理想气体的熵变公式 只适用于可逆过程。 ( ) 15、系统经绝热不可逆循环过程中S = 0,。 ( ) 二、选择题 1 、对于只做膨胀功的封闭系统的(A /T )V 值是:( ) (1)大于零 (2) 小于零 (3)等于零 (4)不确定 2、 从热力学四个基本过程可导出V U S ??? ????=( ) (1) (2) (3) (4) T p S p A H U G V S V T ???????????? ? ? ? ????????????? 3、1mol 理想气体(1)经定温自由膨胀使体积增加1倍;(2)经定温可逆膨胀使体积增加1倍;(3)经绝热自由膨胀使体积增加1倍;(4)经绝热可逆膨胀使体积增加1倍。在下列结论中何者正确( )

热力学三定律

热力学: 1.热力学第一定律:自然界中的一切物质都有能量,能量不可能被创造,也不 可能被消灭,但可以从一种形态转变为另一种形态;在能量的转换过程中能量的总量保持不变。 2.热力学第二定律: 克劳修斯说法:热不可能自发地、不付代价的从低温物体传至高温物体。 开尔文说法:不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发动机。 第二类永动机是不存在的。 3.热力学第三定律: 奈斯特定理:当温度趋于绝对温度时,任何物质系统中所发生的过程,其熵变也趋于零。 不可能通过有限过程将系统冷却至绝对零度。 绝对零度只能无限逼近,而不能最终达到。 4.热力学第零定律: 两个系统分别通过导热壁与第三个物体达热平衡,则这两个物体彼此间也必然达热平衡。 5.卡诺定理: (1)在相同的高温热源和低温热源之间工作的一切可逆卡诺机,其效率都相等,与工作物质无关。 (2)在相同的高温热源和低温热源之间工作的一切不可逆热卡诺机,其效率必小于可逆机的效率。 燃气轮机: 工作原理:: 燃气轮机的工作过程是,压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即流入燃气涡轮中膨胀作功,推动涡轮叶轮带着压气机叶轮一起旋转;加热后的高温燃气的作功能力显著提高,因而燃气涡轮在带动压气机的同时,尚有余功作为燃气轮机的输出机械功。燃气轮机由静止起动时,需用起动机带着旋转,待加速到能独立运行后,起动机才脱开。 空气与燃料混合燃烧后的高温高压燃气推动涡轮做功带动发电机发电。 机械设计基础: 自由度:构件可能出现的独立运动的数目。对构建自由度的限制叫做约束。 零件—静连接—构件—运动副—机构—动静连接—机器—机械。 英语: 热能与动力工程—Thermal energy and power engineering 机械动力—Mechanical power 机械设计基础—Mechanical design basis 热力学—Thermodynamics 传热学—Heat-transfer 专业—major

论文对热力学定律的认识

1 题目:浅谈热力学定律 班级:11物理学本科班 姓名:徐春山 学号:110800048 指导老师:廖昱博

浅谈热力学定律 1 引言 热物理学是整个物理学理论的四大柱石之一,热力学是热学理论的一个重要组成部分,也就是热现象的宏观理论。热力学主要是从宏观角度出发按能量转化的观点来研究物质的热性质,热现象和热现象所服从的规律。它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用,具有高度的可靠性和普遍性,无论是在热力学理论中或在热工技术中,都有重要的作用。 2 热力学第零定律 什么是温度?人们在日常生活中,凭自己的感觉就能判断一个物体是冷还是热。感到热就认为温度高一些,感到冷就认为温度低一些。当然这种感觉是不可靠的。于是人们就简单地建立起了有关温度的初步概念。温度是描述物体冷热程度的物理量。 在不受外界影响的情况下,只要A物体和B物体同时与C物体处于热平衡,即使A和B没有热接触,他们仍然处于热平衡状态,这种规律称为热平衡定律,也称为热力学第零定律。 热力学第零定律告诉我们,互为热平衡的物体之间必存在一个相同的特征——它们的温度是相同的。实验也证实,在外界条件不变的情况下把已经达到热平衡的系统中的各个部分相互分开,是绝不会改变每个部分本身的热平衡状态的. 3 热力学第一定律 热力学第一定律是能量守恒和转化定律在热力学上的具体表现,能量守恒与转换定律的发现与其他物理规律的发现最大不同之处在于它不是某一位科学家独立研究而提出的,而是由许多科学家在不同的研究领域分别发现的。 自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为- 2 -

第 二 章 热力学第一定律练习题及解答

第 二 章 热力学第一定律 一、思考题 1. 判断下列说法是否正确,并简述判断的依据 (1)状态给定后,状态函数就有定值,状态函数固定后,状态也就固定了。 答:是对的。因为状态函数是状态的单值函数。 (2)状态改变后,状态函数一定都改变。 答:是错的。因为只要有一个状态函数变了,状态也就变了,但并不是所有的状态函数都得变。 (3)因为ΔU=Q V ,ΔH=Q p ,所以Q V ,Q p 是特定条件下的状态函数? 这种说法对吗? 答:是错的。?U ,?H 本身不是状态函数,仅是状态函数的变量,只有在特定条件下与Q V ,Q p 的数值相等,所以Q V ,Q p 不是状态函数。 (4)根据热力学第一定律,因为能量不会无中生有,所以一个系统如要对外做功,必须从外界吸收热量。 答:是错的。根据热力学第一定律U Q W ?=+,它不仅说明热力学能(ΔU )、热(Q )和功(W )之间可以转化,有表述了它们转化是的定量关系,即能量守恒定律。所以功的转化形式不仅有热,也可转化为热力学能系。 (5)在等压下,用机械搅拌某绝热容器中的液体,是液体的温度上升,这时ΔH=Q p =0 答:是错的。这虽然是一个等压过程,而此过程存在机械功,即W f ≠0,所以ΔH≠Q p 。 (6)某一化学反应在烧杯中进行,热效应为Q 1,焓变为ΔH 1。如将化学反应安排成反应相同的可逆电池,使化学反应和电池反应的始态和终态形同,这时热效应为Q 2,焓变为ΔH 2,则ΔH 1=ΔH 2。 答:是对的。Q 是非状态函数,由于经过的途径不同,则Q 值不同,焓(H )是状态函数,只要始终态相同,不考虑所经过的过程,则两焓变值?H 1和?H 2相等。 2 . 回答下列问题,并说明原因 (1)可逆热机的效率最高,在其它条件相同的前提下,用可逆热机去牵引货车,能否使火车的速度加快? 答?不能。热机效率h Q W -=η是指从高温热源所吸收的热最大的转换成对环境所做的功。

从四大定律角度对热力学学习的认识

从四大定律角度对热力学学习的认识 2013级物理萃英班洪熹宇 摘要: 热力学是一门研究热运动的宏观理论,它与统计物理学的研究目的,都在于研究运动的规律,同时研究与热运动有关的物性,以及宏观物质系统的演化过程。但是它与统计物理学的研究方法上有着很大的不同,统计物理学侧重于从微观角度分析和解决问题,而热学的基础则是建立在宏观的基础上。它是一种唯象的宏观理论,具有较高的普适性和一般性。本文由学生在热力学学习过程中,将自己的体会与知识相结合,从四大定律着手给出学生对于热力学研究意义的思考和认识。 关键词:热力学三大定律,热平衡定律,能量守恒,自由能,熵,绝对零度 正文: 一、热力学四大定律的发现与形式 宏观角度看待问题的是经典的,因此热力学总是能给出一个条件给定系统的最终平衡状态的各个参数。人们在对热力学研究的基础上,总结出了热力学的三大定律,加上热平衡定律,便构成了热力学最主要的四个结论。 首先,能量守恒与转换定律是自然界最普遍、最基本的规律之一。它指出,自然界中的一切物质都具有能量,能量有各种不同的形式,这种不同形式的能量都可以转移(从一个物体传递到另一个物体),也可以相互转换(从一种能量形式转变为另一种能量形式),但在转移和转换过程中,它们的总量保持不变。这一规律成为能量守恒与转换定律。能量守恒与转换定律应用在热力学中,或者说应用在伴有热效应的各种过程中,便是热力学第一定律。历史上,焦耳在绝热过程中所做的两个实验,首先认识到外界对于系统所做的功,仅仅与系统的初态和末态是相关联的。在此人们定义了一个内能的概念,它的意义是,系统在末态和初态的内能之差,等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,这便是热力学第一定律的数学表达形式。此外,在工程热力学上,热力学第一定律也可表述成“热是能的一种,机械能变热能或热能变机械能时,它们之间的比值是一定的”,或者“热可以变功,功可以变热。一定量的热消失时必定产生相应量的功;消耗一定量的功时必定出现与之相应量的热”。 其次,人们在各类实验基础上又发现了热力学第二定律。卡诺在研究中发现,各种热机运动最终都服从于卡诺关于可逆热机的两个定理。然而卡诺在热机工作过程的认知上并不正确,由此克劳修斯和开尔文分别提出了热力学第二定律的两种表述:开尔文提出了“利用无生命物质的作用,把物质任何部分冷到比它周围最冷的客体以下,以产生机械效应,这是不可能的”。现在表述为“不可能从单一热源吸取热量,使之完全变为有用的功,而不产生其它影响”,克劳修斯提出了“不可能把热量,从低温物体传到高温物体,而不引起其他变化。”,二者分别从不同角度说明了热力学第二定律的实质,即任何与热现象有关的实际过程都有着其自发进行的方向,是不可逆的。这两种表述也可以相互进行逻辑上的论证,由此也发现了不同种类的不可逆过程本质上其实是可以互相进行推断的。特别的,在孤立系统下,由热力学第二定律可以推出重要的熵增加原理,为今后判断孤立系统的稳定平衡条件提供了依据。 随着科学研究的深入和对于低温条件获取的需要,人们在思考,究竟可不可以通过有限的过程实现绝对零度?20世纪初,人们通过对低温下热力学现象的研究,确定了物质熵值的零点,逐步建立起了热力学第三定律,进而提出了规定熵的概念,为解决一系列的热力学问题提供了极大的方便。热力学第三定律可以准确、简洁的表述为:0K时,任何完美晶体的熵值为0。也可以表达为,绝对零度不能达到。

第二章 热力学第二定律 复习题及答案

第二章 热力学第二定律 复习题及答案 1. 试从热功交换的不可逆性,说明当浓度不同的溶液共处时,自动扩散过程是不可逆过程。 答:功可以完全变成热,且是自发变化,而其逆过程。即热变为功,在不引起其它变化的条件下,热不能完全转化为功。热功交换是不可逆的。不同浓度的溶液共处时,自动扩散最后浓度均匀,该过程是自发进行的。一切自发变化的逆过程都是不会自动逆向进行的。所以已经达到浓度均匀的溶液。不会自动变为浓度不均匀的溶液,两相等体积、浓度不同的溶液混合而达浓度相等。要想使浓度已均匀的溶液复原,设想把它分成体积相等的两部分。并设想有一种吸热作功的机器先把一部分浓度均匀的溶液变为较稀浓度的原溶液,稀释时所放出的热量被机器吸收,对另一部分作功,使另一部分浓度均匀的溶液浓缩至原来的浓度(较浓)。由于热量完全转化为功而不留下影响是不可能的。所以这个设想过程是不可能完全实现,所以自动扩散是一个不可逆过程。 2. 证明若第二定律的克劳修斯说法不能成立,则开尔文的说法也不能成立。 答:证:第二定律的克劳修斯说法是“不可能把热从低温物体传到高温物体而不引起其它变化。”若此说法不能成立, 则如下过程是不可能的。把热从低温物体取出使其完全变成功。这功在完全变成热(如电热),使得高温物体升温。而不引起其它变化。即热全部变为功是可能的,如果这样,那么开尔文说法“不可能从单一热源取出热,使之全部变成功,而不产生其它变化”也就不能成立。 3. 证明:(1)在pV 图上,理想气体的两条可逆绝热线不会相交。 (2)在pV 图上,一条等温线与一条绝热线只能有一个相交点而不能有两个相交点。 解:证明。 (1).设a 、b 为两条决热可逆线。在a 线上应满足111K V P =γ ①, 在第 二条绝热线b 上应满足222K V P =γ ②且21K K ≠或V P V P γ-=??)( , vm pm C C = γ不同种理想气体γ不同,所以斜率不同,不会相交。若它们相 交于C 点,则21K K =。这与先前的假设矛盾。所以a 、b 两线不会相交。 (2).设A 、B 为理想气体可逆等温线。(V P V P T - =??)(

第二章热力学第一定律练习题及答案

第一章热力学第一定律练习题 一、判断题(说法对否): 1.当系统的状态一定时,所有的状态函数都有一定的数值。当系统的状态发生 变化时,所有的状态函数的数值也随之发生变化。 2.在101.325kPa、100℃下有lmol的水和水蒸气共存的系统,该系统的状态 完全确定。 3.一定量的理想气体,当热力学能与温度确定之后,则所有的状态函数也完 全确定。 4.系统温度升高则一定从环境吸热,系统温度不变就不与环境换热。 5.从同一始态经不同的过程到达同一终态,则Q和W的值一般不同,Q + W 的值一般也不相同。 6.因Q P= ΔH,Q V= ΔU,所以Q P与Q V都是状态函数。 7.体积是广度性质的状态函数;在有过剩NaCl(s) 存在的饱和水溶液中,当温度、压力一定时;系统的体积与系统中水和NaCl的总量成正比。8.封闭系统在压力恒定的过程中吸收的热等于该系统的焓。 9.在101.325kPa下,1mol l00℃的水恒温蒸发为100℃的水蒸气。若水蒸气可视为理想气体,那么由于过程等温,所以该过程ΔU = 0。 10.一个系统经历了一个无限小的过程,则此过程是可逆过程。 11.1mol水在l01.325kPa下由25℃升温至120℃,其ΔH= ∑C P,m d T。12.因焓是温度、压力的函数,即H = f(T,p),所以在恒温、恒压下发生相变时,由于d T = 0,d p = 0,故可得ΔH = 0。 13.因Q p = ΔH,Q V = ΔU,所以Q p - Q V = ΔH - ΔU = Δ(p V) = -W。14.卡诺循环是可逆循环,当系统经一个卡诺循环后,不仅系统复原了,环境也会复原。 15.若一个过程中每一步都无限接近平衡态,则此过程一定是可逆过程。16.(?U/?V)T = 0 的气体一定是理想气体。 17.一定量的理想气体由0℃、200kPa的始态反抗恒定外压(p环= 100kPa) 绝热膨胀达平衡,则末态温度不变。 18.当系统向环境传热(Q < 0)时,系统的热力学能一定减少。

热力学第二定律习题

第二章热力学第二定律 一、思考题 1. 任意体系经一循环过程△U,△H,△S,△G,△F 均为零,此结论对吗? 2. 判断下列说法是否正确并说明原因 (1) 夏天将室内电冰箱门打开,接通电源,紧闭门窗(设墙壁、门窗均不传热), 可降低室温。 (2) 可逆机的效率最高,用可逆机去拖动火车,可加快速度。 (3) 在绝热封闭体系中发生一个不可逆过程从状态I→II,不论用什么方法体 系再也回不到原来状态I。 (4) 封闭绝热循环过程一定是个可逆循环过程。 3. 将气体绝热可逆膨胀到体积为原来的两倍。此时体系的熵增加吗?将液体绝热可逆地蒸发为气体时,熵将如何变化? 4. 熵增加原理就是隔离体系的熵永远增加。此结论对吗? 5. 体系由平衡态A 变到平衡态B,不可逆过程的熵变一定大于可逆过程的熵变,对吗? 6. 凡是△S > 0 的过程都是不可逆过程,对吗? 7. 任何气体不可逆绝热膨胀时其内能和温度都要降低,但熵值增加。对吗?任何气体如进行绝热节流膨胀,气体的温度一定降低,但焓值不变。对吗? 8. 一定量的气体在气缸内 (1) 经绝热不可逆压缩,温度升高,△S > 0 (2) 经绝热不可逆膨胀,温度降低,△S < 0 两结论对吗? 9. 请判断实际气体节流膨胀过程中,体系的△U、△H、△S、△F、△G中哪些一定为零? 10. 一个理想热机,在始态温度为T2的物体A 和温度为T1的低温热源R 之间可逆地工作,当 A 的温度逐步降到T1时,A 总共输给热机的热量为Q2,A 的熵变为△S A,试导出低温热源R 吸收热量Q1的表达式。 11. 在下列结论中正确的划√,错误的划× 下列的过程可应用公式△S = nR ln(V2/ V1) 进行计算: (1) 理想气体恒温可逆膨胀(2) 理想气体绝热可逆膨胀 (3) 373.15K 和101325 Pa 下水的汽化(4) 理想气体向真空膨胀 12. 请判断在下列过程中,体系的△U、△H、△S、△F、△G 中有哪些一定为零? (A) 苯和甲苯在常温常压下混合成理想液体混合物;

热力学四大定律第零定律热平衡Thezerolawofthermodynamics

第零定律:熱平衡 The zero law of thermodynamics T1=T2=T3=T4 第一定律:The first Law of thermodynamics 能量守恆定律(The Law of conservation of energy) △E=Q-W Q=-W= Pdv = -nRTln v2/v1 Q=+nRT ln V2/V1代入 S= dnRT ln V2/V1 T 第二定律: 每一自發性的變化均伴隨著熵的增加 宇宙趨向最大亂度S>0 熵entropy S :熱力學函數(thermodynamic function),熵可解釋為一種物系「亂度」或不規律的一種量度。熵可視為一機率函數 S宇宙= S系統+ S週邊>0 判斷自發的方法:S>0(不可逆) S= 0(可逆),S<0(不發生)S 表示熵的改變。 宇宙上能量傳遞有方向性的,總是由高能量傳到低能量。 第三定律: 在OK時,一完全結晶物體之熵會等於零, S=0 所有物體都呈現靜止狀態。 海水轉變成淡水化工程 要生產出1噸淡水,需要抽取2.5噸海水作為“原水”。海水被抽出後,首先通過加藥-混凝沉澱環節除去海水大顆粒懸浮物,然後進入氣浮池進行預處理,後經過超濾、反滲透兩個主要環節,充分去除海水中的鹽分、懸浮物、有機物和藻類物質等,最後進入後礦化環節調節水的硬度和pH值,苦澀的海水就變成能夠直飲的淡水了 自然科學: 1543年─哥白尼:(天體運行論)以太陽為中心(日心論) 1.伽利略:望遠鏡→h=1/2gt2 2.刻卜勒:行星三大運動定律 第一定律:「軌道定律」─所有的行星繞著太陽運行 第二定律:等面積定律─T=T2-T1=T4-T3 第三定律:週期定律R13= R23=K T12T22

热力学第二定律 概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

第03章 热力学第二定律.(试题及答案)

思考题 1.自发过程一定是不可逆的,所以不可逆过程一定是自发的。这说法对吗? 2.空调、冰箱不是可以把热从低温热源吸出,放给高温热源吗?这是否与第二定律矛盾呢? 3.能否说系统达平衡时熵值最大,Gibbs 自由能最小? 4.某系统从始态出发,经一个绝热不可逆过程到达终态。为了计算熵值,能否设计一个绝热可逆过程来计算? *5.C p,m 是否恒大于C V ,m ? 6.将压力为101.3kPa ,温度为268.2K 的过冷液体苯,凝固成同温、同压的固体苯。已知苯的凝固点T f 为278.7K ,如何设计可逆过程? 7.下列过程中,Q 、W 、△U 、△H 、△S 、△G 和△A 的数值哪些为零?哪些的绝对值相等? (1)理想气体真空膨胀;(2)*实际气体绝热可逆膨胀;(3)水在冰点结成冰;(4)理想气体等温可逆膨胀;(5)H 2(g)和O 2(g)在绝热钢瓶中生成水。 *8.箱子一边是1molN 2(100kPa),另一边是2molN 2(200kPa),298K 时抽去隔板后的熵变值如何计算? 9.指出下列理想气体等温混合的熵变值。 (1)1molN 2(g,1V) + 1molN 2(g,1V) = 2molN 2(g,1V) (2)1molN 2(g,1V) + 1molAr(g,1V) = (1molN 2 + 1molAr)(g,1V) (3)1molN 2(g,1V) + 1molN 2(g,1V) = 2molN 2(g,2V) 10.四个热力学基本公式适用的条件是什么?是否一定要可逆过程? 概念题 1 理想气体在等温条件下反抗恒定外压膨胀,该变化过程中系统的熵变△S sys 及环境的熵变△S sur 因为: (A )△S sys >0,△S sur =0 (B )△S sys <0,△S sur =0 (C )△S sys >0,△S sur <0 (D )△S sys <0,△S sur >0 2 在绝热条件下,用大于气缸内的压力迅速推动活塞压缩气体,此过程度熵变: (A )大于零 (B )小于零 (C )等于零 (D )不能确定 3 H 2(g)和O 2(g)在绝热钢瓶中化合,生成水的过程: (A )△H =0 (B )△U =0 (C )△S =0 (D )△G =0 4 在大气压力和273.15K 下水凝结为冰,判断下列热力学量中哪一个一定为零: (A )△U (B )△H (C )△S (D )△G 5 在N 2和O 2混合气体的绝热可逆压缩过程中,系统的热力学函数变化值在下列结论中正确的是: (A )△U =0 (B )△A =0 (C )△S =0 (D )△G =0 6 单原子分子理想气体的 ,温度由T 1变到T 2 时,等压过程系统的熵变△S p 和等容过程系统的熵变△S V 之比是: (A )1:1 (B )2:1 (C )3:5 (D )5:3 7 水在373K ,101325 Pa 的条件下气化为同温同压的水蒸气,热力学函数变量为△U 1,△H 1,△G 1;现把 的水(温度、压力同上)放在恒温373K 的真空箱中,控制体积,使系统终态蒸气压也为101325 Pa ,这时热力学函数变量为△U 2,△H 2,△G 2。这两组热力学函数的关系为: (A ) (B ) (C ) (D ) R C m V 23,=kg 3101-?kg 310 1-?212121,,G G H H U U ?>??>??>?212121,,G G H H U U ???=?

热力学三大定律

热力学第一定律 热力学第一定律:也叫能量不灭原理,就是能量守恒定律。 简单的解释如下: ΔU = Q+ W 或ΔU=Q-W(目前通用这两种说法,以前一种用的多) 定义:能量既不会凭空产生,也不会凭空消灭,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。 基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。 普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。热力学的基本定律之一。 热力学第一定律是对能量守恒和转换定律的一种表述方式。热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。 表征热力学系统能量的是内能。通过作功和传热,系统与外界交换能量,使内能有所变化。根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU应等于在此过程中外界对系统传递的热量Q 和系统对外界作功A之差,即UⅡ-UⅠ=ΔU=Q-W或Q=ΔU+W这就是热力学第一定律的表达式。如果除作功、传热外,还有因物质从外界进入系统而带入的能量Z,则应为ΔU=Q-W+Z。当然,上述ΔU、W、Q、Z均可正可负(使系统能量增加为正、减少为负)。对于无限小过程,热力学第一定律的微分表达式为 δQ=dU+δW因U是态函数,dU是全微分[1];Q、W是过程量,δQ和δW只表示微小量并非全微分,用符号δ以示区别。又因ΔU或dU只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否平衡态无关。 热力学第一定律的另一种表述是:第一类永动机是不可能造成的。这是许多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。显然,第一类永动机违背能量守恒定律。 热力学第二定律 (1)概述/定义 ①热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的)。 ②不可能从单一热源取热,把它全部变为功而不产生其他任何影响(这是从能量消耗的角度说的,它说明第二类永动机是不可能实现的)。 (2)说明

相关文档