文档库 最新最全的文档下载
当前位置:文档库 › 智能制造技术的发展论文

智能制造技术的发展论文

智能制造技术的发展论文
智能制造技术的发展论文

智能制造技术的发展

(共10页)

姓名:陈加定

学号:SF1105006

南京航空航天大学

2011/12/23

智能制造技术的发展

摘要:介绍了智能制造提出的背景、主要研究内容和目标, 人工智能与 I M T、 I M S的

关系, I M S 和 C I M S, 智能制造的物质基础及理论基础, 智能制造系统的特征及框架

结构, 并简要介绍了智能加工中心 IMC, 智能制造技木的发展趋势,以及智能制造系统研

究成果及存在问题。

关键词:智能制造,智能制造技术,IMS,IMC,IMT。

一、智能制造技术提出的背景

制造业是国民经济的基础工业, 是决定国家发展水平的最基本因素之一。从机械制造业发展的历程来看, 经历了由手工制作、泰勒化制造、高度自动化、柔性自动化和集成化制造、并行规划设计制造等阶段。就制造自动化而言, 大体上每十年上一个台阶: 50~60年代是单机数控, 70 年代以后则是CNC机床及由它们组成的自动化岛,80年代出现了世界性的柔性自动化热潮。与此同时, 出现了计算机集成制造, 但与实用化相距甚远。随着计算机的问世与发展, 机械制造大体沿两条路线发展: 一是传统制造技术的发展, 二是借助计算机和自动化科学的制造技术与系统的发展。80年代以来, 传统制造技术得到了不同程度的发展,但存在着很多问题。先进的计算机技术和制造技术向产品、工艺和系统的设计人员和管理人员提出了新的挑战, 传统的设计和管理方法不能有效地解决现代制造系统中所出现的问题, 这就促使我们借助现代的工具和方法, 利用各学科最新研究成果, 通过集成传统制造技术、计算机技术与科学以及人工智能等技术, 发展一种新型的制造技术与系统, 这便是智能制造技术 ( Intelligent Manufacturing Technology, IMT) 与智能制造系统( Intelligent M anufacturing System,IMS)。

90 年代以后, 世界各国竞相大力发展 I M T 和I M S 的深层次原因有:(1)集成化离不开智能;(2)机器智能化比较灵活;(3)智能化的经济效益较高;

(4)白领化使得有丰富经验的机械工人和技术人员日益缺少,产品制造技术越来越复杂, 促使使用人工智能和知识工程技术来解决现代化的加工问题;(5)工厂生产率的提高更多地取决于生产管理和生产自动化。总之,以计算机信息技术为基础的高新技术得到迅猛发展,为传统的制造业提供了新的发展机遇。计算机技术、信息技术、自动化技术与传统制造技术相结合,形成了先进制造技术概念。近年来由发达国家倡导的面向21世纪的“智能制造系统”、“信息高速公路”等国际研究计划,无疑是该背景下的产物,也是国际间进行高科技研究开发的具体表现和积极占领 21 世纪高科技制高点的象征。

二. 主要研究内容和目标

智能制造技术在国际上尚无公认的定义。目前比较通行的一种定义是, 智能制造技术是指在制造工业的各个环节, 以一种高度柔性与高度集成的方式,通过计算机来模拟人类专家的制造智能活动。因此, 智能制造的研究开发对象是整个机械制造企业, 其主要研究开发目标有二: ①整个制造工作的全面智能化, 它在实际制造系统中首次提出了以机器智能取代人的部脑力劳动作为主要目标, 强调整个企业生产经营过程大范围的自组织能力; ②信息和制造智能的集成与共享, 强调智能型的集成自动化。目前, I M T 和 I M S 的研究方向已从最初的人工智能在制造领域中的应用(AIM )发展到今天的I M S, 研究课题涉及的范围由最初仅一个企业内的市场分析、产品设计、生产计划、制造加工、过程控制、信息管理、设备维护等技术型环节的自动化,发展到今天的面向世界范围内的整个制造环境的集成化与自组织能力,包括制造智能处理技术、自组织加工单元、自组织机器人、智能生产管理信息系统、多级竞争式控制网络、全球通讯与操作网等。

由日本提出IMS国际合作研究计划对IMS的解释可以看出, IMS的研究包括智能活动、智能机器以及两者的有机融合技术,其中智能活动是问题的核心。在 I M S 研究的众多基础技术中, 制造智能处理技术是最为关键和迫切需要研究的问题之一, 因为它负责各环节的制造智能的集成和生成智能机器的智能活动。

国际IMS计划的基本观点如下: ①I M S 是21世纪的制造系统, 必须开发与之相适应的制造技术; ②应对这些技术进行组织化和系统化; ③加强技术的标准化; ④考虑人的因素; ⑤保护环境。该计划由已有生产技术的体系化和标准化、 21 世纪生产技术的研究与开发两大部分构成。

1992 年4 月在日本召开的第一次国际技术委员会, 确定了4 个主题: ①技术课题; ②选择原则;③评价程序; ④执行准则。由国际 I M S 中心成员提出的首批10 项研究课题:①企业集成; ②全球制造; ③系统单元技术; ④清洁制造技术; ⑤人与组织研究; ⑥先进的材料加工技术; ⑦全球并行工程(评估和实施) ; ⑧自主模块的系统设备与分布控制; ⑨快速产品开发; b k知识系统化(设计与制造)。美国国家科学基金会(N SF)已连续数年重点资助了与智能制造有关的研究项目, 这些项目覆盖了智能制造的绝大部分技术领域, 包括制造过程中的智能决策、基于多施主(multi-agent)的智能协作求解、智能并行设计、物流传输的智能自动化、智能加工系统和智能机器等。

日本提出的智能制造系统国际合作计划, 以高新计算机为后盾、深受其“真空世界”计算机研究计划的影响。其主要研究内容如下: ①强调部分代替人的智能活动, 实现部分人的技能; ②使用智能计算机技术来集成设计制造过程, 使之一体化, 以虚拟现实技术实现虚拟制造, 以多媒体的人机接口技

术、虚拟现实技术, 实现职业教育; ③强调全球制造网络的生产制造技术, 通过卫星、Internet和数字电话网络实现全球制造; ④强调智能化与自律化的智能加工系统以及智能化CNC、智能机器人的研究。⑤重视分布式人工智能技术的应用, 强调自律协作代替集中递阶控制。

IMT与IMS的研究与开发对于提高产品质量、生产效率和降低成本, 提高国家制造业响应市场变化的能力和速度, 以及提高国家的经济实力和国民的生活水准, 均具有重大的意义。其研究目标是要实现将市场适应性、经济性、人的重要性、适应自然和社会环境的能力、开放性和兼容能力等融合在一起的生产系统: ①使整个制造过程实现智能化, 并具有自组织能力; ②IMS是一个集成许多工厂和多种机器设备的混合系统; ③具备满足各种社会需求的柔性; ④能充分发挥人的作用; ⑤易于操作; ⑥总效率高; ⑦能避免重复投资等。

人工智能的目的是为了用技术系统来突破人的自然智力的局限性,达到对人脑的部分代替、延伸和加强的目的,使那些单靠人的天然智能无法进行或带有危险性的工作得以完成,从而使人类的智慧能集中到那些更富于创造性的工作中去。人是制造智能的重要来源,在制造业走向智能化过程中起着决定性作用。目前在整体智能水平上,与人工系统相比,人的智力仍然是遥遥领先的。人工智能模拟的蓝本主要是人类的智能,但人类的智能是随时间不断变化的,而这种变化又是无止境的,只有人与机器有机高度结合,才能实现制造过程的真正智能化。智能制造被称为新世纪的制造技术,目前之所以还不能实现,是由于要受到目前科学技术、人以及经济等诸多方面的制约。智能与思维智能,就是在各种环境和目的的条件下正确制定决策和实现目的的能力。在这里,给

定的环境和目的是问题的约束条件,制定正确的决策是智能的中心环节,而有效地实现目的,则是智能的评判准则。从信息处理的角度讲,智能可以看成是获取、传递、处理、再生和利用信息的能力。而思维能力是整个智能活动中最复杂、最核心的部分,主要指处理和再生信息的能力。这种信息处理的过程是十分复杂和多样化的,归纳起来,大体可分为3种基本的类型,即:经验思维、逻辑思维和创造性思维。在工艺设计过程中,这三种类型的思维都存在,在不同层次的决策中起着重要作用。

总之,智能制造技术是制造技术、自动化技术、系统工程与人工智能等学科互相渗透、互相交织而形成的一门综合技术。其具体表现:智能设计、智能加工、机器人操作、智能控制、智能工艺规划、智能调度与管理、智能装配、智能测量与诊断等。它强调通过“智能设备”和“自治控制”来构造新一代的智能制造系统模式。智能制造系统具有自律能力、自组织能力、自学习与自我优化能力、自修复能力,因而适应性极强,而且由于采用VR技术,人机界面更加友好。因此,I M技术的研究开发对于提高生产效率与产品品质、降低成本,提高制造业市场应变能力、国家经济实力和国民生活水准,具有重要意义。智能制造是制造系统柔性自动化和集成自动化的新发展和重要组成部分,因此未来智能制造将向智能集成的方向发展,未来智能制造的研究将着重于智能传感与检测(如智能传感器、智能传感与检测技术、光纤传感技术等)。

三、人工智能与I M T、I M S

人工智能的研究,一开始就未能摆脱制造机器生物的思想,即“机器智能化”。这种以“自主”系统为目标的研究路线, 严重地阻碍了人工智能研究的进展。许多学者已意识到这一点, Feigenbaum、Newell、钱学森从计算机角度

出发, 提出了人与计算机相结合的智能系统概念。目前国外对多媒体及虚拟技术研究进行大量投资, 以及日本第五代智能计算机研制计划的搁浅等事例, 就是智能系统研究目标有所改变的明证。

人工智能技术在机械制造领域中的应用涉及市场分析、产品设计、生产规划、过程控制、质量管理、材料处理、设备维护等诸方面。结果是开发出了种类繁多的面向特定领域的独立的专家系统、基于知识的系统或智能辅助系统,形成一系列的“智能化孤岛”。随着研究与应用的深入,人们逐渐认识到,未来的制造自动化应是高度集成化与智能化的人—机系统的有机融合,制造自动化程度的进一步提高要依赖于整个制造系统的自组织能力。如何提高这些“孤岛”的应用范围和在实际制造环境中处理问题的能力, 成为人们的研究焦点。在80年代末和90 年代初, 一种通过集成制造自动化、新一代人工智能、计算机等科学技术而发展起来的新型制造工程—— I M T 和新——代制造系统—— I M S 便脱颖而出。

人工智能在制造领域中的应用与 I M T 和I M S 的一个重要区别在于, I M S 和 I M T 首次以部分取代制造中人的脑力劳动为研究目标, 而不再仅起“辅助和支持”作用, 在一定范围还需要能独立地适应周围环境, 开展工作。

四、I M S 和C I M S

C I M S 发展的道路不是一帆风顺的。今天,C I M S 的发展遇到了不可逾越的障碍, 可能是刚开始时就对C I M S 提出了过高的要求, 也可能是C I M S 本身就存在某种与生俱来的缺陷, 今天的C I M S 在国际上已不像几年前那样受到极大的关注与广泛地研究。从 C I M S 的发展来看, 众多研究者把重点放在计算机集成上, 从科学技术的现状看, 要完成这样一个集成系统

是很困难的。

C I M S 作为一种连接生产线中的单个自动化子系统的策略, 是一种提高制造效率的技术。它的技术基础具有集中式结构的递阶信息网络。尽管在这个递阶体系中有多个执行层次, 但主要控制设施仍然是中心计算机。C I M S 存在的一个主要问题是用于异种环境必须互连时的复杂性。在C I M S 概念下, 手工操作要与高度自动化或半自动化操作集成起来是非常困难和昂贵的。在C I M S 深入发展和推广应用的今天, 人们已经逐渐认识到, 要想让C I M S 真正发挥效益和大面积推广应用, 有两大问题需要解决: ①人在系统中的作用和地位; ②在不作很大投资对现有设施进行技术改造的情况下亦能应用C I M S。现有的C I M S概念是解决不了这两个难题的。今天, 人力和自动化是一对技术矛盾, 不能集成在一起, 所能做的选择, 或是昂贵的全自动化生产线, 或是手工操作, 而缺乏的是人力和制造设备之间的相容性,人机工程只是一个方面的考虑, 更重要的相容性考虑要体现在竞争、技能和决策能力上。人在制造中的作用需要被重新定义和加以重视。

C I M S 强调的是企业内部物料流的集成和信息流的集成; 而 I M S 强调的则是更大范围内的整个制造过程的自组织能力。从某种意义上讲, 后者难度更大, 但比C I M S 更实用、更实际。C I M S 中的众多研究内容是 I M S 的发展基础, 而 I M S 也将对C I M S 提出更高的要求。集成是智能的基础, 而智能也将反过来推动更高水平的集成。I M T 和 I M S的研究成果将不只是面向21 世纪的制造业, 不只是促进C I M S 达到高度集成, 而且对于FM S、 M S、CNC 以至一般的工业过程自动化或精密生产环境而言, 均有潜在的应用价值。有识之士对人工智能技术、计算机科学和C I M S 技术进行了

全面的反思。他们在认识机器智能化的局限性的基础上, 特别强调人在系统中的重要性。如何发挥人在系统中的作用, 建立一种新型的人—机的协同关系, 从而产生高效、高性能的生产系统, 这是当前众多学者都会提出的问题, 也正是C I M S 所忽视的关键因素, 这一因素导致了C I M S 发展中不可逾越的障碍。值得一提的是有的学者特别强调“人件(Humanware)”在系统中的重要性, 提出CIMS的开放结构体系思想。最引人注目的是欧共体的ESPR IT 计划中单独列出的一个研究子项, 即“以人为中心的C I M S”。甚至有人索性称以人为中心的 C I M S 为 H I M S (HumanIn tegrated M anufactu r ing System ),指出集成制造系统首先是“人的集成”。耐人寻味的是, 目前研究的“精良生产”与敏捷制造”等新型制造系统的主要出发点也是强调“人”的作用, 即“以人为中心”。

五、智能制造的物质基础及理论基础

1、智能制造系统的物质基础主要有:(1)数控机床和加工中心;(2)计算机辅助设计与制造;(3)工业控制技术、微电子技术与机械工业的结合即工业机器人的出现;(4)制造系统为智能化开发了面向制造过程中特定环节、特定问题的“智能化孤岛”,如专家系统、基干知识的系统和智能辅助系统等;

(5)智能制造系统和计算机集成制造系统;

近年来,制造技术有了长足的发展和进步,也带来了很多新问题。数控机床、自动物料系统、计算机控制系统、机器人等在工业公司得到了广泛的应用,越来越多的公司使用了“计算机集成制造系统(CIMS)”、“柔性制造系统( FMS)”、“工厂自动化 ( FA)”、“多目标智能计算机辅助设计(M1CAD)”、“模块化制造与工厂(MXMF) 、并行工程(CE)”、“智能控制系统(ICS)”以及“智

能制造( IM)”、“智能制造技术(IMT)”和“智能制造系统( IMS)”等等新术语。先进的计算机技术、控制技术和制造技术向产品、工艺和系统的设计师和管理人员提出了新的挑战,传统的设计和管理方法不能再有效地解决现代制造系统提出的问题了。要解决这些问题、需要用现代的工具和方法,例如人工智能(AI)就为解决复杂的工业问题提出了一套最适宜的工具。

2.智能制造技术的理论基础

智能制造技术是采用一种全新的制造概念和实现模式。其核心特征强调整个制造系统的整体“智能化”或“自组织能力”与个体的“自主性”。“智能制造国际合作研究计划J IRPIMS”明确提出: “智能制造系统是一种在整个制造过程中贯穿智能活动,并将这种智能活动与智能机器有机融合,将整个制造过程从订货、产品设计、生产到市场销售等各个环节以柔性方式集成起来的能发挥最大生产力的先进生产系统”。基于这个观点,在智能制造的基础理论研究中,提出了智能制造系统及其环境的一种实现模式,这种模式给制造过程及系统的描述、建模和仿真研究赋予了全新的思想和内容,涉及制造过程和系统的计划、管理、组织及运行各个环节,体现在制造系统中制造智能知识的获取和运用,系统的智能调度等,亦即对制造系统内的物质流、信息流、功能决策能力和控制能力提出明确要求。作为智能制造技术基础,各种人工智能工具,及人工智能技术研究成果在制造业中的广泛应用,促进了智能制造技术的发展。而智能制造系统中,智能调度、智能信息处理与智能机器的有机融合而构成的复杂智能系统,主要体现在以智能加工中心为核心的智能加工系统的智能单元上。作为智能单元的神经中枢——智能数控系统,不仅需要对系统内部中各种不确定的因素如噪声测量、传动间隙、摩擦、外界干扰、系统内

各种模型的非线性及非预见性事件实施智能控制,而且要对制造系统的各种命令请求做出智能反应。这种功能已远非传统的数控系统体系结构所能胜任,这是一个具有挑战性的新课题。对此有待研究解决的问题有很多,其中包括智能制造机理、智能制造信息、制造智能和制造中的计算几何等。总之,制造技术发展到今天,已经由一种技术发展成为包括系统论、信息论和控制论为核心的、贯穿在整个制造过程各个环节的一门新型的工程学科,即制造科学。制造系统集成与调度的关键是信息的传递与交换。从信息与控制的观点来看,智能制造系统是一个信息处理系统,由输入、处理、输出和反馈等部分组成。输入有物质(原料、设备、资金、人员) 、能量与信息;输出有产品与服务;处理包括物料的处理与信息处理;反馈有产品品质回馈与顾客反馈。制造过程实质上是信息资源的采集、输入、加工处理和输出的过程,而最终形成的产品可视为信息的物质表现形式。

六、智能制造系统的特征及框架结构

1.为了提出有我国特色的智能制造模式,首先要搞清智能系统应具有什么特征。当前对智能系统的理解有两种不同的意见:一种是从科学的角度来看这个问题的意见,即认为只有具备下列特征的系统才能称为智能系统:一个系统既具有人类智能(或部分地),又具有与人类实现其智能相似的过程与途径。另一种是从工程的角度来看这个问题的意见,即认为一个系统只要具有(或部分具有)人类智能就称为智能系统,而不管实现其智能的过程与途径。我们这里所讨论的问题是关于智能制造系统的问题,也就是从工程角度来讨论智能系统的问题。我们认为:在工程上,智能系统的特征有以下几个方面,具有下列特征之一的系统,从工程角度看,就可称为智能系统:

(1) 多信息感知与融合;

(2) 知识表达、获取、存储和处理(主要是识别、设计、计算、优化、推理与决策) ;

(3) 联想记忆与智能控制;

(4) 自治性自相似、自学习、自适应、自组织、自维护;

(5) 机器智能的演绎(分解)与归纳(集成) ;

(6) 容错。

2.智能制造系统模式的框架结构

整个系统是一个多智能体分布式网络结构,分成四个部分:中心层、管理层、计划层和生产层。每个层由具有自治性的多智能体组成,这种多智能体具有相似的结构,但根据任务的不同而有不同的自学习、自适应、自组织、自维护功能。智能系统有一定的容错能力,可以在不完整的信息或偶然误差出现时正常地工作。系统与因特网兼容,可以进行企业动态联盟、招标、投标及电子商务,还可形成虚拟制造的支持环境。

七.智能加工中心IMC

1.智能加工中心是智能制造系统中一种典型的智能加工机器。作为以IMC 为主的智能加工单元,其任务为感知、决策、加工、控制与学习。智能加工中心既是智能制造过程和系统的实验和应用对象,也是智能制造技术的缩影和实现通道。它与普通的加工中心(MC)有着本质的区别,除了完成数控代码规定的加工任务外,能够根据信息的综合进行自主决策,实时调整自身行为,适应环境和自身的不确定性变化,即应具有“自主性”和“自组织”能力,实现对 IMC的数控系统进行实时干预与智能控制。数控加工中心的实时智能

控制,表现为三个方面:第一是远程控制,通过通信线路对加工现场进行控制,对加工中心的加工操作和加工状态进行监视;第二是故障识别与处理,如刀具磨损识别与自动更换备用刀具、自激振动识别与自动抑制或消除等;第三是自适应控制,根据检测到的过程控制信息自适应地改变加工参数。而智能加工中心对信息的获取与处理表现在对加工环境和加工状态的自主响应能力,其中对刀具状态的监测是评判加工状态的重要依据。加工中心刀具状态实时在线智能监测系统,及基于神经网络与模糊识别模式的多传感器融合技术的刀具磨、破损监测系统的成功开发,为智能制造信息的自动获取,成功提供了有力的保证。

2. 智能加工中心的主要功能

在智能加工中心中,智能数控系统是 IMC 的神经中枢,其智能化程度直接决定了整个智能制造系统的智能水平。智能数控系统具有高级的自主控制功能,能将任务请求、作业规划、轨迹控制、过程监视与控制、错误自修复等功能有机结合起来。面向制造系统,它是任务驱动的柔性规划学习系统,而面对复杂的物流加工环境,它又是“刺激一反应”型的再励系统,能对来自内部和外界环境的多种刺激做出理智的决策,从而以最优策略完成目标任务。通过对智能制造环境下的加工过程进行分析,确定加工中心应具备的主要功能有:(1)感知功能;(2)决策功能;(3)控制功能;(4)通信功能;(5)学习功能。此外,还包括从人类专家和其它智能机器直接获取知识。

八、智能制造技木的发展趋势

智能制造是从80年代末发展起来的,最旱的几本有关智能制造及系统方面的专着是在1988年由 Wrightfg MilaciC 等人编写的,随后、 Kusiak和Pain也相继出版了这方面的研究着作。这些专着所描述的 IMS仍基于设计与

制造技术所提出的问题和解决的工具与方法。在许多工业化国家、人工智能已被当作求解现代工业提出的问题的工具和方法。因此,这些专着仅着力于人工智能在制造业中的应用和智能系统研究与应用中提出的问题的求解、使用基于知识的系统(如级联结构系统)和优化方法来解决自动化制造环境中零件、产品、系统的设计与制造,以及自动制造系统的规划与调度(管理)问题。先进的工业化国家在研究 FMS、CIMS、FA及AI筹的基础上,为了进行国际间制造业的共同协作研究、开发、设计、生产、物流、信息流、经营管理乃至制造过程的集成化与智能化等而提出来的智能制造系统,也是为了解决各发达国家面临的企业活动全球化、重复投资增大、现场熟练技术工人不足和社会对产品的需求变化等因素而倡导的国际制造业的合作。在迸行智能制造及其相关技术与系统的研究方面、首推日本在1990年提议和倡导的日、美、欧之间建立的国际运营委员会、国际技术委员会和附属机构 IMS中。大有主宰未来制造技术的趋势。

1991~1993年 Barschdor和 Monostori 等应用人工神经网络(ANNS)到智能制造中进行加工过程的建模、监测、诊断、自适应控制;通过神经网络的知识表示和学习能力,缩短CIMS的反应时间,提高产品的质量,使系统更可靠。而 Furukawa则对智能机器的设计程序及它在自动导引车中的应用作了介绍。被称为是二十一世纪的制造技术的智能制造系统,目前国内外已相继开展了国际联合研究计划。智能制造系统与当前任何制造系统相比,在体系结构上有着根本意义上的不同,具体体现在:一是采用开放式系统设计策略。通过计算机网络技术,实现共享制造数据和制造知识,以保证系统质量。这是将计算机界先进的设计和开发思想融入到制造系统的结果,因而使制造系统向拟人化的方

向进一步发展。二是采用分布式多自主体智能系统设计策略,其基本思想是:赋予制造系统中各组成部分或子系统一定的自主权,使其形成一个封闭的具有完整功能的自主体,这些自主体以网络智能结点的形式联接在通讯网络上,各个智能结点在物理上是分散的,在逻辑上是平等的。通过各结点的协同处理与合作,共同完成制造系统任务,实现人与人的知识在制造中的核心地位。

此外,生物制造与仿生机械的科学与技术、生物自生长成形制造、绿色制造的科学与技术包括产品与人类和自然的协调理论,产品绿色工艺(如Near2Zero Waste)等也极大地丰富了智能制造的范畴,促进了智能制造系统的发展。目前,我国一些高等院校也在进行智能制造技术的研究,如南京航空航天大学机电学院朱剑英教授成立的智能制造科研组,一方面跟踪国际智能制造的最新研究动态,另一方面从事智能制造关键基础技术的预研工作,为地区及我国智能制造技术的发展做出了一定贡献。遗憾的是,由于种种原因,我国政府主管部门和有关大公司、厂家并无迹象表明对智能制造已引起足够的重视,至今也未得到我国机械学科的普遍关注。相信随着人们对智能制造系统认识的逐步深入,智能制造系统必将得以迅猛发展,迎头赶上世界先进发展水平。

九、智能制造系统研究成果及存在问题

目前对分布式制造系统的研究虽然还处于初期阶段,但已在不同层次、不同侧面上取得了大量令人振奋的基础理论研究成果和应用成果,如制造Agent 的个体目标机制(如奖惩机制、市场机制、目标函数等)等。这些研究成果奠定了MAS在制造控制中应用的基础。但是,由于制造Agent 在信息、知识和控制上的完全分布,每个Agent对环境、对整个问题求解活动及其他Agent 的意图只有部分的、不完全的知识,并且拥有的知识可能互相不一致,各个Agent

只能根据不完备的知识与不完整、不同步的信息做出局部决策。又由于整个系统缺乏类似中央控制的机制,因而整个系统的控制和决策往往不能达到最优效果,而且不可避免地存在大量难以解决的决策冲突(Conflict)和死锁(Deadlock)。因此,对分布式自治制造系统中异构 Agent 间的相互合作以及全局协调机制的研究,是分布式自治制造系统最重要,也是最基本的问题,更是其走向实用所亟待解决的核心问题。协调是指一组Agent 完成一些集体活动时相互作用的性质。在分布式制造系统中,全局协调和优化是一个在多目标动态约束下,各类活动和资源的最佳组合和排序的动态求取过程,它可以描述为两个子问题,即局部调度决策和全局资源协调。由于“组合爆炸”现象的存在,当前采用的普遍方法是谈判和投标(Negotiation and Bidding)。谈判被定义为:在开放的、动态的制造控制环境下,拥有任务订单的Agent(协调者),及欲参与任务执行的 Agent (投标者)之间传递各自的资源、愿望和能力信息,反复进行协商,直到其中一个Agent或一组Agent 被选出组成执行该任务的队列的过程。在这个过程中出现的冲突和死锁或者由协调者来解决,或者由冲突中的 Agent 自行解决。为了加快谈判过程,许多研究工作致力于改进谈判策略和开发支持协商的协议和语言,目前已提出了诸如一步谈判、多步谈判、合同网等多种谈判策略和协议。分析这种谈判过程,可以看出:

(1) 在当前所采用的模型中,谈判是基于对谈判者的知识与能力、讨价还价过程、收益计算,以及子系统的影响(或能力)的平衡的显式表达,以可计算的迭代模型模拟社会或生物界的组织形式和进化过程的协调和协作方法;

(2)各个Agent 总是将其他Agent 的局部调度作为其预测信息,以计算其自己的局部调度决策。依次地,又将决策结果传递给其他 Agent。宏观上看,

这是一个串行过程。当一个Agent 产生的结果不可接受时,又需要进行反复通信和迭代。因而,各个 Agent 的内部可以看作是一个局部闭环反馈控制系统,而冲突则是其外部扰动;

(3) 全局协调的目标是要完全消解冲突,因而各 Agent 总是要利用最新的信息来处理冲突。因此,谈判实际上是一种外部合作机制。这种方法在一定程度上解决了开放环境中的 Agent 协调和协作的组合优化问题,但是该方法的一个固有缺陷是它只是对社会市场或生物界的组织形式和进化过程的直觉模仿[1 ],尚缺乏对其基本原理、机制和限制条件的深刻认识和理论上的证明,例如,在什么条件下谈判的过程是收敛的、稳定的。如何得到期望的结构或功能等。尤其当系统规模较大,而且 Agent 处于信息连续变化的高度紊乱的环境中 (如由于市场的快速变化,经常会有一些短期的、紧急的订单需要及时处理)时,有可能引起冲突的传播(即任何两个实体间冲突的解决会触发其他冲突的出现) 。这种特性类似于自催化过程,各个制造Agent 间正向 - 反向交换局部解答的动态迭代过程使得全局问题求解的复杂性成倍增长,有可能达到不可控制的程度。甚至出现混沌,其后果带来了大量的通信和控制的不确定性,造成系统异步(即通信的延迟没有上界),并由此导致各制造 Agent 常常处于等待,或开环运行状态。特别是,由于信息的不精确和延迟,各个 Agent 可能总是跟不上环境信息的变化。因此,这种将全局问题简化为局部控制与调度而带来的系统建模的简单性往往被解决冲突、协调和为了维护全局优化的一致性而进行的大量信息交互问题所抵消。

十、结束语

制造业是国家经济和综合国力的基础,被称为“立国之本”。而我国的制

造工业与发达国家相比,差距很大,主要表现为自主开发能力和技术创新能力薄弱,核心技术、关键技术仍依赖进口。对此,我国已引起重视,在“九五”科技规划和15年科技发展规划中,将先进制造技术列为重点发展领域之一。进入 21世纪,经济全球化的进程日益加快,制造业领域的竞争日益加剧,而竞争的核心是先进制造技术。在此环境下,我们只有抓住机遇,迎接挑战,利用先进制造技术改造传统产业,实现技术创新、机制创新、管理创新及人才创新,才能实现我国跻身世界制造强国的目标。

未来必然是以高度的集成化和智能化为特征的自动化制造系统,并以部分取代制造中人的脑力劳动为研究目标,而不同于和在制造中的应用也是当代传统制造技术、新兴计算机技术、人工智能技术与、等发展的必然结果,亦即在整个制造过程中通过计算机将人的智能活动与智能机器有机融合,以便有效地推广专家的经验知识,从而实现制造过程的最优化、智能化和自动化。对于它的研究不仅是为了提高产品质量和生产效率及降低成本,而且也是为了提高国家制造业响应市场变化的能力和速度,以期在未来际竞争中求得生存和发展。它的研究成果,将不只是面向世纪的制造业及促进达到更高程度的集成,就是对于乃至一般工业过程的自动化或精密生产环境而言,均有潜在的应用价值。它的出现将使人们从一个完全崭新的角度去从事科学技术和制造领域的研究。所以,无疑是世纪的制造技术与系统,国际上对其研究的兴起也决非偶然。在我国,虽然企业与技术转移问题目前尚不严重,但是发达国家一旦拥有,而我们又在这方面与之相差甚远的话,我们将面临失去更多与之竞争机会的危险。因为一方面它是世纪的制造技术和系统,发达国家将不再“依赖”发展中国家的“廉价”劳动力另一方面专业技术人员和

熟练技术工人缺乏问题在我国尤其严重,企业生产中的各个环节相脱节的现象也十分突出再者重复投资增大、企业生产的不规范化及自动化程度低下等也是大问题。目前发达国家正在积极起动这一高新技术,并投巨资、集中大批优秀人才进行跨国合作研究与开发,我国也应当适度开展跟踪研究。因此,基于国外发达国家积极抢占这一国际制造业制高点的严峻形势,参照我国实情,我们认为当前应该系统深入地开展的基础理论研究和现有加工单元技术与机器设备的智能自动化研究。特别是开发出具有自身特色的即能实现高精度易操作和无人管理的柔性制造系统,以满足我国制造业日益发展的需要。如果条件许可,还可试点进行研究领域中的下一代设计过程、工厂、自主功能模块和虚拟制造系统等方面的前期实验研究工作。只有这样,方能在未来制造技术领域争得一席之地。

参考文献

[ 1 ] 熊有伦, 张卫平. 制造科学- - 先进制造技术的源泉. 科学通报,1998, 43 -337 - 344

[ 2 ] Hendrik Van Brussel . Holonic Manu facturing Systems : The Vision Matching the Problem. First European C on ference on Holonic Manu facturingSystems. Hannover, G ermany, Dec. 1, 1994.

[3 ] 段广洪等. 多智能体系统:一种新型的生产运行模式. 中国机械工程, 1998, 9 (2) : 23 - 27.

[4 ] 史忠植. 高级人工智能. 北京: 科学出版社, 1998.

[5]杨文通,王曹刘志峰,等数字化网络化制造技术北京电子工业出版社,

[6]王英林,刘敏,张申生,基于Agent的敏捷供应链及相关技术中国机械工程,

[7]张军,赵江洪网络协同数控机床工业设计系统中的知识获取与应用研究〔机械工程学报〕

[8] 卞益民,郑成博.柔性制造技术的现状及发展趋势【J】.巾国科技纵横,2009(11)

[9]张亚明.柔性制造技术及应用【J】.煤炭技术,2008,27(3)

[10] 谭天. [J]. 世界制造技术与装备市场, 2002, (02) .

[11] 沃克·弗雷斯,雷汉秀. [J]. 机械制造, 2005, (10) .

智能制造技术的发展论文

智能制造技术的发展 (共10页) 姓名:陈加定 学号:SF1105006 南京航空航天大学 2011/12/23

智能制造技术的发展 摘要:介绍了智能制造提出的背景、主要研究内容和目标, 人工智能与 I M T、 I M S的 关系, I M S 和 C I M S, 智能制造的物质基础及理论基础, 智能制造系统的特征及框架 结构, 并简要介绍了智能加工中心 IMC, 智能制造技木的发展趋势,以及智能制造系统研 究成果及存在问题。 关键词:智能制造,智能制造技术,IMS,IMC,IMT。 一、智能制造技术提出的背景 制造业是国民经济的基础工业, 是决定国家发展水平的最基本因素之一。从机械制造业发展的历程来看, 经历了由手工制作、泰勒化制造、高度自动化、柔性自动化和集成化制造、并行规划设计制造等阶段。就制造自动化而言, 大体上每十年上一个台阶: 50~60年代是单机数控, 70 年代以后则是CNC机床及由它们组成的自动化岛,80年代出现了世界性的柔性自动化热潮。与此同时, 出现了计算机集成制造, 但与实用化相距甚远。随着计算机的问世与发展, 机械制造大体沿两条路线发展: 一是传统制造技术的发展, 二是借助计算机和自动化科学的制造技术与系统的发展。80年代以来, 传统制造技术得到了不同程度的发展,但存在着很多问题。先进的计算机技术和制造技术向产品、工艺和系统的设计人员和管理人员提出了新的挑战, 传统的设计和管理方法不能有效地解决现代制造系统中所出现的问题, 这就促使我们借助现代的工具和方法, 利用各学科最新研究成果, 通过集成传统制造技术、计算机技术与科学以及人工智能等技术, 发展一种新型的制造技术与系统, 这便是智能制造技术 ( Intelligent Manufacturing Technology, IMT) 与智能制造系统( Intelligent M anufacturing System,IMS)。 90 年代以后, 世界各国竞相大力发展 I M T 和I M S 的深层次原因有:(1)集成化离不开智能;(2)机器智能化比较灵活;(3)智能化的经济效益较高;

智能制造的现状与未来

智能制造的现状与未来 杜超 (南京航空航天大学机电学院航空宇航制造工程系,南京,210000) 摘要:科学技术不断发展,推动我国各领域进步,由先进制造技术、信息技术、人工智能技术集于一身的智能制造技术已出现。智能制造以一种高度柔性与高度集成的方式,通过计算机来模拟人类专家实现生产制造过程。综述国内外智能制造发展现状,结合德国提出的“工业”和我国提出的“中国制造2025”战略论述智能制造的未来发展。 关键词:智能制造;工业;中国制造2025;未来发展 The present situation and future of intelligent manufacturing Chao Du (Aerospace Manufacturing Engineering, Nanjing University of Aeronautics & Astronautics,Nanjing 210000) Abstract:The continuous development of science and technology promote the progress of various fields in our country. Intelligent manufacturing technology has emerged with advanced manufacturing technology, information technology and artificial intelligence technology. Intelligent manufacturing is a highly flexible and highly integrated way, through the computer to simulate human experts to achieve manufacturing process. The development status of intelligent manufacturing at home and abroad is reviewed, and the future development of intelligent manufacturing is discussed in combination with the "industrial " submitted by German and the "China made 2025" submitted by China. Key words:intelligent manufacturing; industrial ; China made 2025; future development 引言 近年来,在工业领域与信息技术领域,都发生了深刻的变革。在工业领域主要包括工业机器人、3D打印等,而在信息技术领域主要包括大数据、云计算、社交网络、移动互联、人工智能等。这些变革带来了制造业的新一轮革命,特别是作为信息化与工业化高度融合产物的智能制造得到了长足发展。与以往发生的工业革命相同,西方发达国家在新的一轮制造业革命中依然扮演着重要的角色。具有代表性的是美国创新战略、先进制造业国家战略计划;日本的新产业创造战略;欧盟的智能制造系统(IMS2O20)路线图计划、德国的“工业”计划;韩国的高级先进制造技术计划(G-7)等[1]。中国也提出了“中国制造2025”,加快从制造大国转向制造强国。 1 智能制造的概念 智能制造技术[2]是指在制造工业的各个环节,以一种高度柔性与高度集成的方式,通过计算机来模拟人类专家制造的智能活动,对制造问题进行分析、判断、推理、构思和决策,旨在取代或延伸制造环境中人的部分脑力劳动;并对人类专家的制造过程进行收集、存贮、完善、共享、继承和发展。智能制造技术是制造技术、自动化技术、系统工程、人工智能等学科相互渗透和融合的一种综合技术。智能制造技术的研究对象是世界范围内的整个制造环境的集成化与自组织能力,包括智能制造处理技术、自组织加工单元、自组织机器人、智能

智能制造技术

人机一体化智能系统 车辆15-2班刘博洋智能制造,源于人工智能的研究。一般认 为智能是知识和智力的总和,前者是智能的基 础,后者是指获取和运用知识求解的能力。智 能制造应当包含智能制造技术和智能制造系 统,智能制造系统不仅能够在实践中不断地充 实知识库,而且还具有自学习功能,还有搜集与理解环境信息和自身的信息,并进行分析判断和规划自身行为的能力。 一、智能制造的制造原理 从智能制造系统的本质特征出发,在分布式制造网络环境中,根据分布式集成的基本思想,应用分布式人工智能中多Agent系统的理论与方法,实现制造单元的柔性智能化与基于网络的制造系统柔性智能化集成。根据分布系统的同构特征,在智能制造系统的一种局域实现形式基础上,实际也反映了基于Internet 的全球制造网络环境下智能制造系统的实现模式。 二、智能制造系统 智能制造系统是一种由智能机器和人类专家共同组成的人机一体化系统,它突出了在制造诸环节中,以一种高度柔性与集成的方式,借助计算机模拟的人类专家的智能活动,进行分析、判断、推理、构思和决策,取代或延伸制造环境中人的部分脑力劳动,同时,收集、存储、完善、共享、继承和发展人类专家的制造智能。由于这种制造模式,突出了知识在制造活动中的价值地位,而知识经济又是继工业经济后的主体经济形式,所以智能制造就成为影响未来经济发展过程

的制造业的重要生产模式。智能制造系统是智能技术集成应用的环境,也是智能制造模式展现的载体。 一般而言,制造系统在概念上认为是一个复杂的相互关联的子系统的整体集成,从制造系统的功能角度,可将智能制造系统细分为设计、计划、生产和系统活动四个子系统。在设计子系统中,智能制定突出了产品的概念设计过程中消费需求的影响;功能设计关注了产品可制造性、可装配性和可维护及保障性。另外,模拟测试也广泛应用智能技术。在计划子系统中,数据库构造将从简单信息型发展到知识密集型。在排序和制造资源计划管理中,模糊推理等多类的专家系统将集成应用;智能制造的生产系统将是自治或半自治系统。在监测生产过程、生产状态获取和故障诊断、检验装配中,将广泛应用智能技术;从系统活动角度,神经网络技术在系统控制中已开始应用,同时应用分布技术和多元代理技术、全能技术,并采用开放式系统结构,使系统活动并行,解决系统集成。 由此可见,IMS理念建立在自组织、分布自治和社会生态学机理上,目的是通过设备柔性和计算机人工智能控制,自动地完成设计、加工、控制管理过程,旨在解决适应高度变化环境的制造的有效性。 三、智能制造系统的综合特征 (1)自律能力 即搜集与理解环境信息和自身的信息,并进行分析判断和规划自身行为的能力。具有自律能力的设备称为“智能机器”,“智能机器”在一定程度上表现出独立性、自主性和个性,甚至相互间还能协调运作与竞争。强有力的知识库和基于知识的模型是自律能力的基础。 (2)人机一体化

现代先进制造技术的应用与发展论文

现代先进制造技术的应用与发展(The application and the development of contemporary advanced manufacturing technology) 班级:土木工程系城市地下空间1班 姓名:李孟颖

现代先进制造技术的应用与发展 摘要:先进制造技术集成现代科学技术和工业创新的成果,充分利用了信息技术,使制造技术提高到新的高度。先进制造技术是发展国民经济的重要基础技术之一,对我国的制造业发展有着举足轻重的作用。熟练掌握现代制造技术是我国制造业发展的前提和要求之一。 关键词:现代先进制造技术,简介,应用,发展,工业机器人。 1.引言 1.1什么是先进制造技术 先进制造技术是制造业不断吸收机械、电子、信息(计算机与通信、控制理论、人工智能等)、能源及现代系统管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务乃至回收的全过程,以实现优质、高效、低耗、清洁和灵活生产,提高对动态多变的产品市场的适应能力和竞争能力的制造技术的总称。 1.2现代先进制造技术的现状 工业发达国家都把先进制造技术作为国家级关键技术和优先发展领域。尽管决定国家综合竞争力的因素有多种,但制造业的基础地位不能忽视。20世纪90年代以来,各发达国家,如美国、日本、欧共体、德国等都针对先进制造技术的研发提出了国家级发展计划,旨在提高本国制造业的国际竞争能力。 1.3现代先进制造技术的应用与发展趋势 1.3.1现代先进制造技术的应用 CAD/CAM(计算机辅助设计/计算机辅助制造),MIS(管理信息系统),CAT(计算机辅助测试),CAE(计算机辅助工程) 1.3.2现代先进制造技术的发展趋势 信息化,精密化,集成化,柔性化,动态化,虚拟化,智能化,绿色化,全球化 2.先进制造技术的分类 2.1虚拟制造技术 2.1.1虚拟制造技术简介 虚拟制造是在产品设计阶段实时地、并行地模拟产品未来制造全过程及其对产品设计的影响,预测产品性能、产品的可制造性、产品的成本等,从而更有效地、柔性灵活地组织生产,并使新产品开发一次获得成功,目的是尽量降低产品的成本,缩短产品的开发周期,提高产品的质量和寿命,快速有效地响应瞬息万变的市场。 2.1.2虚拟制造技术的应用与发展 美国、欧洲等国开始对其进行研究,并在虚拟原型系统开发、虚拟环境构筑、虚拟装配等方面取得了一系列的成果;除了实验室的研究工作外,虚拟制造在工业上,尤其是汽车、飞机、军工等领域也得到有效应用并取得明显收益。虚拟制造技术的发展前景是非常广阔的,其与Internet的结合将发展成为一项很有前景和应用潜力的技术。 2.2微细加工技术 2.2.1微细加工技术简介 微细加工技术是指加工微小尺寸零件的生产加工技术。从广义的角度来讲,微细加工包括各种传统精密加工方法和与传统精密加工方法完全不同的方法,如切削技术,磨料加工技术,电火花加工,电解加工,化学加工,超声波加工,微波加工,等离子体加工,外延生产,激光加工,电子束加工,粒子束加工,光刻加工,电铸加工等。从狭义的角度来讲,微细加工主要是指半导体集成电路制造技术,因为微细加工和超微细加工是在半导体集成电路制造

全球智能制造装备行业发展现状及前景分析

全球智能制造装备行业发展现状及前景分析 智能制造产业链涵盖智能装备(机器人、数控机床、服务机器人、其他自动化装备),工业互联网(机器视觉、传感器、RFID、工业以太网)、工业软件(ERP/MES/DCS 等)、3D打印以及将上述环节有机结合的自动化系统集成及生产线集成等。全球范围来看,除了美国、德国和日本走在全球智能制造前茅,其余国家也在积极布局智能制造发展。(一)全球智能制造行业发展现状及前景分析 1、全球智能制造行业发展概况 智能制造产业链涵盖智能装备(机器人、数控机床、服务机器人、其他自动化装备),工业互联网(机器视觉、传感器、RFID、工业以太网)、工业软件(ERP/MES/DCS等)、3D 打印以及将上述环节有机结合的自动化系统集成及生产线集成等。全球范围来看,除了美国、德国和日本走在全球智能制造,其余国家也在积极布局智能制造发展。 2、全球智能制造行业规模分析 智能制造装备是智能制造的主要体现载体智能制造装备涉及的工业机器人、3D打印设备、数控机床、智能控制系统、传感器等主要行业,产业规模实现快速增长。根据工信部的统计,2010年以来我国制造业产值规模占全球的比重在19%-21%之间。2016年,我国智能制造行业产值规模达12233亿元。据此测算,2016年,全球智能制造产值规模在8687亿美元左右。 1、全球工业机器人市场现状及前景分析 (1)全球工业机器人行业发展概况 工业机器人是智能制造业最具代表性的装备。日本、美国、德国和韩国是工业机器人强国。日本号称“机器人王国”,在工业机器人的生产、出口和使用方面都居世界榜首;日本工业机器人的装备量约占世界工业机器人装备量的60%。 (2)全球工业机器人市场规模分析 据国际机器人协会统计,1998年以来全球新装工业机器人年均增速达9%。金融危机影响后,全球机器人行业市场规模不断扩大,2015年全球工业机器人销量超过25.4万台。

先进制造技术作业论文

浅谈现代机械制造技术的新发展编辑条目06.26 关键字: 0.前言目前,随着电子、信息等高新技术的不断发展及市场需求个性化与多样化,世界各国都把机械制造技术的研究和开发作为国家的关键技术进行优先发展,将其他学科的高技术成果引入机械制造业中。因此机械制造业的内涵与水平已今非昔比,它是基于先进制造技术的现代制造产业。纵观现代机械制造技术的新发展,其重要特征主要体现在它的绿色制造、计算机集成制造、柔性制造、虚拟制造、智能制造、并行工程、敏捷制造和网络制造等方面。 1.现代机械制造技术的特征(1)机械制造科学是由机械、计算机、信息、材料、自动化等学科有机结合而发展起来的一门跨学科的综合科学,它随不同对象和时间而改变功能结构及信息系统。(2)柔性、集成、并行工作。现代机械制造系统具有多功能性和信息密集性,能够制造生产成本与批量无关的产品,能按订单制造,满足产品的个性要求。(3)制造智能化。能够代替熟练工人的技艺,具有学习工程技术人员多年实践经验和知识的能力,并用以解决生产实际问题。智能制造系统能发挥人的创造能力和具有人的智能和技能,强调以人为系统的主导者这一总的概念。在智能制造系统中,智能和集成并列,集成是智能的重要支撑,反过来智能又促进集成水平的提高。(4)设计与工艺一体化。传统的制造工程设计和工艺分步实施,造成了工艺从属于设计、工艺与设计脱离等现象,影响了制造技术的发展。产品设计往往受到工艺条件的制约,受到制造可靠性、加工精度、表面粗糙度、尺寸等限制。因此,设计与工艺必须密切结合,要以工艺为突破口,形成设计与工艺的一体化。(5)精密加工技术是关键。精密和超精密加工技术是衡量先进制造技术水平的重要指标之一。当前,纳米加工技术代表了制造技术的最高精度水平。(6)产品生命周期的全过程。现代制造技术是一个从产品概念开始,到产品形成、使用,一直到处理报废的集成活动和系统。在产品的设计中,不仅要进行结构设计、零件设计、装配设计,而且特别强调拆卸设计。使产品报废处理时,能够进行材料的再循环。节约能源,保护环境。(7)人、组织、技术三结合。现代制造技术强调人的创造性和作用的永恒性,提出了由技术支撑转变为人、组织、技术的集成;强调了经营管理、战略决策的作用。在制造工业战略决策中,提出了市场驱动、需求牵引的概念,强调用户是核心,用户的需求是企业成功的关键,并且强调快速响应市场需求的重要性。 2.现代机械制造技术的内容和发展方向 2.1 绿色制造(GM)绿色制造是一个综合考虑环境影响和资源效率的现代制造模式。绿色制造是可持续发展战略在制造业中的重要体现。其目标是使产品在设计、制造、装配、运输、销售及使用的整个过程中努力做到资源的优化利用、清洁生产和废弃物的最少化及综合利用。要力求实现切削加工工艺的绿色化。目前这一绿色加工工艺主要集中在不使用切削液上,这主要是因为切削液既污染环境和危害工人健康,又增加资源和能源的消耗。而干切削和干磨削一般是大气氛围中(氮气中、冷风中或采用干式静电冷却技术)不使用切削液进行的切削。不过对某些加工方式和工件组合,完全不使用切削液的干切削和干磨削在实际中很难实现,故又出现了使用极微量润滑(MQL)的准干切削。目前,在欧洲的大批量机械加工中,已有10%~15%的加工使用了干切削和准干切削。 2.2 计算机集成制造(CIM)CIM就是通过计算机实现信息集成,实现现代化的生产制造,求得企业的总体效益,使企业能够持续稳定的发展。随着计算机的普及应用,计算机集成制造已成为规模生产的主要科技,企业从市场预测、产品设计、加工制造、经营管理直至售后服务是一个不可分割的整体,需要统筹考虑,集成制造主要指:(1)人员集成,管理者、设计者、制造者、保障者(负责质量、销售、采购、服务等的人员)以及用户应集成为一个协调整体。(2)信息集成,产品生命周期中各类信息的获取、表示、处理和操作工具集成为一体,组成统一的管理控制系统。特别是产品信息模型(PIM:Product Information

全球智能制造发展现状

全球智能制造发展现状 智能制造产业链涵盖智能装备(机器人、数控机床、服务机器人、其他自动化装备),工业互联网(机器视觉、传感器、、工业以太网)、工业软件 (ERP/MES/DCS等)、3D打印以及将上述环节有机结合的自动化系统集成及生产线集成等。 全球范围来看,除了美国、德国和日本走在全球智能制造前端,其余国家也在积极布局智能制造发展。例如,欧盟将发展先进制造业作为重要的战略,在2010年制定了第七框架计划(FP7)的制造云项目,并在2014年实施欧盟“2020地平线”计划,将智能型先进制造系统作为创新研发的优先项目。加拿大制定的1994-年发展战略计划,将具体研究项目选择为智能计算机、人机界面、机械传感器、机器人控制、新装置、动态环境下系统集成。 根据工信部的统计,2010年以来我国制造业产值规模占全球的比重在 19%-21%之间。2016年,我国智能制造行业产值规模达12233亿元。据此测算,2016年,全球智能制造产值规模在8687亿美元左右。2017年,全球智能制造持续高速增长的态势,预计2017年全年产值规模将达到1万亿美元左右。 ◆全球工业机器人行业发展现状 工业机器人是智能制造业最具代表性的装备。根据IFR(国际机器人联合会)发布的最新报告,2016年全球工业机器人销量继续保持高速增长。2016年全球工业机器人销量约29.0万台,同比增长14%。其中,中国工业机器人销量9万台,同比增长31%。IFR预测,未来十年,全球工业机器人销量年平均增长率将保持在12%左右。预计2017全年,全球工业机器人销量在33万台左右。 全球智能制造发展发展前景及趋势 2017年,具有连接和感知能力的机器人继续引领智能制造发展,随着AI 技术的进步,工业机器人也变得更加智能,并能够感知,学习和自己做决策。前瞻产业研究院结合当前全球智能制造的发展现状和发展趋势,保守估计未来几年全球智能制造行业将保持15%左右的年均复合增速,预计到2023年全球智能制造的产值将达到23108亿美元左右。 (三)面对智能制造发展的迫切需求及市场空间,国内各领域企业纷纷进军系统解决方案领域 国内智能制造改造需求迫切,系统解决方案市场需求广阔。一是随着国内劳动力人口逐渐减少以及劳动力成本的逐渐上升,企业迫切需要实施机器换人战略,就工业机器人来看,2014年国内工业机器人销售同比增长了56%。二是互联网时代,用户需求日趋多样化、定制化,企业订单呈现出小型化、碎片化的发展趋势,

先进制造技术论文

题目:人工智能先进制造技术论文 学院:机械工程 专业:机械设计制造及其自动化班级: 122 学号: 1208030366 学生姓名:杨瑞 指导教师:贺福强 2015 年 12 月 26 日

目录 一、概述 二、人工智能技术的国内外发展现状与趋势 三、人工智能技术的主要研究内容与核心技术难题 四、人工智能技术的评价与认识 五、结论 六、参考文献

概述 先进制造技术(advanced manufacturing technique,缩写AMT,具体地说,就是指集机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统的总称。主要包括:计算机辅助设计、计算机辅助制造、集成制造系统等。 先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。而先进制造技术主要包括以下三个技术群: (1)主体技术群:是制造技术的核心,它包括两个基本部分:有关产品设计技术和工艺技术。 (2)支撑技术群:a.信息技术:接口和通信、数据库技术、集成框架、软件工程人工智能、专家系统和神经网络、决策支持系统。b.标准和框架:数据标准、产品定义标准、工艺标准、检验标准、接口框架。c.机床和工具技术。d.传感器和控制技术:单机加工单元和过程的控制、执行机构、传感器和传感器组合、生产作业计划。e.其它; (3)制造技术基础设施.要素包括了车间工人、工程技术人员和管理人员在各种先进生产技术和方案方面的培训和教育等。 先进制造技术是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。 先进制造技术是当今国际间科技竞争的焦点,随着社会的发展,市场需求的个性化与多元化,人们对产品的要求也日益多元化,市场竞争日趋激烈,企业要在日趋激烈的市场竞争中生存发展,就必须采用先进的制造技术。

智能制造技术的国内外发展现状

智能制造技术的国内外展现状 智能制造技术无疑是世界制造业未来发展的重要方向之一,所谓智能制造技术,是指在现代传感技术、网络技术、自动化技术、拟人化智能技术等先进制造技术的基础上,通过智能化感知、人机交互、决策和执行技术,实现设计过程、制造过程和制造装备智能化,是信息技术和智能技术与装备制造过程技术的深度融合与集成。作为智能制造的重要工具之一,自动化技术的发展程度无疑决定着智能制造发展的成败。 全球智能制造发展趋势: 1.以3D打印为代表的“数字化”制造技术崭露头角。 2.智能制造技术创新及应用贯穿制造业全过程。 3.世界范围内智能制造国家战略空前高涨。 国外智能制作技术发展现状 世界主要工业化发达国家提早布局。自20世纪80年代末智能制造提出以来,世界各国都对智能制造系统进行了各种研究,首先是对智能制造技术的研究,然后为了满足经济全球化和社会产品需求的变化,智能制造技术集成应用的环境—智能制造系统被提出。日本于1989年提成智能制造系统,且于1994年启动了先进制造国际合作研究项目,其中包括公司集成和全球制造、制造知识体系、分布智能系统控制、快速产品实现的分布智能系统技术等。美国与1992年执行新技术正常,大力支持包括信息技术和新的制造工艺,智能制造技术

在内的关键重大技术。欧盟于1994年启动新的研发项目,选择了39项核心技术,其中信息技术、分子生物学和先进制造技术中均突出了智能制造技术的地位。近来,各国除了对智能制造技术进行研究外,更多的是进行国际间的合作研究。 世界主要工业化发达国家将智能制造作为重振制造业战略的重要抓手。金融危机以来,在寻求危机决绝方案的过程中,美、德、日等国政府和相关专业人士纷纷提出通过发展智能制造来重振制造业。国内智能制造技术的发展现状与存在的问题 1.发展现状 国内取得了一批基础研究成果和智能制造技术。我国对智能制造的研究开始于20世纪80年代末。在最初的研究中在智能制造技术方面去得了一些成果,而进入21世纪以来的十年当中智能制造在我国迅速发展,在许多重点项目方面取得成果,智能制造相关产业也出具规模。我国已取得了一批相关的基础研究成果和长期制约我国产业发展的智能制造技术,如机器人技术、感知技束、工业通信网络技术、控制技术、可靠性技术、机械制造工业技术、数控技术与数字化制造、复杂制造系统、智能信息处理技术等;攻克了一批长期严重依赖并影响我国产业安全的核心高端装备,如盾构机、自动化控制系统、高端加工中心等。建设了一批相关的国家重点实验室、国家工程技术研究中心、国家级企业技术中心等研发基地,培养了一大批长期从事相关技术研究开发工作的高技术人才。 国内智能制造装备产业体系初步形成。随着信息技术与先进制造

(含题目)现代制造技术课题论文

广东石油化工学院 《先进制造系统》课程论文 题目产品数据管理技术(PDM) 机电工程院(系)工业工程专业 学生姓名冯燕颜学号 04 起讫日期 2012.12.05- 2012.12.18

摘要 产品数据管理( PDM) 将计算机在产品设计、分析、制造、工艺规划和质量管理等方面的信息孤岛集成在一起准确地描述了企业想干什么事情的全部信息。PDM主要解决的就是生产活动中不断变化、不断进步的动态信息管理。PDM 系统使原来局限于产品制造过程的自动化发展到产品设计过程、生产过程和经营管理过程的自动化, 是企业全局信息的集成的平台。 PDM是在20世纪90年代初才开始在国际市场上形成软件产品的一种新技术,它是在CAD/CAM/CAE和EDM的基础上逐步发展起来的,主要归因于国际上许多大型企业逐渐接受PDM并把它作为支持企业经营过程重组、并行工程,ISO9000认证等的使能技术。1984年一些行业的领头羊如波音、休斯、奔驰、摩托罗拉等公司纷纷投入巨资实PDM以作为保持企业竞争力的主要手段。而今,随着CAD/CAM及CIMS技术的迅速发展和应用,PDM变得越来越重要,成为当今最热门的技术之一。 关键词:产品数据管理(PDM);信息管理;

目录 第一章产品数据管理概论 (1) 1.1 PDM的基本概念 (1) 1.2 PDM系统的体系结构 (1) 第二章 PDM系统的主要功能 (2) 2.1电子仓库与文档处理 (2) 2.2工作流或过程管理 (2) 2.3 产品结构与配置管理 (2) 2.4 零件分类管理与检索 (2) 2.5 项目管理功能 (3) 第三章 PDM系统的实施技术 (3) 3.1 PDM实施的目标与内容 (3) 3.2 PDM系统实施步骤 (3) 第四章 PDM实施中的信息建模 (4) 4.1 人员管理模型 (4) 4.2 产品对象的数据模型 (4) 4.3 产品结构管理模型 (5) 4.4 产品配置管理模型 (5) 4.5 过程管理模型 (5) 第五章 PDM的应用集成 (5) 5.1 PDM是CAD/CAPP/CAM的集成平台 (6) 5.2基于PDM系统的企业信息集成 (6) 第六章 PDM软件应用 (6) 6.1 PDM软件的基本功能 (7) 6.2 PDM软件选型的基本原则 (9) 致谢 (11) 参考文献 (12)

2016年中国智能制造行业发展现状及特点

2016年中国智能制造行业发展现状及特点 一、智能制造行业发展阶段 中国智能制造处于初级发展阶段,同样也是大部分处于研发阶段,仅16%的企业进入智能制造应用阶段;从智能制造的经济效益来看,52%的企业其智能制造收入贡献率低于10%,60%的企业其智能制造利润贡献低于10%。而90%的中小企业智能制造实现程度较低的原因在于,智能化升级成本抑制了企业需求,其中缺乏融资渠道影响最大。年收入小于5亿元人民币的企业中,50%的企业在智能化升级过程中采用自有资金,25%为政府补贴,银行贷款和资本市场融资各占11%。而企业收入规模大于50亿元人民币的企业,其智能化升级资金来源中自有资金占67%,银行贷款占比25%。整体而言,中小微型企业的银行贷款比例低于大中型企业,占企业数量绝大多数的中小企业只能依靠自有资金进行智能化改造。 不过,智能制造水平较低,意味着夯实发展基础的必要性,同样也意味着后续发展潜力的巨大。近年来,全国多个地方都在谋划智能制造发展,包括上海、浙江、江苏、天津、安徽、重庆、河南、辽宁、四川、青岛、北京、广东、黑龙江等省市都在摩拳擦掌,或成立机器人、工业4.0或工业互联网等与智能制造相关的联盟,或出台具体产业规划。 二、智能制造行业运行特征 (一)制造强国战略出台并实施,各级地方政府积极推进地区规划政策落实 我国制造业步入新常态下的攻坚阶段,制造强国战略开始推进实施。经过多年迅猛发展,我国已稳居世界制造业第一大国,对全球制造业的影响力不断提升。但随着全球经济结构深度调整,我国制造业面临“前后夹击”的双重挑战。从国内来看,经济发展正处于增速换档和结构调整阵痛的关键节点,制造业潜在增长率趋于下降。总体来看,我国经济发展已进入以中高速、优结构、多挑战、新动力为特征的新常态阶段。2015年5月8日,国务院出台制造强国中长期发展战略规划《中国制造2025》,全面部署推进制造强国战略实施,坚持创新驱动、智能转型、强化基础、绿色发展,加快从制造大国转向制造强国。 以《中国制造2025》为总纲,各地方陆续出台智能制造领域的扶持政策。在《中国制造2025》这一国家战略的指导下,各级地方政府因地制宜,陆续出台相关行动计划,全面对接《中国制造2025》。江苏、广东、福建、四川、安徽等省份借助《中国制造2025》战略支点,分别出台了《江苏行动纲要》、《广东省智能制造发展规划(2015-2025)》、《福建省实施行动计划》、《四川行动计划》、《中国制造2025安徽篇》等政策,以抢占未来产业竞争制高点,加快制造强省的建设步伐。佛山、南京等在国家制造强国战略以及省级行动计划的指导下,进一步分析产业特色,陆续制定与《中国制造2025》相衔接的制造业发展计划,找准转型升级基础,引领制造业向中高端迈进。 (二)随着互联网技术及理念加快渗透,制造企业着手推动商业模式、组织方式等多方

智能制造技术路线图

智能制造技术路线图 摘要: 新一代信息通信技术产业、高档数控机床和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业装备、新材料、生物医药及高性能医疗器械十大重点领域进入《技术路线图》,意味着互联网和传统工业的融合将是发展的制高点,智能制造将是中国制造未来的主攻方向。 日前,国家制造强国建设战略咨询委员会在京正式发布《〈中国制造2025〉重 点领域技术路线图(2015版)》。新一代信息通信技术产业、高档数控机床和 机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业装备、新材料、生物医药及高性能医疗器械十大重点领域进入《技术路线图》。 引领发展方向 2010年以来我国制造业增加值连续五年超过美国成为制造大国,一些优势领域 已达到或接近世界先进水平。然而,我国制造业大而不强,创新能力、整体素质和竞争力与发达国家相比仍有明显差距。加快实现从制造大国向制造强国的转变,已成为新时期我国经济社会发展的重大战略任务。 为了推进这一历史性的转变,国务院组织编制并于今年5月19日正式发布《中国制造2025》,对我国制造业转型升级和跨越发展做了整体部署,提出了我国 制造业由大变强“三步走”战略目标,明确了建设制造强国的战略任务和重点,是我国实施制造强国战略的第一个十年行动纲领。 制造业覆盖面很广,为了确保我国十年后能够迈入制造强国行列,必须坚持整 体推进、重点突破的发展原则。受国家制造强国建设战略咨询委员会委托,中国工程院围绕《中国制造2025》确定的新一代信息通信技术产业、高档数控机床 和机器人、航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、节能与新能源汽车、电力装备、农业装备、新材料、生物医药及高性能医疗器械等十大重点领域未来十年的发展趋势、发展重点和目标等进行了研究,提出了十大

吉林大学--先进制造技术课程小论文——当前现代制造技术的发展趋势

当前现代制造技术的发展趋势 XXXXX机械学院 摘要制造业是现代国民经济和综合国力的重要支柱,其生产总值一般占一个国家国内生产总值的20%~55%。在一个国家的企业生产力构成中,制造技术的作用一般占60%左右。专家认为,世界上各个国家经济的竞争,主要是制造技术的竞争。其竞争能力最终体现在所生产的产品的市场占有率上。随着经济技术的高速发展以及顾客需求和市场环境的不断变化,这种竞争日趋激烈,因而各国政府都非常重视对先进制造技术的研究。 关键字: 制造先进制造技术装备机械信息化数字化前沿科技应用前景 1信息技术对先进制造技术的发展起着越来越重要的作用 信息化是当今社会发展的趋势,信息技术正在以人们想象不到的速度向前发展。信息技术也正在向制造技术注入和融合,促进着制造技术的的不断发展。可以说先进制造技术的形成与发展,无不与信息技术的应用与注入有关。它使制造技术的技术含量提高,使传统制造技术发生质的变化。信息技术对制造技术发展的作用目前已占第一位。在21世纪对先进制造技术的各方面发展将起着更重要的作用。 信息技术促进着设计技术的现代化,加工制造的精密化、快速化,自动化技术的柔性化、智能化,整个制造过程的网络化、全球化。各种

先进生产模式的发展,如CIMS、并行工程、精益生产、灵捷制造、虚拟企业与虚拟制造,也无不以信息技术的发展为支撑。 2设计技术不断现代化 产品设计是制造业的灵魂。现代设计技术的主要发展趋势是: (1)设计手段的计算机化 在实现了计算机计算、绘图的基础上,当前突出反映在数值仿真或虚拟现实技术在设计中的应用,以及现代产品建模理论的发展上,并且向智能化设计方向发展。 (2)新的设计思想和方法不断出现 如并行设计、面向“X”的设计(Design For X--DFX)、健壮设计(Robust Design)、优化设计Optimal Design)、反求工程技术(Revese Engineering)等。 (3)向全寿命周期设计发展 传统的设计只限于产品设计,全寿命周期设计则由简单的、具体的、细节的设计转向复杂的总体的设计和决策,要通盘考虑包括设计、制造、检测、销售、使用、维修、报废等阶段的产品的整个生命周期。(4)设计过程由单纯考虑技术因素转向综合考虑技术、经济和社会因素 设计不只是单纯追求某项性能指标的先进和高低、而是注意考虑市场、价格、安全、美学、资源、环境等方面的影响。 3 成形及改进制造技术向精密、精确、少能耗、无污染方向发展

智能制造发展规划(2016年-2020年)

智能制造发展规划(2016-2020年) 智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式。加快发展智能制造,是培育我国经济增长新动能的必由之路,是抢占未来经济和科技发展制高点的战略选择,对于推动我国制造业供给侧结构性改革,打造我国制造业竞争新优势,实现制造强国具有重要战略意义。 根据《中华人民共和国国民经济和社会发展第十三个五年规划纲要》《中国制造2025》和《国务院关于深化制造业与互联网融合发展的指导意见》,编制本规划。 一、发展现状和形势 全球新一轮科技革命和产业变革加紧孕育兴起,与我国制造业转型升级形成历史性交汇。智能制造在全球范围内快速发展,已成为制造业重要发展趋势,对产业发展和分工格局带来深刻影响,推动形成新的生产方式、产业形态、商业模式。发达国家实施“再工业化”战略,不断推出发展智能制造的新举措,通过政府、行业组织、企业等协同推进,积极培育制造业未来竞争优势。

经过几十年的快速发展,我国制造业规模跃居世界第一位,建立起门类齐全、独立完整的制造体系,但与先进国家相比,大而不强的问题突出。随着我国经济发展进入新常态,经济增速换挡、结构调整阵痛、增长动能转换等相互交织,长期以来主要依靠资源要素投入、规模扩张的粗放型发展模式难以为继。加快发展智能制造,对于推进我国制造业供给侧结构性改革,培育经济增长新动能,构建新型制造体系,促进制造业向中高端迈进、实现制造强国具有重要意义。 随着新一代信息技术和制造业的深度融合,我国智能制造发展取得明显成效,以高档数控机床、工业机器人、智能仪器仪表为代表的关键技术装备取得积极进展;智能制造装备和先进工艺在重点行业不断普及,离散型行业制造装备的数字化、网络化、智能化步伐加快,流程型行业过程控制和制造执行系统全面普及,关键工艺流程数控化率大大提高;在典型行业不断探索、逐步形成了一些可复制推广的智能制造新模式,为深入推进智能制造初步奠定了一定的基础。但目前我国制造业尚处于机械化、电气化、自动化、数字化并存,不同地区、不同行业、不同企业发展不平衡的阶段。发展智能制造面临关键共性技术和核心装备受制于人,智能制造标准/软件/网络/信息安全基础薄弱,智能制造新模式成熟度不高,系统整体解决方案供给能力不足,缺乏国际性的行业巨头企业和跨界融合的智能制造人才等突出问题。相对工

智能制造技术的国内外现状教学内容

智能制造技术的国内外现状 智能制造技术无疑是世界制造业未来发展的重要方向之一,所谓智能制造技术,是指在现代传感技术、网络技术、自动化技术、拟人化智能技术等先进技术的基础上,通过智能化的感知、人机交互、决策和执行技术,实现设计过程、制造过程和制造装备智能化,是信息技术和智能技术与装备制造过程技术的深度融合与集成。作为智能制造的重要工具之一,自动化技术的发展程度无疑决定着智能制造发展的成败。 全球智能制造发展趋势: 1.以3D打印为代表的“数字化”制造技术崭露头角。 2.智能制造技术创新及应用贯穿制造业全过程。 3.世界范围内智能制造国家战略空前高涨。 国外智能制造技术发展现状 世界主要工业化发达国家提早布局。自20世纪80年代末智能制造提出以来,世界各国都对智能制造系统进行了各种研究,首先是对智能制造技术的研究,然后为了满足经济全球化和社会产品需求的变化,智能制造技术集成应用的环境——智能制造系统被提出。日本于1989年提出智能制造系统,且于1994年启动了先进制造国际合作研究项目,其中包括公司集成和全球制造、制造知识体系、分布智能系统控制、快速产品实现的分布智能系统技术等。美国于1992年执行新技术政策,大力支持包括信息技术和新的制造工艺,智能制造技术在内的关键重大技术。欧盟于1994年启动新的研发项目,选择了39项核心技术,其中信息技术、分子生物学和先进制造技术中均突出了智能制造技术的地位。近来,各国除了对智能制造基础技术进行研究外,更多的是进行国际间的合作研究。 世界主要工业化发达国家将智能制造作为重振制造业战略的重要抓手。融危机以来,在寻求危机解决方案的过程中,美、德、日等国政府和相关专业人士纷纷提出通过发展智能制造来重振制造业。2001年6月,美国正式启动包括工业机器人在内的“先进制造伙伴计划”;2012年2月,又出台“先进制造业国家战略计划”,提出通过加强研究和试验税收减免、扩大和优化政府投资、建设“智能”制造技术平台以加快智能制造的技术创新;2012年设立美国制造业创新网络,

智能制造十大核心技术

2016智能制造十大核心技术 所谓智能制造(Intelligent Manufacturing,IM)是指由智能机器和人类专家共同组成的人机一体化智能系统,它在制造过程中能进行智能活动,诸如分析、推理、判断、构思和决策等,通过人与人、人与机器、机器与机器之间的协同,去扩大、延伸和部分地取代人类专家在制造过程中的脑力劳动。 智能制造使得企业的竞争要素发生根本性的变化,由之前的材料、能源两种资源为核心转变为材料、能源和信息三种资源为核心的竞争,从而产生了两种生产力,即以传统的材料和能源为代表的工业生产力和以信息为代表的信息生产力,这三种资源、两种生产力合在一起,形成未来企业竞争的核心。 1、赛博物理系统 CPS:即赛博物理系统,Cyber-PhysicalSystems,是一个综合计算、 网络和物理环境的多维复杂系统,通过3C(Computing、Communication、Control)技术的有机融合与深度协作,实现大型工程系统的实时感知、动态控制和信息服务,让物理设备具有计算、通信、精确控制、远程协调和自治等五大功能,从而实现虚拟网络世界与现实物理世界的融合。CPS可以将资源、信息、物体以及人紧密联系在一起,从而创造物联网及相关服务,并将生产工厂转变为一个智能环境。 2、人工智能 AI:即人工智能(Artificial Intelligence),它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统。它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。 3、增强现实技术 AR:即增强现实技术,Augmented Reality,它是一种将真实世界信息 和虚拟世界信息“无缝”集成的新技术,是把原本在现实世界的一定时间空间范 围内很难体验到的实体信息(视觉、声音、味道、触觉等信息)通过电脑等科学 技术,模拟仿真后再叠加,将虚拟的信息应用到真实世界,被人类感官所感知,从而达到超越现实的感官体验。真实的环境和虚拟的物体实时地叠加到了同一个画面或空间同时存在。增强现实技术,不仅展现了真实世界的信息,而且将虚拟的信息同时显示出来,两种信息相互补充、叠加。增强现实技术包含了多媒体、三维建模、实时视频显示及控制、多传感器溶合、实时跟踪及注册、场景融合等新技术与新手段。

现代制造技术及其应用论文

中国地质大学长城学院

1、自动化与机械自动化技术 目前,我国自动化技术发展速度非常快,在机械领域中的作用也日趋明显。应用自动化技术能够降低人力劳动成本,工作人员只需要进行简单的操作就能够实现大型机械的自动化作业,甚至能够完成人们无法完成的工作。计算机技术的发展为自动化技术应用到机械领域提供了保障,人们打破了对传统机械行业的认识,以自动化设备来实现对机械的调用和装配,不仅降低了人力成本,同时还能够有效降低产品的报废率,是整个机械装配流程形成连续化,使产品的生产周期大幅缩短,保质保量的完成机械装配任务,为企业创造出更为丰厚的经济效益。 2、自动化技术在机械制造中的应用 1)信息自动化。信息自动化主要是依托于计算机技术而形成的,其中主要包括辅助制造、辅助设计、工艺辅助设计、数据库系统管理等。辅助制造指在产品生产过程中采用数值控制技术来实现自动化应用,进而完成产品的生产,也被称为数控技术;辅助设计是指采用计算机设计软件来完成对产品的创意、设计、建模、参数值评测等,并且对机械构件实现精确测量;工艺辅助设计则是辅助制造和辅助设计的纽带,能够有效提高工艺生产的效率,并使之实现优化和提升;产

品数据库系统管理则是采用计算技术来实现对储入库,进而实现信息数据的系统化管理。 2)物资供输自动化。物资供输是对供产品生产的 原材料进行运输和调配的过程,其物资供输自动化则是采用自动化手段来完成物资的运输和调配,是自动化在机械领域中得到应用的细分体现,其中涉及自动化设备、自动化装置、自动化物资输送、自动化软件等。 3)生产自动化。生产自动化能够从机械制造加工 方面得以体现,可以实现机械组件的自动化装卸,这种自动化装卸在系统不发生故障的情况下可以循环重复进行,有效降低人力使用成本,并且能够降低由于人为因素所造成的失误,提升产品的合格率,大幅提升了产品的质量。 4)设备装配自动化。设备装配自动化是将整个装 配流程输入到数控设备中,通过计算机来完成对机械的操作,按照特定的规格、形状制成配件,同时还能够完成一系列组装、调试、验收等工作,是一条能够自动完成机械装配的自动化流水线。在机械制造业中,设备装备拥有比较重要的地位,而自动化设备能够协助完成接卸装配,使很多繁琐的人工装配能够用机械

相关文档
相关文档 最新文档