文档库 最新最全的文档下载
当前位置:文档库 › 石墨烯材料

石墨烯材料

石墨烯材料
石墨烯材料

石墨烯材料

1.4石墨烯材料

纯净、完美的石墨烯是一种疏水材料,并且在大多数有机溶剂中也难于溶解。不过,对石墨烯进行复合和改性,如通过修饰,共价或非共价的方法将功能基团引入石墨烯平面,能使其溶解度显著提高H¨”。在没有分散剂的作用下,直接将疏永的石墨烯片分散在水中是很困难的。通过氨水调节pH值为10左右,用水合肼还原氧化石墨烯(GO)的办法,可以得到还原的石墨烯(rG0)。由于这利-石墨烯还含有少量的含氧基团,因而可在水溶液中分散。但这种分散能力依然是有限的,不超过O 5 mg/mL。除了水,一些有机溶剂,如乙醇、丙酮、二甲基亚砜和四氢呋喃也可以用来分散rGO。金属离子和功能基团同样可以用来修饰rGO片层。在KOH溶液中,用肼还原氧化石墨可得到钾离子修饰的石墨烯(hKlvlG),其能在水溶液中均匀分散。另外,将苯磺酸基团引入GO,还原后可得少量磺化的石墨烯,这种石墨烯在pH处于3-10的范围内时,浓度可达2mg/mL。

共价修饰石墨烯指的是用含有功能基团的分子与石墨烯表面的含氧基团的反应,如羧基、环氧基、羟基,包括平面内的碳碳双键。例如,分散在四氢呋喃,四氯化碳,1,2-二氯乙烷(EDC)qb的rGO,发现把其边缘的羧基修饰上十八胺时后,其稳定性增加[48-50。用异氰酸酯处理石墨烯时,表面的羟基和边缘的羧基会形成酰胺和氨基甲酸酯。氧化石墨烯的羧基与聚乙烯醇(P、後)的羟基酯化也实现了合成GO与聚合物的复合片层。另一方面,石墨烯表面的环氧基团可以接受亲核试剂(如离子液体1-(3-aminopropyl)-3-methylimidazolium bromide或APTS) 的进攻而发生开环反应。同样,rGO可以用重氮盐(如SDBS)共价功能化,使之在多种极性有机溶剂中具有很好的分散性。此外,由环加成反应将氮烯体系和碳碳双键连接,使苯基丙氨酸和迭氮三甲基硅烷等许多有机官能团引入石墨烯表面。与共价功能化相比,非共价功能化是基于rGO与稳定剂间的范德华力或相互作用。这种修饰不仅对石墨烯的结构破坏更小,而且为调控其溶解度和电子性质提供了便利。在氧化石墨烯的氨水溶液中,加入聚苯乙烯磺酸钠(PSS)后,再用水合肼还原,人们第一次制得了非共价修饰的可分散石墨烯。在这项工作中,PSS的疏水端与rGO发生吸附,阻碍了rGO的团聚。并且PSS 的另一端是亲水性的,这就使1<30.PSS在水中可以稳定分散。此外,通过与生物分子的

范德华作用,也可进行非共价的修饰。如使用以单链DNA(ssDNA)可制备水溶液稳定分散的单层石墨烯。利用水溶性芳香族有机分子芘酸(PB)与石墨烯之间兀-兀相互作用,同样实现了石墨烯的稳定分散。真空过滤后,可制备出PB-graphene复合膜。通过兀.7c相互作用修饰石墨烯这一途径,所得产品的溶解度和电导率都有了显著的提高。

1.4.1石墨烯-聚合物复合材料

由于具有非常好的导电性能、热稳定性、以及良好的机械强度,石墨烯及其衍生物成为重要的高分子填充材料。石墨烯聚合物复合材料的性能不仅取决于二种组分自身,还与其分散状况,成键及比例相关,这些因素都由合成过程决定。石墨烯-聚合物复合材料的合成方法与传统的聚合物合成方法类似,主要有:溶液混合法,熔融共混法和原位聚合法。溶液混合法因操作简单,不需要特殊的仪器,并能大规模生产,是一种最常用的石墨烯-聚合物复合材料制备方法。其核心问题是石墨烯在聚合物溶液中的溶解性和分散性。例如,水溶性的聚乙烯醇(PVA),很容易与水溶性氧化石墨烯混合,并分散成不同浓度。然而,在有机溶剂中低溶解度的GO和tOO,给在有机溶剂中合成石墨烯一聚合物复合材料带来了很大的困难。一种解决方法就是利用超声提供亚稳的环境,使石墨烯与聚合物溶液充分混合,如聚甲基丙烯酸甲酯fPMMA),聚己内酯(PCL),聚氨酯(PU),聚苯胺(PAPa)。高速剪切法也被用来混合石墨烯和聚合物,反应过程中要用冰浴来吸收剪切产生的热量。然而,由于溶剂缓慢的挥发,会导致rGO的再次团聚。因此,用功能分子修饰石墨烯,增加其在不同溶剂中的溶解度是很重要的。例如,异氰酸苯酯修饰的石墨烯与聚苯乙烯(Ps)混合在DMF中,经还原后可得。由于聚合物基质的存在,阻碍了rGO的团聚,其分散性能很好地保持。然而,这些研究中的稳定剂仅依靠弱的离域体系(如芳香族小分子),因而限制了溶解度的进一步提高岬划。

圈1.11聚合物稳定的还原氧化石墨烯H目。

Fig.1.IIThe polymer-stabilized reductive graDherieoxide

近年来,新加坡南洋理工大学张华课题组,专门设计了共轭聚电解质(CPE) PFVSOj(其结构如图1_1l A)来与石墨烯复合。由于PFVS03与rGO之间强烈的相互作用,最终得到的PFVSOrrOO(m 1ll B)在多种极性溶剂中,包括水、乙醇、甲酵、DMsO、DIvIF都可以稳定分散。为了进一步提高石墨烯-聚合物在极性和非极性溶剂中的溶解度,可合成PEG.OPE(化学结构如图1.11 c)来修饰石墨烯。PEG-OPE共轭的刚性棒状主链能通过强删作用与rGO平

面底部链接(图1.1l D),亲油性的侧链和两端亲水性螺旋段使片层成为双亲结构。最终结果使得这种复合物在低极性的有机溶剂和高极性溶剂中都有良好的溶解度。熔融共混法是另一种广受欢迎的并可工业制造高产量石墨烯复合材辩的方法。这利-方法是在升温的情况下,用高剪切力混合填充材料和聚合物基质。如聚交酯(PLA).鳞片石墨正G)复合材料可通过PLA与EG在175.200。C下机械混合而成功制备。在另一个例子中,热还原氧化石墨烯后,将rGO与聚对苯二甲酸乙二醇酯(PET)在285 oC共混,制得了PET-石墨烯复合材料。然而,熔融共混法不如溶液混合法应用广泛:一是填充材料在基质中的分散能力的限制;二是高速的混合可能破坏填充物(如碳纳米管)和石墨烯。原位聚合法指的是混合单体溶液与石墨烯分散液,在适当的条件下,用催化剂催化反应。这其中,环氧树脂是一种常用的聚合物材料。例如,将石墨烯片悬浮液与环氧树脂高速搅拌混合,加热除去溶剂,再添加固化剂以完成聚合过程。聚苯胺(PANI)是另一种常用的聚合物,常通过原位聚合反应合成。其聚合过程中发生氧化反应,所以要加过硫酸铵来完成聚合反应。当然,这种氧化反应也可以通过电化学方法完成:用氢气还原热膨胀石墨,过滤、真空干燥后成石墨烯糊。用三电极体系,石墨烯糊附着在工作电极上,在含苯胺单体的电解质溶液中,电聚合并沉积聚苯胺到石墨烯上。除了环氧树脂和聚苯胺,通过原位聚合还制备出如硅树脂,聚苯乙烯,聚(氯乙烯/乙酸乙烯酯)共聚物等石墨烯.聚合物复合材料。上述的各种聚合方法合成出的材料中,石墨烯是无序而随机的分部在聚合物中。为了提高材料在某一方向上的力学性能,人们又提出了layer-by.1ayer(LbL) 组装复合膜的方法。例如,用Langmuir-Blodgett(LB)的方法将氧化石墨烯转移到多层聚电解质(Pan和PSS)膜上。到目前为止,石墨烯.聚合物复合材料提高了石墨烯的电导率,电化学容量,机械强度,热稳定性和导电能力。最主要采用的聚合物是聚苯胺,例如,通过原位电聚合获得的糊状石墨烯.PANI复合物,其电化学容量达到233 F/g和135 F/cm3,成为制造超级电容器的理想材料。另一项实验表明,用约2 nm的聚苯胺纳米颗粒包覆石墨烯纳米片获得了高达1046 F/g的电容量,而纯聚苯胺只有115 F/g。用聚苯胺纳米纤维与氧化石墨烯片混合,当二者质量比为100:1(PANI:GO) 也可达到531 F 儋的电容。除了导电聚合物外,绝缘聚合物也被用来与石墨烯复合。有文献报道了对一系列组成比不同的聚苯乙烯.石墨烯复合材料电导率的研究。当加入功能化的石墨烯片(FGS)的体积分数超过0.1%时,电导率突变就能发生,这比其它二维填充材料要低很多。低逾渗闽原因可能与石墨烯高横纵比,在基质中的均匀分散程度以及界面间基团相互作用相关。石墨烯与其它聚合物材料也表现出这种性质,如石墨烯对聚(氯乙烯/酉昔酸乙烯酯)共聚物的逾渗阈为O.15 v01%,对PET 为0.47 v01%,当加入3.0 v01%的石墨烯时,电导率为2.11 S/m。正如前面所提到的那样单层石墨烯片是目前测量到最强的材料之一,断裂强度和杨氏模量为别42 N m_1和1.0 TPa,使用石墨烯作为填充物,可以提高材料的力学性能。如用LbL的方法将功能化的氧化石墨烯片嵌入Pan和PSS聚电解质层,最终得到的复合膜的弹性模量从纯聚合物膜的1.5 GPa,提高到20 GPa(添加8%体积石墨烯)。这种具有优良力学和电学性能的复合膜可制造电容压力传感器,从而替代硬硅用于微电子机械系统(MEMS)。另一项研究显示,通过真空过滤可制备聚乙烯醇(PVA).石墨烯复合材料。当加入3 wt%的氧化石墨烯后,材料的杨氏模量和抗拉屈服强度分别为4.8 GPa和110 MPa。将聚氨酯(P∽与氧化石墨烯共价连接后,促进了有效的荷载传递,使杨氏模量和硬度分别提高了900%和327%。这种高硬度能抵抗磨损,可应用于表面涂层。这些聚合物力学特性的增强不仅来自于石墨烯本身,还与其分散状况和相互作用相关。比如,石墨烯可以阻止高分子链在外力作用下而发生的运动。聚合物的热稳定性一般用玻璃化转变温度(Tg)来描述,在这个温度之上,高分子链在外力的作用下开始发生滑动。通过增加刚性材料,阻碍高分子链的运动,可以提高玻璃化转变温度。例如,将聚(胺酰胺)(PAMAM)与石墨纳米片(FNPs) 在四氢呋喃中用超声和搅拌混合,当添加1.5 wt%石墨纳米片后,Tg提高了300C。如果

用功能化的石墨烯片(FGSs)代替FNPs,复合材料的Tg会进一步提高。与FNPs相比,FGSs 拥有大量的单层石墨烯片,其表面形貌褶皱并含有大量功能基团,所以与聚合物基质的相互作用更强。与PAMAM一样,填充1 wt%FGS所得的聚丙烯腈.FGS复合物的玻璃化转变温度提高了400C。更重要的是,复合量<1 wt%时,FGS是所有碳材料中提高效果最好的。因为弹性体(如硅酮泡沫材料)通常是在玻璃化转变温度以上进行操作的,所以通常测定热裂解温度来衡量其热稳定性。例如,通过原位聚合过程,成功的将FGSs嵌入硅酮材料。热重分析(TGA) 结果显示,加入O.25 wt%FGS后硅.FGS复合材料的热裂解温度提高了550C。又有研究表明,可降解的高分子PLA与EG复合后,只要加入0.5 wt%EG,PLA.EG,热裂解的温度就可以提高。石墨烯同样是优良的热导体,室温测得的单层石墨烯k值约为5000 W/mK。因此,向聚合物中添加石墨烯,有望改善聚合物热导率。研究表明,25 v01%的低层热剥离石墨纳米片(约为4层)与环氧树脂组合,热导率提高超过30倍,k 值达到6.44 W /mK。同样达到这一结果,传统的添加材料如银、氧化铝、二氧化硅需要添加50.70%。另外,0.25 wt%FGSs加入硅泡沫基质中,热导率增加约6%,其原因可能与高的横纵比,二维几何形状,高硬度,低界面热阻相关。这种散热优良的材料,适合包裹电线,以消除传导热。

1.4.2石墨烯-金属纳米粒子复合材料

石墨烯及其衍生物吸引人的特性使他们成为合成金属纳米颗粒(NPs)的理想模板,例如Au、Ag、Pd、n、Ni和Cu。根据纳米颗粒的不同,石墨烯.金属纳米粒子复合材料将应用于不同的领域,如表面增强拉曼散射(SERS),催化和电化学传感。石墨烯一金属纳米粒子复合材料的制各方法主要有:化学还原、光化学合成、微波辅助合成、化学镀金属化和热蒸发。最简单的制各石墨烯.金属纳米粒子复合材料的方法是直接化学还原金属前驱物与GO或tOO 的悬浮液。GO和rGO的边缘缺陷和残留的吉氧基团,可以作为金属纳米粒子的成棱中心口”。将rGO分散在十八酸溶液中,通过NaBH4还原AuCI‘,人们第一次制得了金纳米粒子一石墨烯复合材料。在此基础上,叉合成了Pd-GO复合物用来催化Suzuki-Miyaura偶联反应【啪,t011,这种复合物的转换频率达39000h-’,且浸出率根低(

圈1.12石墨烯.金纳米颗粒的复合物I”-t06lo Fig.1.12The composite ofgTaphenc-Aunanoparticlcs

第1章绪论

作为一种绿色、便捷、高效的合成路线,光化学还原可以用来补充或替代化学试剂还原制备石墨烯.金属纳米粒子复合材料。通过光化学还原氯金酸,成功将荧光金量予点沉积到ODT包覆的氧化石墨烯上,这些金沿著rGO<100>方向自组装成为金链(图1。12A)。这表明,石墨烯表面的有机分子可以帮助原位合成纳米粒子。其他方法,如微波辅助还原,化学镀

金属化也被用来制备石墨烯一金属纳米粒子复合材料。在微波辐照方法中,金属纳米粒子的形成和氧化石墨烯的还原同时发生,因而该方法可以进行高效和大规模生产。此外,该方法可以应用于许多金属纳米粒子,如铜、钯、金、银等。利用化学镀金属化,在硝酸银溶液中,把GO或rGO吸附在APTES修饰的Si/SiOx基底上,通过加热,成功的在

GO或rGO表面合成出银纳米粒子(图1.12B)。结果表明,氧化石墨烯比还原的氧化石墨烯更容易生长高密度和小尺寸的AgNPs,这可能与氧化石墨烯表面大量的功能基团相关。这种现象在镍纳米晶的合成过程中也有所体现u叩J。如前所述,化学修饰的石墨烯表面会对金属粒子的合成产生影响,然而构成石墨烯结构的晶格原子也能影响Au纳米点的形成【108】。除了这些,热蒸发制备时,石墨烯层数对金属粒子的粒径和密度也有直接的影响。当层数增加时,金纳米颗粒的粒径减小,密度增2n(图1.12C、D)。这主要是基于以下两方面的原因:一是石墨烯的表面自由能,二是不同表面金的扩散速率。鉴于此,通过SEM观测金属粒子的粒径和密度,可以推测石墨烯的层数,这种方法可以代替AFM测量。1.4.3石墨烯-半导体纳米粒子复合材料

由于在电子,光学,太阳能电池,锂离子电池,超级电容器等领域的潜在应用,合成石墨烯一半导体纳米粒子复合材料的需求日益增长。到目前为止,已经以石墨烯为模板,合成了多种半导体纳米粒子,包括Ti02,ZnO,Sn02,Mn02,C0304,Fe304,Fe203,NiO,Cu20,Ru02,CdS和CdSe。其合成方法主要包括:原位结晶,溶液混合,微波辅助合成,电化学沉积和气相沉积【109’11 51。原位结晶法在合成中最常使用。例如,在DMSO中混合GO 和Cd(CH3coo)2,转移到反应釜中180 oC反应12 h,可以得到石墨烯.CdS复合物。合成中,水热途径不仅形成了CdS纳米粒子,还将氧化石墨烯还原为石墨烯,这里DMSO不仅作为溶剂,还作为硫源。时间分辨荧光光谱数据显示,电子从CdS纳米颗粒传递到石墨烯的时间在皮秒级,具有光电应用的潜力。用原位结晶的方法同样可以合成用于锂离子电池的石墨烯C0304杂化材料。除此之外,还可合成包括Mn02,Ti02和Sn02在内的复合材料。作为改进,微波原位结晶更快速,更方便,并已成功合成出石墨烯.Mn02 NPs和石墨烯.C0304 NPs。另一种直接且高效的合成石墨烯一半导体纳米粒子复合材料的方法是溶液混合法。例如,用商品纳米二氧化钛(P25)与Nation包覆的石墨烯混合,制备染料敏化太阳能电池。这里,Nation好像“胶水~样,把纳米颗粒和石墨烯连接起来。再虫¨,硫醇苄分子修饰的CdS纳米粒子,通过Ⅱ.Ⅱ相互作用很容易吸附到rGO 表面。有时,在有机相中合成的纳米粒子不能在水溶液中与石墨烯很好的分散,为此,可用两相的方法合成grapheue—Ti02复合物。在甲苯中,将油酸包覆的Ti02 纳米棒与分散在水中的氧化石墨烯混合,搅拌24小时,Ti02纳米棒会通过甲苯,水的界面组装到氧化石墨烯表面叫】。

图l 13石墨烯包裹金属氧化物纳米颗粒【lⅢ。Fig.1.13 Schematicillustrationofgraphene encapsulatedmetal oxideNPs

最近,有人提出了一种非常新颖的石墨烯包埋金属氧化物的方法。在这项工作中,带负电的氧化石墨烯通过静电作用包覆住带正电的c0304纳米颗粒(用APS修饰过),再将氧化石墨烯还原,得到的复合物可以成功的用于锂离子电池(图1 13A-C)。这种方法对合成锂离子电池的阳极材料来说是十分重要的。第一,石墨烯的包覆可阻止氧化物纳米粒子在充放电过程中的团聚现象。第二,使氧化物的容量大幅提高。第三,石墨烯的特殊结构使之保持很高的电导率。使用这剥t 电极.前10次循环,其容量在1100 mAhg一。进行130次循环后,其容量仍在1100 mAhg‘之上(图1 13 c)。由于这种薄膜复合材料在实际应用过程中需要附着在基底上,有人提出直接通过电化学的方法将纳米粒子沉积在石墨烯—基底上,并沉积上了ZnO。Cu20,CdSe。例如,将rGO旋涂在石英基底上,用氧气饱和的ZnCh与KCI作为电解液,可电化学沉积ZnO纳米棒到基底上。研究还发现,析出的ZnO纳米棒的质量取决于石墨烯薄膜的厚度。当rGO膜厚度越小,电阻

第1章绪论

率也越低,得到的纳米棒质量越好。该方法也被应用于构筑纳米Cu20/;5,器烯/PET 底。不同于无序分布的ZnO和Cu20,通过模板电化学方法实现了CdSe NP 在石墨烯薄膜上的有序分布‘115,118’1211。

1.4.4其它石墨烯复合材料

研究表明,石墨烯材料能够包裹有机纳米线形成核.壳结构。许多有机小分子能通过非共价作用自组装成特殊的形貌【119以231。例如,以氧化石墨烯为模板和脚手架,使PDI 生长并组装,通过7阿相互作用成为核.壳线状结构。同样的方法合成出石墨烯.肽链纳米线,当移除了肽链后,形成的石墨烯空心壳可以用于超级电容器。除此以外,人们还制备了用于透明导体,锂离子电池,超级电容器等领域的石墨烯。碳纳米管(CHIT)复合材料。尽管化学转变石墨烯(cco)和rGO成本低和可大型合成,但由于缺陷和含氧基团的存在,导致其电性质比纯净的石墨烯要差。因此,用CNT与rGO复合,能很好的提高电导率。graphene.CNT复合材料的另一个优点就在于CNT增大了石墨烯片层之间的距离,这使得其用于锂离子电池时存储容量增大。为了提高ChIT空间层的效能,使用CVD过程,构筑了一利I三维CNT/graphene三明治(CGS)结构。这种CGS超级电容器在6 M KOH溶液中,10 mV电压时,容量达到385 F g~。增强的原因可能有以下三点:首先,在氧化还原反应时,碳纳米管壁能充当结构缓冲剂来缓解大的体积变化。第二,在电解质离子快速充放电过程中,碳纳米管可以提供额外的传输路径。第三,碳纳米管与石墨烯之间的互联为电子提供了传输网络。最近,以氧化石墨烯为唯一碳源,通过一步退火成功地制备了新颖的mo /碳纳米线(CNW)。rGO/CNW作为FETs通道材料具有出色的检测多巴胺性能。

石墨烯基材料做电极材料的机遇与挑战

石墨烯基材料做电极材料的机遇与挑战近年来,高性能电化学储能装置的需求量大幅上升,于是很多学者都开始投入到对更卓 越电极材料的开发和研究中。在这方面,石墨烯基材料吸引了大量目光。由于能提升现有设备性能,并使下一代设备更实用,石墨烯基材料被看作是前景深远的高性能电极材料。 碳材料广泛应用于不同的储能设备,并发挥着非常重要的作用。然而,由于多孔碳材料和纳米碳材料密度低,高碳含量电极的存储密度也总是很低,因而造成体积能量密度低。 尽管石墨烯也面临同样问题,甚至情况更严重,但经过石墨烯和电极结构设计的可控组合,还是可以得到高密度石墨烯基电极。此外,在许多情况下,组装的集成石墨烯基电极不含任何导电剂和粘结剂,因此能进一步帮助提升体积能量密度。

作为电化学储能装置的潜在电极材料,石墨烯具有许多其他传统碳材料和纳米碳材料所没有的优越性。石墨烯物理结构稳定、比表面积大、导电性良好,对大多数电化学储能装置来说,它几乎是一种完美材料。 此外,石墨烯的输出性能也取得了很多令人瞩目的进步:利用二维层状结构能构建出各种三维结构,还具备可调节的孔隙结构。我们在论文中综述了石墨烯基材料在液态锂离子电池、锂硫电池、锂氧电池、NIB和SC等方面的应用。我们研究发现,将石墨烯应用于这些装置,能大大提高其性能。 石墨烯的几个显著优势如下: 1.石墨烯在实际应用于非碳材料时,是一种有利的碳基材。它应用容易,比表面积大,使得在其表面实现其他活性成分的杂交和均匀散布更加容易,这也极大提高了这些成分的利用率。此外,利用石墨烯在两个活性粒子甚至是整个电极间构建互联的导电网络也是轻而易举。这样的网络有助于提高电极的循环稳定性。 2.通过在装置中使用石墨烯代替传统碳材料,能实现高体积能量密度。石墨烯为高体积能量密度装置的组装提供了潜在解决方案。 3.柔性石墨烯有望制造柔性储能装置。使用石墨烯及其组件可以制备出具有高度柔韧性的集流体,为我们提供了一种取代脆性金属集流体的方法。此外,利用石墨烯还能制备出集成柔性电极,有助于解决在反复弯曲过程中集流体活性材料分离的问题。 除了以上几点,石墨烯相较于传统碳材料还具有多种优越性能,可能有助于促进各种新型电池系统的实际应用。新近研究报告指出,高能室温钠硫电池通过碳/硫复合材料作为电极。我们可以预料,石墨烯可以进一步帮助提升这类电池的性能。还有研究发现,石墨烯基复合材料可作为锌空气电池的高效电催化剂。在种种结果之上,我们不难看出,石墨烯在未来能源储存装置应用中的巨大潜力。

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

多孔石墨烯材料的研究进展

多孔石墨烯材料的研究进展 摘要:多孔石墨烯材料同时结合了石墨烯和多孔材料的优点,具有独特的二维结构及优异的理化性质,是一种具备巨大应用潜力的新型纳米碳质材料。然而单一的石墨烯材料很难充分满足各个领域的应用需求,且石墨烯片层容易堆叠和团聚,制约了其实际应用的发展。通过掺杂、改性、组装和复合等手段制备石墨烯衍生物及石墨烯纳米复合物等石墨烯基材料可以丰富并优化石墨烯的性质,拓展并提升石墨烯的性能,对于促进石墨烯的实际应用具有重大意义。作为一种新型石墨烯衍生物,多孔石墨烯以其二维片状结构、超高比表面积、开放的能带间隙、丰富的活性位点等特性吸引了研究者的很大关注。 关键词:石墨烯;杂化;石墨烯衍生物 引言 如果以化学家的视角将人类和世界写成一本书,碳元素必将会跻身关键词之列:从碳基生命到无机碳素,从史前壁画到太空天梯,从钻木取火到蒸汽革命,再从笔墨纸砚书酒花到柴米油糖酱醋茶,碳的身影无处不在,不可替代。作为世界上最为普遍和奇妙的元素,碳变化多端的魅力归因于其电子轨道杂化方式的多样性及其特殊的成键能力和成键方式。碳原子含有四个价电子,往往以sp,sp2和sp3等杂化形式构成具有不同性质的单质或化合物。以碳单质为例,碳元素存在多种结构、性质迥异的同素异形体。其中sp杂化形式的卡宾碳异常活泼,不易单独稳定存在;sp3杂化的金刚石稳定、超硬、价高,化学修饰较困难;sp2杂化的石墨、石墨烯化学修饰较易且具有独特的电子共轭体系,此外还存在杂化形式介于sp2杂化和sp3杂化之间的富勒烯及包含多种杂化形式碳原子的无定形碳等等。碳家族的众多成员极大丰富了碳质材料的性质,为其在各领域的广泛应用奠定了基础[1]。 1石墨烯及石墨烯基材料 石墨烯即单层或少层石墨薄片,是sp2杂化碳原子按照蜂窝状六元环结构排列而成的二维平面网络结构。2004年,曼彻斯特大学的Novoselov和Geim教授研究组利用机械剥离法成功得到独立存在的单原子层石墨烯,两位物理学家因这一开创性的发现在2010年共同获得诺贝尔物理学奖。然而当我们认真地追根溯源时,会发现石墨烯并非一颗横空出世的新星,围绕石墨烯的讨论已经在科学界

石墨烯材料的研究进展论文

石墨烯材料的研究进展 摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构 和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。 关键词:石墨烯;纳米复合材料;制备;应用 1,材料的基本情况 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。 常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 2,最热的应用合成 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域. 根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。 石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

石墨烯材料研究进展

石墨烯材料研究进展 化学工程与工艺 0909403068 王月 摘要:石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加。本文通过对石墨烯的特性、制备和应用现状几方面进行了综述。 关键词:石墨烯制备应用进展 石墨烯是碳 原子紧密堆 积成单层二 维蜂窝状晶 格结构的一 种碳质新材 料,是构筑 零维富勒 烯、一维碳 纳米管、三 维体相石墨等sp2杂化碳(即碳以双键相连或连接其他原子)的基本结构单元,如图1所示。石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈〃海姆和康斯坦丁〃诺沃肖洛夫,

利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨 烯晶体,并发现了石墨烯载流子的相对论粒子特性,才引发石墨烯研 究热。这以后,制备石墨烯的新方法层出不穷,人们发现,将石墨烯 引入工业化生产的领域已为时不远了[1]。 1石墨烯的特性 石墨烯是零带隙半导体,有着独特的载流子特性,为相对论力学 现象的研 究提供了一条重要 途径;电子在石墨 烯中传输的阻力很 小,在亚微米距离 移动时没有散射,具 有很好的电子传输 性质;石墨烯韧性 好,它们每100nm 距离上承受的最大 压力可达2.9N [2],是迄今为止发现的力学性能最好的材料之一。石墨烯特有的 能带结构使空穴和电子相互分离,导致了新电子传导现象的产生,如 量子干涉效应、不规则量子霍尔效应。Novoselov 等观察到石墨烯具 有室温量子霍耳效应,使原有的温度范围扩大了10倍。石墨烯在很 多方面具备超越现有材料的特性,具体如图 2 [3]所示,日本企业的 一名技术人员形容单层石墨碳材料“石墨烯”是“神仙创造的材料”。 图2 石墨烯的特点

石墨烯研究现状及应用前景

石墨烯材料研究现状及应用前景 崔志强 (重庆文理学院材料与化工学院,重庆永川402160) 摘要:近几年来, 石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点。论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。 关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景 中图分类号: TQ323 文献标识码:A 文章编号: Research status and application prospect of graphene materials Cui Zhiqiang (Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences, Yongchuan, Chongqing 402160) Abstract: In recent years, graphene has caused a sensation in chemical, physical and material science due to its unique structure and excellent properties. Cited in this paper a large number of the latest references, expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method, heating SiC method, explosion, graphite intercalation expansion stripping method, electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method, and analyze the advantages and disadvantages of various preparation methods. This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development. Keywords: graphene materials; preparation methods; practical significance; development status; application prospect 0 引言 1985 年英美科学家发现富勒烯[1]和1991 年日本物理学家Iijima 发现碳纳米管[2],加之英国曼彻斯特大学科学家于2004 年成功制备石墨烯[3]之后,金刚石(三维)、石墨(三维)、石墨烯(二维)、碳纳米管(一维)和富勒烯(零维)组成了一个完整的碳系材料“家族”。从理论上说,石墨烯是除金刚石外所有碳晶体的基本结构单元,如果从石墨烯上“剪”出不同形状的薄片,进一步就可以包覆成零维的富勒烯,卷曲成一维的碳纳米管,堆叠成三维的石墨,如图1 所示[4]。由于石墨烯优异的电学、热学、力学性能,近年来各国科研人员对其的研究日益增长,已经是材料科学领域的研究热点之一。2010 年诺贝尔物理学奖揭晓[5-6]之后,人们对石墨烯的研究和关注越来越多,新的发现不断涌现。在不断深入研究石墨烯的制备方法和性质的过程中,其应用领域也在不断扩大。由于石墨烯缺乏带隙以及在室温下的超高电子迁移率、低于银铜的电阻率、高热导率[7]等,在光电晶体管、生化传感器、电池电极材料和复合材料方面有着很高

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯及其材料综述

关于石墨烯和石墨烯复合材料的综述 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。自从2004年发现以来,研究者对这种材料在未来技术革命方面提出了大量的建设性创意,石墨烯被认为是未来能够取代硅的一种新型电子材料。石墨烯是只有一个原子厚的结晶体,具有超薄、超坚固和超强导电性等特性,其优异的电学、热学和力学性能,在纳米电子器件、储能材料、光电材料等方面的潜在应用价值引起了科学界新一轮的“碳”热潮。 它不仅是已知材料中最薄的一种,还非常牢固坚硬,仅仅是一个原子的厚度,并形成了高质量的晶体格栅,石墨烯的结构,是由碳原子六角结构紧密排列构成的二维单层石墨,是构造其他维度碳质材料的基本单元。它可以包裹形成0维富勒烯,也可以卷起来形成一维的碳纳米管,同样,它也可以层层堆叠构成三维的石墨。 石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。 这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。 大量制备尺寸、厚度可控的石墨烯材料对石墨烯基材料的应用具有重要的意义。制备石墨烯可以归结为两个基本的思路:一是以石墨为原料,通过削弱以及破坏石墨层间的范德华力来剥开石墨层从而得到石墨烯:二是基于活性碳原子的定向组装,“限制”碳原子沿平面方向生长。基于上述思想,化学剥离法、SiC 表面石墨化法和金属表面外延法等一些新的方法相继被报道。本人通过大量的归纳总结,共总结出以下七种方法。 机械剥离法就是利用机械力,将石墨烯片从具有高度定向热解石墨(Highly

基于石墨烯的锂离子电池负极材料设计研究进展

基于石墨烯的锂离子电池负极材料 研究进展 院系:材料科学系 专业:材料学 姓名:雷冰冰 学号:14210300023

基于石墨烯的锂离子电池负极材料研究进展 摘要:锂离子电池因其质量轻、能量密度大、安全的优点,广泛应用于便携式电子设备领域,逐步成为了应用最佳和最有发展前途的能源。为了进一步提高锂离子电池的能量密度、循环寿命,需要进一步开发新的负极材料。由于石墨烯具有优越的导电性、超高的比表面积和很好的机械强度等特点, 其在锂离子电池负极材料方面显示出潜在的应用前景[1]。本文综述了目前世界上对于基于石墨烯材料的锂离子电池负极材料的研究现状。并对现有研究存在的不足做出了评价和预测了未来的研究方向。 关键词:锂离子电池;负极材料;石墨烯 前言:相比其他可充二次电池,锂离子电池中具有高的比容量、相对低的自放电、长的循环寿命和小的环境污染等优点,被广泛应用于便携式电子设备中。近几年能源环境问题及世界各国发展电动车的需求,因此迫切需要开发更高能量密度(高比容量)、更高功率密度(高的倍率性能)和更长循环寿命(优越的循环性能)的锂离子电池。锂离子电池电化学性能的提高关键因素在于其正负极材料的提升。 目前,商业化的锂离子电池负极材料石墨具有理论比容量低(372 mAhg-1)和锂离子传输系数低(10-7~10-10cm2s-1)等缺点严重限制了锂离子电池性能的进一步提升。因此,开发设计高比容量、高倍率性能和优越循环性能的新型锂离子电池负极材料至关重要。新型纳米碳材料

-石墨烯具有优异的导电性、超高的比表面积和很好的机械强度等优点,被认为是最有潜力的锂离子电池负极材料[2]。是当前科学领域研究的热点。但是,石墨烯纳米片层之间由于范德华力作用容易发生堆积或团聚等问题,并且常用的化学合成法得到的石墨烯一般具有较多的残余含氧官能团;这些因素都会影响石墨烯作为负极材料的循环性能和倍率性能。因此,对石墨烯材料的结构改进、表面官能团改性以及运用掺杂、复合等手段来改进石墨烯作为锂离子电池负极材料的研究是当今的热点。本文就以上几个方面对最新的石墨烯基锂离子电池负极材料研究进展进行了综述,并对目前存在的问题和未来发展方向提出了自己的看法。 石墨烯基材料储锂性能: 1、原理解释:材料的性能是由其结构决定的。弄清楚性能背后的结构性原理对实验的可重复性意义重大,并对未来的继续研究具有重要的指导和预测作用。因此,机理解释方面的研究工作是非常重要的部分。Nasir[3]等人总结了前人有关石墨烯及其衍生材料在能量存储和转换方面的制备和应用,得出石墨烯复合材料的性能不仅依靠单独组分的性能,也与它们之间的相互作用有很大的关系;所以控制复合物中组分配比,密度,化学键的种类以及空间结构是很关键的。同时,该课题组也提出了一些建设性的看法,可以通过掺杂不同元素或者采用3D结构以防止石墨烯重新堆叠,露出石墨烯表面;可以通过改善晶体与石墨烯之间的物理化学作用提高石墨烯复合材料在使用中的稳

石墨烯基复合材料的制备及吸波性能研究进展

石墨烯基复合材料的制备及吸波性能研究 进展 摘要随着吉赫兹(GHz)频率范围的电磁波在无线通信领域的广泛应用,诸如电磁干扰、信息泄露等问题亟待解决。此外,军事领域中的电磁隐身技术与导弹的微波制导需要,使得电磁波吸收材料受到持续而广泛的关注。因此,迫切需要发展一种厚度薄、频带宽、强吸收的吸波材料。 石墨烯作为世界上最薄硬度最强的纳米材料,优点很多,例如石墨烯制成的片状材料中,厚度最薄,比表面积较大,具有超过金刚石的强度等,这些优点满足吸波材料的需求。石墨烯基复合材料在满足吸波材料基本要求的基础上又提升了材料吸收波的能力。 本文简单地介绍了吸波材料及石墨烯,综述概况了石墨烯基复合材料的研究现状,包括石墨烯复合材料制备方法、微观形貌以及复合材料的吸波性能,提出了石墨烯基复合吸波材料未来的发展方向。 关键词石墨烯基;吸波材料;纳米材料

Progress in Preparation and absorbing properties of graphene-based composites Abstract With the gigahertz (GHz) frequency range of the electromagnetic waves are widely used in wireless communications, such as electromagnetic interference, information leaks and other problems to be solved. In addition, military stealth technology in the field of electromagnetic and microwave guided missiles require such electromagnetic wave absorbing material is subjected to a sustained and widespread concern. Therefore, an urgent need to develop a thin, wide frequency band, a strong absorption of absorbing materials. Graphene as the strongest of the world's thinnest hardness nanomaterials, has many advantages, such as a sheet material made of graphene, the thinnest, large specific surface area, with more than a diamond of strength, these benefits meet absorbers It needs. Graphene-based composites on the basis of absorbing materials to meet the basic requirements but also enhance the ability of the material to absorb waves. This article briefly describes the absorbing material and graphene, graphene reviewed before the status quo based composite materials research, including graphene composite material preparation, morphology and absorbing properties of composites made of graphene-based composite

石墨烯材料简介

石墨烯材料简介 在构成纳米材料的众多元素中,碳元素值得我们格外重视。作为自然界中性质最为奇特的元素,碳(C)在原子周期表中的序号为六,属于第Ⅳ族。碳原子一般是四价的,最外层有4个电子,可与四个原子成键。但是其基态只有两个单电子,所以成键时总是要进行杂化。由于较低的原子序数,碳原子对外层电子的结合力强,表现出较高的键能,容易形成共价键,故自然界中碳元素形成的化合物形式丰富多彩。 关于碳与碳原子之间或碳与其它原子间以共价键相结合,有杂化轨道和分子轨道的理论。在形成共价键过程中,由于原子间的相互影响,同一个原子中参与成键的几个能量相近的原子轨道可以重新组合,重新分配能量和空间方向,组成数目相等的,成键能力更强的新的原子轨道,称为杂化轨道。在有机化合物中,碳原子的杂化形式有三种:sp3、sp2和sp杂化轨道。以甲烷分子(CH4)为例,碳原子在基态时的电子构型为1S22S22Px12Py12Pz0按理只有2px和2py可以形成共价键,键角为90°。但实际在甲烷分子中,是四个完全等同的键,键角均为109°28′。这是因为在成键过程中,碳的2s轨道有一个电子激发到2Pz轨道,3个p轨道与一个s轨道重新组合杂化,形成4个完全相同的sp3杂化轨道。每个轨道是由s/4与3P/4轨道杂化组成。这四个sp3轨道的方向都指向正四面体的四个顶点,轨道间的夹角是109°28′。得益于碳原子丰富多样的键合方式和强大的键合能力,氧、氢、氮等各种元素被有机的组合在一起,形成碳的化合物,最终构成了令人惊叹的生命体。 碳元素广泛存在于自然界,其独特的物性和多样的形态随着人类文明的进步而逐渐被发现。由于碳原子之间不同的杂化方式,能形成结构和性质迥异的多种同素异型体,其中最为人知的存在形式是金刚石和石墨。当每个碳原子与四个近邻碳原子以共价键结合(sp3杂化)时,形成各向同性的金刚石。此时,四个价电子平均分布在四个轨道中,形成稳定的σ键,而且没有孤电子对的排斥,非常稳定。因此金刚石是自然界中坚硬的材料。而当碳原子表现为sp2杂化时,碳原子在同一平面内与三个近邻原子以共价键结合;第四个价电子成为共有化电子:未经杂化的p轨道垂直于杂化轨道,与邻原子的p轨道成π键。当出现多个双键时,垂直于分子平面的所有p轨道就有可能互相重叠形成共轭体系,柔软的石墨和某些烷烃中的碳原子即以此形式存在。

石墨烯双曲超材料光学特性的研究进展

龙源期刊网 https://www.wendangku.net/doc/0915109094.html, 石墨烯双曲超材料光学特性的研究进展 作者:谭朝幻王昊月孟方俊王胜明许吉 来源:《科技资讯》2017年第20期 摘要:双曲超材料因其所拥有的奇异特性具有非常大的应用前景,其中金属材料构成的 双曲超材料是近年来的一个研究热点,而用石墨烯代替金属构成的石墨烯-电介质超材料可以通过对入射电磁波频率和化学势的调节来实现双曲色散特性,其相比于金属-电介质双曲超材料和金属纳米线双曲超材料,具有更小的传输损耗、更小的结构体积并且更易于光电集成。该文对石墨烯-电介质双曲超材料在可见光、红外以及太赫兹等几个波段的光学特性学术工作展开调研,首先介绍石墨烯和双曲超材料的相关基础知识,进而针对石墨烯双曲超材料的介电常数、磁导率和折射率几个方面的调控机制来实现对光子行为的调控目的进行阐述,并介绍了相关应用。 关键词:石墨烯双曲超材料光学特性 中图分类号:TQ127.11 文献标识码:A 文章编号:1672-3791(2017)07(b)-0001-04 1 双曲超材料及石墨烯简介 超材料是一种人工微结构材料,是由亚波长尺度的结构单元构建的一种特殊结构,通过对结构单元的材料和厚度的调节来达到控制电磁波传输的目的,从而可以实现自然界中的材料所不具有的特性。具有双曲色散关系的双曲超材料(Hyperbolic Metamaterials, HMMs)是超材料中的一种,也称为不确定介电媒质(Indefinite permittivity media,IPMs),该媒质的的电磁特性可以通过介电常数张量及磁导率张量来进行描述。由于双曲超材料所具有的独特的双曲色散关系,使其表现出一系列新的光学现象,在隐身、光波导、成像、超透镜、聚焦、热传输、和负折射等方面具有潜在的实用价值。 1.1 双曲超材料 双曲超材料是一种具有双曲色散关系的强各向异性超材料,它的光学性质可以用归一化的等效介电常数张量和等效磁导率张量来表示,沿着光轴方向的张量分量值和垂直于光轴方向的张量分量值的正负号相反,即或;归一化的等效介电常数张量和等效磁导率张量的形式为: 式(1)中的和分别代表平行于光轴的分量和垂直于光轴的分量。当磁导率μ=1时,介电常数是各向异性的,此时当入射电磁波为TM偏振态时,双曲超材料如图1所示。 当入射光频率小于金属的等离子体频率时,金属中的自由电子的极化响应是与电场方向相反的,所以金属介电常数的实部为负值。只需要使其一个或两个主轴方向的介电常数张量为负值,便可实现材料的双曲色散关系。目前双曲超材料的构成方式主要有两种:一种是由金属-电介质交替排列的多层膜结构,通过调整金属的种类和占空比来实现双曲色散关系;另一种是

新能源材料 石墨烯电池

2017春季学期 新能源材料--课程论文 院(系)材料科学与工程 专业材料科学与工程 学生曾波 学号1141900225 班号1419002

石墨烯电池应用与展望 曾波 材料科学与工程1141900225 摘要石墨烯作为近年来炙手可热的新材料,凭借其独特微纳米尺度的二维平面结构和良好的导电导热特性在锂离子电池电极材料中也有着可观的的应用前景。本文介绍了石墨烯电池的概念提出和工作原理,调研了市场最新的石墨烯电池信息和商用情况,分析了特点和潜在问题以及根据现状的合理展望。 关键词石墨烯锂离子电池能量密度石墨烯电极材料 1 引言 在现已有广泛应用基础的新能源材料中,锂电池作为二次电池中的佼佼者具有开路电压高"能量密度大"使用寿命长"无记忆效应"无污染以及自放电率小等优点。如图一所示,锂离子电池工作原理,正负电极由两种不同的锂离子嵌入化合物组成,正极主要是磷酸铁锂,钴镍锰酸锂(三元材料)等负极主要是碳棒和石墨。充电时Li+从正极脱出经过电解质嵌入负极,负极处于富锂态,正极处于贫锂态,同时电子的补偿电荷从外电路供给到负极,保证负极的电荷平衡;放电时则相反。由于Li的原子序数很小,故Li+的质量很轻,单位重量的电极材料就可以储存较多的Li+,所以通常锂离子电池具有较高的能量密度。然而,受限于电极材料的结构与电解质的性能,锂离子电池的功率性能相对较弱,针对动力锂离子电池,这一点表现得尤为突出。故如何增加锂电池的功率密度是当务之急。 要攻破这一难关,需要制备具有高效储能特性的负极材料。碳材料的储锂机理复杂,因此尽管计算化学论证了石墨烯的高储锂容量,但目前制备的石墨烯的可逆容量接近甚至超过理论容量的储锂机理还需进一步分析证明。石墨烯电池是 指用石墨烯掺杂改性的复合材料替 代传统锂电池的电极材料,其他碳、 石墨材料比容量较小,每6个碳原子 与一个锂离子形成LiC6结构存储锂 离子,理论比容量为372mAh/g而石 墨烯是以单片层单原子厚度的碳原 子无序松散聚集形成,这种结构有利 于锂离子的插入,在片层双面都能储 存锂离子,理论容量明显提高。并且 锂离子在石墨烯表面和电极之间快 速大量穿梭运动的特性也将加快充 放电速度。石墨烯电池有望解决现在 锂电池不稳定、充电慢、容量低的难 题。 2 石墨烯电池介绍 2.1石墨烯 石墨烯是是由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,厚度仅为0.34纳米,单层厚度相当于头发丝直径的十五万分之一。是目前世界上已知的最轻薄、

石墨烯薄膜制备方法研究

北京化工大学本科生毕业论文

题目石墨烯薄膜制备方法研究 诚信申明 本人声明: 所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究生成果,除了文中特别加以标注和致谢之处外,论文中不包含他人已经发表或撰写过的研究成果,也不包含为获得北京化工大学或其他教育机构的学位或证书而是用过的材料,其他同志对研究所做的贡献均已在论文中作了声明并表示了谢意。 申请学位论文与资料若有不实之处,本人愿承担一切相关责任。本科生签名:日期:年月日

本科生毕业设计(论文)任务书 设计(论文)题目:石墨烯薄膜制备方法研究 学院:化学工程学院专业:化学工程与工艺班级:化工0805 学生:艾东东指导教师(含职称):元炯亮副教授专业负责人:刘晓林 1.设计(论文)的主要任务及目标 主要任务:(1)利用Hummers法制备氧化石墨; (2)利用电化学还原法制备石墨烯。 主要目标:配置一定浓度的氧化石墨溶液,导电玻璃作为基底,将氧化石墨溶液涂于导电玻璃表面,在恒电压下还原氧化石墨,制得薄层石墨烯。 2.设计(论文)的基本要求和内容 了解石墨烯国内外的研究现状和发展趋势,以及有关石墨烯的一些制备方法和表征手段,掌握基本的实验操作技能,学会分析实验结果。毕业论文完成后应具备独立进行研究的能力。 3.主要参考文献 [1] 朱宏伟,徐志平,谢丹等.石墨烯-结构、制备方法与性能表征[M].北京:清华大学出版社,2011:36~45 [2]郭鹏.石墨烯的制备、组装及应用研究[D],北京:北京化工大学,2010 [3] Hummers W S, Offeman R E, Preparation of graphite oxide[J].J Am Chem Soc, 1958,80(6):1339 4.进度安排 设计(论文)各阶段名称起止日期 1 前期文献查阅并准备开题2012.2.15~2012.2.29 2 进行相关实验,处理实验数据,分析结果2012.3.1~2012.5.1 3 总结实验结果,编写实验论文2012.5.1~2012.5.20 4 完善毕业论文,进行相关的修改2012.5.20~2012.5.30 5 准备毕业答辩及毕业相关的工作2012.5.30~2012.6.5

基于石墨烯的超材料电磁诱导透明现象的调控研究

目录上海师范大学 目录 摘要.........................................................................................................................I Abstract..................................................................................................................II 目录......................................................................................................................IV 第一章绪论 (1) 1.1超材料的简介 (1) 1.1.1金属超材料 (1) 1.1.2表面等离激元材料 (4) 1.2金属超材料电磁诱导透明的研究进展综述 (9) 1.3电磁透明透明所面临的问题以及解决方案 (13) 1.4本论文主要研究思路和内容 (14) 第二章超材料电磁诱导透明的人工调控研究 (17) 2.1引言 (17) 2.2基于石墨烯的超材料电磁诱导透明研究 (18) 2.2.1石墨烯对金属超材料EIT现象的调控机制研究 (18) 2.2.2石墨烯与金属超材料的耦合机制研究 (21) 2.2.3金属超材料EIT透明窗口的设计 (25) 2.2.4石墨烯对金属超材料透明窗口的调节及结果分析 (29) 2.2.5石墨烯对金属超材料EIT的相位与群速度的调节与分析 (32) 2.2.6理论分析及讨论 (34) 第三章总结与展望 (42) 3.1总结 (42) 3.2展望 (42) 参考文献 (43) 致谢 (47) 攻读硕士期间的研究成果 (48) 论文独创性声明 (49) 论文使用授权声明 (49) 万方数据

基于石墨烯吸波材料的研究进展

Material Sciences 材料科学, 2018, 8(3), 222-234 Published Online March 2018 in Hans. https://www.wendangku.net/doc/0915109094.html,/journal/ms https://https://www.wendangku.net/doc/0915109094.html,/10.12677/ms.2018.83024 Research Progress of Microwave Absorbing Materials Based on Graphene Xingjun Lv, Yingrui Wu, Hang Li, Wei Li School of Civil Engineering, Dalian University of Technology, Dalian Liaoning Received: Mar. 2nd, 2018; accepted: Mar. 21st, 2018; published: Mar. 28th, 2018 Abstract Graphene, as a new type carbon material, due to its excellent physical and chemical properties, has become a research focus. In this paper, the electromagnetic wave absorbing properties and mechanism of graphene composites are reviewed. The development of graphene based composite absorbing materials is expected. Keywords Graphene, Absorbing Material, Composite 基于石墨烯吸波材料的研究进展 吕兴军,武应瑞,李航,李威 大连理工大学土木工程学院,辽宁大连 收稿日期:2018年3月2日;录用日期:2018年3月21日;发布日期:2018年3月28日 摘要 石墨烯作为一种新型的碳材料,由于其优良的物理化学性能成为研究的热点。本文综述了石墨烯复合材料的电磁波吸收性能和机理等,并对石墨烯基复合吸波材料的发展做了展望。 关键词 石墨烯,吸波材料,复合材料

我国石墨烯材料应用研究进展和发展前景

我国石墨烯材料应用研究进展和发展前景我国石墨烯材料应用研究进展和发展前景 中国粉体技术网 2015-09-21 11:55:24 阅读(620) 评论(0) 声明:本文由入驻搜狐媒体平台的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。举报 导读:手机充电只需几秒钟?史上最薄电灯泡?光驱动飞行器?关于石墨烯非凡应用的新闻不断出现在人们的视野当中,似乎石墨烯已经成为了无所不能的超级材料。石墨烯这种二维碳材料引起l人们的广泛关注。那么近几年来我国石墨烯研究进展和发展前景又如何呢? 手机充电只需几秒钟?史上最薄电灯泡?光驱动飞行器?关于石墨烯非凡应用的新闻不断出现在人们的视野当中,似乎石墨烯已经成为了无所不能的超级材料。2004年

英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖以来,石墨烯这种二维碳材料开始引起人们的广泛关注。那么近几年来我国石墨烯研究进展和发展前景又如何呢? “重庆造“石墨烯安全手机获2万套订单 继今年3月全球首批量产石墨烯手机在重庆市问世后,“重庆造”石墨烯手机又有新产品。重庆墨希科技有限公司(以下简称重庆墨希科技)与重庆华森心时代实业公司(以下简称华森心时代)日前签订《石墨烯商务安全手机采购协议》,根据协议,华森心时代计划向重庆墨希科技采购价值3800万元的2万套石墨烯商务安全手机。 根据相关公告显示,这批石墨烯手机是符合国家保密局等保四级标准的硬件加密安全手机。其机型名为“LT521”,是一款5.5寸全高清屏的五模4G手机,采用了石墨烯触控屏、石墨烯导热膜及石墨烯电池,采购单价为1900元/套,配置方面与目前市场上主流的安卓智能手机差不多。据了解,华森心时代采购的这批手机将主要面向金融业、政府部门和商务高端人士销售。 今年3月,重庆墨希科技发布全球首批量产石墨烯手机时表示,由于采用石墨烯触摸屏、石墨烯电池和石墨烯导热

相关文档