文档库 最新最全的文档下载
当前位置:文档库 › 鼓式制动器 设计说明书

鼓式制动器 设计说明书

鼓式制动器 设计说明书
鼓式制动器 设计说明书

车辆工程专业课程设计题目:鼓式制动器设计

学院机械与能源工程学院专业车辆工程

年级车辆10级班级车辆1012

姓名李开航学号 2010715040

成绩指导老师赖祥生

精品文档

目录

第1章绪论.......................................................

1.1制动系统设计的目的 (1)

1.2制动系统设计的要求 (1)

第2章鼓式制动器的设计计算及相关说明 (2)

2.1鼓式制动器有关计算 (2)

2.1.1基本参数 (2)

2.1.2确定前后轴制动力矩分配系数β (2)

2.1.3鼓式制动器制动力矩的确定 (3)

2.2鼓式制动器的结构参数与摩擦系数的选取 (4)

2.2.1制动鼓半径 (4)

2.2.2制动鼓摩擦衬片的包角、宽度、和起始角 (4)

2.2.3张开力作用线至制动器中心的距离 (4)

2.2.4制动蹄支销中心的坐标位置 (5)

2.2.5摩擦片的摩擦系数 (5)

2.3后轮制动轮缸直径与工作容积的设计计算 (5)

2.4摩擦衬片的磨损特性计算 (6)

2.5驻车计算 (8)

第3章鼓式制动器主要零件的结构设计 (10)

3.1制动鼓 (10)

3.2制动蹄 (11)

3.3制动底板 (12)

3.4支承 (12)

3.5制动轮缸 (13)

3.6摩擦材料 (13)

3.7制动器间隙 (13)

第4章鼓式制动器的三维建模 (14)

第5章结论 (15)

参考文献 (16)

第1章绪论

1.1制动系统设计的目的

汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。

1.2制动系统设计的要求

本次的课程设计选择了鼓式制动器,制定出制动系统的结构方案,确定计算制动系统的主要设计参数制动器主要参数设计和液压驱动系统的参数计算。利用CATIA绘制装配图,布置图和零件图。最终进行制动力分配编程,对设计出的制动系统的各项指标进行评价分析。

第2章鼓式制动器的设计计算及相关说明

2.1鼓式制动器有关计算

2.1.1基本参数

整车质量:空载:1700kg 满载:2480kg

质心高度:空载:hg=0.8m 满载:hg=0.7m 轴距: L=2.6m 轮距: L 0=1.4m 最高车速: 115km/h 车轮工作半径:381mm 轮胎: 195/70R14C 同步附着系数:

=0.6

2.1.2确定前后轴制动力矩分配系数β

前后轴制动力矩分配系数公式

L

h L g

02?β-=

(2-1)

式中:

-质心到后轴;m -同步附着系数; -满载时质心高度;m L-轴距;m 把

=0.91m ,

=0.6,

=0.7m ,L=2.6m 代入公式(2-1)得

m

51.06

.27

.06.091.0=?-≡

β

2.1.3鼓式制动器制动力矩的确定

由轮胎与路面附着系数所决定的前后轴最大附着力矩公式:

e g r qh L L

G

M ?υ)(1max 2-=

(2-2) 式中:Φ-该车所能遇到的最大附着系数;

q-制动强度;

e r -车轮有效半径;mm

-质心到前轴的距离;m -满载时质心高度;m

m ax 2μM -后轴最大制动力矩;Nmm

G-汽车满载重力;N

L-汽车轴距;m

把G=24800N ,L=2.6m ,

=1.69m ,q=0.66, =0.7m ,

,=381mm

代入公式(2-2)得, 后轴m ax 2μM =

()3817.06.069.16

.224800

??-=2.77610?Nmm 后轮的制动力矩为2

1077.26

Nmm ?=0.785610?Nmm

前轴m ax 1μM = T m ax 1f =

max 21f T β

β

-=0.51/(1-0.51)?2.77610?=2.88610?Nmm

前轮的制动力矩为2.88610?/2=1.44610?Nmm

2.2鼓式制动器的结构参数与摩擦系数的选取 2.2.1制动鼓半径

轮胎规格为195/60R14 85H 轮辋为14in

查表得制动鼓内径D 内=260mm D r =15*25.4=381mm

根据轿车D/r D 在0.70~0.83之间选取 取D/r D =0.75 D=284mm ,

2.2.2制动鼓摩擦衬片的包角、宽度、和起始角

制动蹄摩擦衬片的包角β在β=?90~ο100范围内选取。 取β=ο90

根据单个制动器总的衬片米厂面积∑A 取200~3002cm 取A=2502cm

根据QC/T309-1999取得b=60mm

由起始角公式)2/(900ββ-?=,计算得起始角35ο。

2.2.3张开力作用线至制动器中心的距离

根据e=0.8R

取R=124.5mm ,得:e=0.8×143=113.6mm

2.2.4制动蹄支销中心的坐标位置

制动蹄支撑销中心的坐标位置a 与c 根据a=0.8R

取R=142mm 得:a=0.8×142=113.6mm c 取值在规定范围内尽可能小些取c=30mm

2.2.5摩擦片的摩擦系数

选择摩擦片时,不仅希望其摩擦系数要高些,而且还要求其热稳定行好,受温度和压力的影响小。不宜单纯地追求摩擦材料的高摩擦系数,应提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的敏感性的要求。在假设的理想条件下计算制动器的制动力矩,取f=0.3可使计算结果接近实际值。另外,在选择摩擦材料时,应尽量采用减少污染和对人体无害的材料。 所以选择摩擦系数f=0.3。

2.3后轮制动轮缸直径与工作容积的设计计算

轮缸直径公式

p

P

d w π2

=(2-3) 式中:p —制动力调节装置作用下的轮缸或灌录液压,p=8Mp ~12Mp.

取p=10Mp ;

查Santana2000轿车使用与维护手册得 P=7065N ;

把P=7065N ,p=10Mp ,=3.14,代入公式(2-3)得

6

101014.37065

2

??=w d =30mm

根据GB7524-87标准规定的尺寸中选取,因此轮缸直径为30mm 。 轮缸工作容积公式

∑=n w w d V 1

2

4δπ(2-4)

式中:w V -一个轮缸的工作容积;mm 3

w d -一个轮缸活塞的直径;mm

n -轮缸活塞的数目;

δ-一个轮缸完全制动时的行程;mm 一个轮缸完全制动时的行程公式

4321δδδδδ+++=(2-5)式中:1δ——消除制动蹄与制

动鼓间的间隙所需的轮缸活塞行程。

2δ——由于摩擦衬片变形而引起的轮缸活塞。

3δ,4δ——分别为鼓式制动器的变形与制动鼓的变形而引起的轮缸活塞行

程。

初步设计时δ可取2mm 把

=30mm ,

=2mm 代入公式(2-4)得

∑?=2

1

2230414.3V w =2826mm 3 2.4摩擦衬片的磨损特性计算

摩擦衬片的磨损特性计算摩擦衬片的磨损与摩擦副的材质,表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此在理论上要精确计算磨损性能是困难的。但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素。

汽车的制动过程,是将其机械能(动能、势能)的一部分转变为热量而耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动力的任务。此时由于在短时间内制动摩擦产生的热量来不及逸散到大气中,致使制动器温度升高。此即所谓制动器的能量负荷。能量负荷愈大,则摩擦衬片(衬块)的磨损亦愈严重。

1)比能量耗散率

双轴汽车的单个后轮制动器的比能量耗散率

比能量耗散率公式

2212

22

()1(1)

22a m v v e tA δβ-=-(2-6)

式中:δ-汽车回转质量换算系数;

a m -汽车总质量;kg

1v -汽车制动初速度;m/s -汽车制动末速度;m/s

t -制动时间; s j -制动减速度;2/s m

2A -后制动器衬片的摩擦面积;

β-制动力分配系数; 根据公式 j=

g (2-7)

式中j-制动减速度;2/s m -同步附着系数; g-加速度;2/s m 把

=0.6,g=102/s m 代入公式(2-7)得

g j ?=6.00.6×10=62/s m ; 根据公式

(

把=22.2m/s,

=0m/s,=1,51.0=β,a m =2480kg,2A =25000mm 2, t=3.7s,

代入公式(2-6)得

e 2=25000

7.34)02.22(248012??-?7=1.62/mm w

轿车鼓式制动器的比能量耗散率应不大于1.82/mm w ,故符合要求。 2)比滑磨功f L

磨损和热的性能指标可用衬片在制动过程中由最高制动初速度至停车所完成的单位衬片面积的滑磨功,即比滑磨功f L 来衡量,其公式:

]

[22max

f a a f L A v m L ≤=∑

(2-8)

式中:a m -汽车总质量;kg

∑A -车轮制动器各制动衬片的总摩擦面积;

max a v -最高制动初速度;m/s

[f L ]-许用比滑磨功,轿车取1000J/2cm ~1500J/2cm 。 把

=1550kg ,∑A =752cm 2,s m h km v a /44/160max ==

代入公式(2-8)得

L f =752

24415502

??1497J/2cm ≤1000J/2cm ~1500J/2cm

故符合要求。

2.5驻车计算

1)汽车可能停驻的极限上坡路倾斜角α 根据公式

hg L L arctg

??α-=1

(2-9)

式中:?-车轮与路面摩擦系数;

1L -汽车质心至前轴间距离;m

L -轴距;m

hg -汽车质心高度;m

把=0.7,

=1.69m ,L=2.6m,

=0.7m 代入公式(2-9)得

ο29=α

最大停驻坡的高度应不小于16%~20%,故符合要求。 2)汽车可能停驻的极限下坡路倾斜角'α 根据公式

'1

L arctg

L hg ?α?=+(2-10)

式中:?-车轮与路面摩擦系数;

1L -汽车质心至前轴间距离;m L -轴距;m

hg -汽车质心高度;m

把=0.7,=1.69m ,L=2.6m,

=0.7m 代入公式(2-10)得

=38ο

最大停驻坡的高度应不小于16%~20%,故符合要求。

第3章 鼓式制动器主要零件的结构设计

3.1制动鼓

制动鼓应具有非常好的刚性和大的热容量,制动时温升不应超过极限值。制

动鼓材料应与摩擦衬片相匹配,以保证具有高的摩擦系数并使工作表面磨损均匀。

制动鼓相对于轮毂的对中是圆柱表面的配合来定位,并在两者装配紧固后精加工制动鼓内工作表面,以保证两者的轴线重合。两者装配后还需进行动平衡。其许用不平衡度对轿车为15N·cm~20 N·cm;对货车为30 N·cm~40 N·cm。客车要求其制动鼓工作表面的圆度和同轴度公差<0.03mm,径向跳动量≤0.O 5mm,静不平衡度≤1.5N.cm。

制动鼓壁厚的选取主要是从其刚度和强度方面考虑。壁厚取大些也有利于增大其热容量,但试验表明,壁厚由ll mm增至20 mm时,摩擦表面的平均最高温度变化并不大。一般铸造制动鼓的壁厚:轿车为7mm~12mm;中、重型载货汽车为13mm~18mm。制动鼓在闭口一侧外缘可开小孔,用于检查制动器间隙。本次设计采用的材料是HT20-40。制动鼓如图3-1所示。

图3-1 制动鼓

3.2制动蹄

制动蹄腹板和翼缘的厚度,轿车的约为3mm~5mm;货车的约为5mm~8mm。摩擦衬片的厚度,轿车多为4.5mm~5mm;货车多为8mm以上。衬片可铆接或粘贴在制动蹄上,粘贴的允许其磨损厚度较大,使用寿命增长,但不易更换衬片;铆接的噪声较小。本次制动蹄采用的材料为HT200。制动蹄如图3-2所示。

图3-2制动蹄

3.3制动底板

制动底板是除制动鼓外制动器各零件的安装基体,应保证各安装零件相互间的正确位置。制功底板承受着制动器工作时的制动反力矩,因此它应有足够的刚度。为此,由钢板冲压成形的制动底板均只有凹凸起伏的形状。重型汽车则采用可联铸铁KTH370—12的制动底板。刚度不足会使制动力矩减小,踏板行程加大,衬片磨损也不均匀。本次设计采用45号钢。制动底板如图3-3所示。

图3-3制动底板

3.4支承

二自由度制动筛的支承,结构简单,并能使制动蹄相对制动鼓自行定位。为了使具有支承销的一个自由度的制动蹄的工作表面与制动鼓的工作表面同轴心,应使支承位置可调。例如采用偏心支承销或偏心轮。支承销由45号钢制造并高频淬火。其支座为可锻铸铁(KTH370—12)或球墨铸铁(QT400—18)件。青铜偏心轮可保持制动蹄腹板上的支承孔的完好性并防止这些零件的腐蚀磨损。

具有长支承销的支承能可靠地保持制动蹄的正确安装位置,避免侧向偏摆。有时在制动底板上附加一压紧装置,使制动蹄中部靠向制动底板,而在轮缸活塞顶块上或在张开机构调整推杆端部开槽供制动蹄腹板张开端插入,以保持制动蹄的正确位置。

3.5制动轮缸

制动轮缸为液压制动系采用的活塞式制动蹄张开机构,其结构简单,在车轮制动器中布置方便。轮缸的缸体由灰铸铁HT250制成。其缸简为通孔,需镗磨。活塞由铝合金制造。活塞外端压有钢制的开槽顶块,以支承插人槽中的制动蹄腹板端部或端部接头。轮缸的工作腔由装在活塞上的橡胶密封圈或靠在活塞内端面处的橡胶皮碗密封。多数制动轮缸有两个等直径活塞;少数有四个等直径活塞;双领路式制动器的两蹄则各用一个单活塞制动轮缸推动。本次设计采用的是HT250。

3.6摩擦材料

各种摩擦材料摩擦系数的稳定值约为0.3~0.5,少数可达0.7。设计计算制动器时一般取0.3~0.35。选用摩擦材料时应注意,一般说来,摩擦系数愈高的材料其耐磨性愈差。取摩擦系数为0.3。

3.7制动器间隙

一般,鼓式制动器的设定间隙为0.2~0.5mm;盘式制动器的为0.1~0.3mm。此间隙的存在会导致踏板或手柄的行程损失,因而间隙量应尽量小。考虑到在制动过程中摩擦副可能产生机械变形和热变形,因此制动器在冷却状态下应有的间隙应通过试验来确定。另外,制动器在工作过程中会因为摩擦衬片(衬块)的磨损而加大,因此制动器必须设有间隙调整机构。取间隙为0.5mm。

第4章鼓式制动器的三维建模

鼓式制动器的整体设计由pro-e软件建成的模型如图4-1所示,二维图详见图号gszdq20130115。

图4-1鼓式制动器

第5章结论

在本次课程设计中我首先查阅了大量鼓式制动器的资料,比较分析了市面上

几种不同的鼓式制动器,完成了鼓式制动器的总体设计方案。通过两天的时间完成鼓式制动器的基本参数的选择、设计、计算;接着通过画草图完成鼓式制动器的初步总布置设计;然后用一周的时间完成了鼓式制动器的制动鼓、制动底板、制动蹄等零部件的建模,最终装配成功得到三维实体数据模型;最后使用CAXA 软件制作了鼓式制动器的总布置设计工程图并撰写了鼓式制动器总布置设计说明书。

此次课程设计可以说在某种程度上是一种尝试,通过查阅大量的有关汽车制动系统资料后,使我学到了很多先进的制动系统的相关知识。同时,还提高了对三维建模软件的熟悉程度,学到了一些新的有关建模和装配的技巧。这对我接下来的毕业设计起到了十分重要的作用,当然,此次设计并不能称得上是最完美的作品,但至少能在某种程度上缓解或克服汽车制动时出现的一些问题。同时,课程设计也是对我大学四年学习情况的一次检验,使我受益匪浅。

参考文献

[1] 刘惟信.汽车设计.北京:清华大学出版社, 2001

[2] 余志生.汽车理论.北京:机械工业出版社 ,2000

[3] 陈家瑞.汽车构造.北京:人民交通出版社 ,1999

[4] 大众.捷达2000轿车使用与维护手册.北京:机械工业出版社,2002.2

[5] 刘惟信.汽车制动系统的结构分析与设计计算.北京:清华大学出版社,2004

[6] 崔靖.汽车构造.陕西:陕西科学技术出版社,1984

[7] 王望予.汽车设计.北京:机械工业出版社,2004

[8] 吉林工业大学汽车教研室.汽车设计.北京:机械工业出版社,1981

[9] 张洪欣.汽车设计.北京:机械工业出版社,1999

[10] 龚微寒.汽车现代设计制造.北京:人民交通出版社,1995

[11] 林宁.汽车设计. 北京:机械工业出版社,1999

[12] 张国忠.现代设计方法在汽车设计中的应用. 沈阳:东北大学出版社,2002

[13]粟利萍.汽车实用英语.北京:电子工业出版社,2005

[14] Rudolf Limpet. BRAKE DESIGN and SAFETY. Warren dale, PA 15096, USA: SAE,

Inc., 1992

[15]John Fenton. Hand Book of Vehicle Design Analysis. Warren dale ,PA,USA:

Society of Automotive Engineers.Inc., 1996

欢迎您的下载,

资料仅供参考!

致力为企业和个人提供合同协议,策划案计划书,学习资料等等

打造全网一站式需求

轻型货车鼓式制动器设计

轻型货车鼓式制动器设计 制动系统在汽车中有着极为重要的作用,如果失效将会造成灾严重的后果。制动系统的主要部件就是制动器,在现代汽车上仍然广泛使用的是具有较高制动效能的蹄—鼓式制动器。 鼓式制动也叫块式制动,现在鼓式制动器的主流是内张式,它的制动鼓位于制动轮内侧,刹车时制动块向外张开,摩擦制动鼓的内侧,达到刹车的目的。本设计就摩擦式鼓式制动器进行了相关的设计和计算。在设计过程中,以实际产品为基础,根据我国工厂目前进行制动器新产品开发的一般程序,并结合理论设计的要求进行设计。首先根据给定车型的整车参数和技术要求,确定制动器的结构形式、驱动形式及制动器主要参数,然后计算制动器的制动力矩、制动效能因数、制动减速度、制动温升等,并在此基础上进行制动器主要零部件的结构设计,如制动鼓、制动蹄、制动底板等。最后,完成装配图和零件图的绘制。 1.1选题背景与意义 随着汽车性能的提高,对汽车安全性能的要求也越来越高。制动器是汽车制动系统中最重要的安全部件,对汽车的安全性有着重要的作用,因此对制动器的设计进行分析研究有着重要的意义。鼓式制动器作为现代汽车广泛使用的具有较高制动效能的制动器,尽管对其的设计研究取得了一定的成绩,但是对传统鼓式制动器的设计仍然有着不可替代的基础性和研发性作用,也可以为后续设计提供理论参考。这样,在以后的设计研究当中,不仅可以延续鼓式制动器的优点,还能在此基础上设计出制动性能更好的制动器,满足汽车的安全性和乘员舒适性,提高汽车的整体性能。 1.2研究现状 长期以来,为了充分发挥鼓式制动器的重要优势,旨在克服其主要缺点的研究工作和技术改进一直在进行中,尤其是对鼓式制动器工作过程和性能计算分析方法的研究受到高度重视。这些研究工作的重点在于制动器结构和实际使用因素等对制动器的效能及其稳定性等的影响,取得了一些重要的研究成果,得到了一些比较可行、有效的改进措施,制动器的性能也有了一定程度的提高。 如以某汽车前轮鼓式双领蹄式制动器的制动蹄为研究对象,进行了受力分析并建立了力学模型,使用Pro/E建立了CAD模型,运用ANSYS进行了有限元

鼓式制动器的建模与仿真资料

河北工业大学 毕业设计说明书 作者:张南学号: 100287系:机械工程 专业:车辆工程 题目:鼓式制动器的建模与仿真 指导者:刘茜副教授 评阅者: 2014年 06 月 08 日

毕业设计说明书中文摘要

目录 1.绪论 (1) 制动系统的原理 (1) 鼓式制动器的介绍 (1) 鼓式制动器优缺点 (3) 2.鼓式制动器零件建模及装配 (4) 零件建模 (4) 制动器的装配 (13) 3. 虚拟样机模型的建立及性能仿真分析 (15) 制动器各部件间约束关系的建立 (15) 几何体间约束的关系与选择 (17) ADAMS\View的运动仿真 (25) ADAMS\View仿真结果 (27) 结论 (33) 参考文献 (34) 致谢 (35)

1.绪论 制动系统原理 制动系统是行车安全中非常重要的一部分,制动系统主要表现为通过踩下制动踏板,制动系统将力进行一系列传递从而最终表现为车辆的行车速度降低直至停车。制动系统原理图如下图。制动系统由制动踏板、助力泵、总泵活塞、制动鼓、液压管道、驻车制动等组成。踩下制动踏板将力传递到制动系统,助力泵将踏板上的力进行放大并传递到制动总泵中推动总泵活塞运动,将力传递到制动器的制动鼓,产生摩擦力矩从而使车轮速度降低直至停车。 图制动系统的原理图 1.1鼓式制动器的介绍 鼓式制动器应用在车辆上面已经有很长时间的历史,由于它的可靠性稳定以及大制动力均衡,使得鼓式制动器至今仍被装置在许多车型上 (多用于后轮)。鼓式制动器是通过液压装置将制动蹄向外推,使制动蹄摩擦片与随着车轮转动的制动鼓发生摩擦产生制动力矩从而使车辆实现制动的效果。鼓式制动器的制动鼓内侧与摩擦片接触的位置就是制动装置产生制动力矩的位置。在获得相同制动力矩的情况下,鼓式制动器的制动鼓直径较盘式制动器的制动鼓要小得多。因此需要较大制动力的德众大型

制动器设计说明书

制动器设计说明书

摘要 制动器可以分两大类,工业制动器和汽车制动器,汽车制动器又分为行车制动器(脚刹)和驻车制动器。在行车过程中,一般都采用行车制动(脚刹),便于在前进的过程中减速停车,不单是使汽车保持不动。若行车制动失灵时才采用驻车制动。当车停稳后,就要使用驻车制动(手刹),防止车辆前滑和后溜。停车后一般除使用驻车制动外,上坡要将档位挂在一档(防止后溜),下坡要将档位挂在倒档(防止前滑)。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 臂架式盘式制动器是一种新型的主要适用于起重运输机械的制动装置。本论文着重介绍了其特点、关键零部件的选择或设计计算方法、主要性能参数及一些台架试验结果。除此之外还着重介绍了制动臂、松闸器等关键部件的设计参数及注意事项,同时细节方面对于制动器的静力矩也做了详细的计算设计。 Abstract Brakes can be divided into two categories, industrial brakes and automotive bra kes, automotive brake is divided into brake (foot brake) and the parking brake. In the driving process, generally used brake (foot brake), to facilitate the p rocess of deceleration in the forward stop, not just the car to remain intact. If the traffic Zhidongshiling when using the parking brake. When the car comple tely stopped, it has to use the parking brake (hand brake), to prevent the vehi cle front and rear slip slide. After stopping the general addition to the parki ng brake, the uphill hanging in a stall to stall (after the slide to prevent), downhill to hang in the reverse gear (to prevent forward slip.) Mechanical moving parts to stop or slow down the resistance of the moment must be applied as the brake torque. Braking torque is the design, selection based o n the brake, the size of the pattern and work by the mechanical requirements of the decision. Friction material used on brake (brake parts) directly affects t he performance of the braking process, and the main factors affecting the perfo rmance of the working temperature and the temperature rise speed. Friction mate rial should have high and stable friction coefficient and good wear resistance. Metallic and nonmetallic friction materials sub-categories. The former are com monly used cast iron, steel, bronze, and powder metallurgy friction materials, which have leather, rubber, wood and asbestos. Disc brake arm frame is a new major for the braking device handling equipment. This paper focuses on its characteristics, key components of the selection or d esign methods, the main performance parameters and some bench test results. Hig hlights in addition to the brake arm, loose brake components, etc. The key desi gn parameters and considerations, while the details of the static torque for th e brake has also done a detailed calculation of design.

盘式制动器课程设计方案

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 L1=L?(1?60%)=962mm L2=L?60%=1443mm (9)、轮胎参数:165/70R13; 轮胎有效半径r e为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径r e=(240 2 +165×70%)=235.5mm (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则 满足制动性能要求的制动减速度由:S=1 3.6(τ2‘+τ2“ 2 )μ0+μ02 25.92 a bmax 计算最大减速度 a bmax,其中μ0=U =50Km/h;S=15m;τ2‘= 0.05s;τ2“=0.2s。经计算得 最大减速度 a bmax≈7.47m s2 ?

鼓式制动器 设计说明书

车辆工程专业课程设计题目:鼓式制动器设计 学院机械与能源工程学院专业车辆工程 年级车辆10级班级车辆1012 姓名李开航学号 2010715040 成绩指导老师赖祥生

精品文档 目录 第1章绪论....................................................... 1.1制动系统设计的目的 (1) 1.2制动系统设计的要求 (1) 第2章鼓式制动器的设计计算及相关说明 (2) 2.1鼓式制动器有关计算 (2) 2.1.1基本参数 (2) 2.1.2确定前后轴制动力矩分配系数β (2) 2.1.3鼓式制动器制动力矩的确定 (3) 2.2鼓式制动器的结构参数与摩擦系数的选取 (4) 2.2.1制动鼓半径 (4) 2.2.2制动鼓摩擦衬片的包角、宽度、和起始角 (4) 2.2.3张开力作用线至制动器中心的距离 (4) 2.2.4制动蹄支销中心的坐标位置 (5) 2.2.5摩擦片的摩擦系数 (5) 2.3后轮制动轮缸直径与工作容积的设计计算 (5) 2.4摩擦衬片的磨损特性计算 (6) 2.5驻车计算 (8) 第3章鼓式制动器主要零件的结构设计 (10) 3.1制动鼓 (10) 3.2制动蹄 (11) 3.3制动底板 (12) 3.4支承 (12) 3.5制动轮缸 (13) 3.6摩擦材料 (13) 3.7制动器间隙 (13) 第4章鼓式制动器的三维建模 (14) 第5章结论 (15) 参考文献 (16)

第1章绪论 1.1制动系统设计的目的 汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接制约汽车运动的一个关键装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。随着公路业的迅速发展和车流密度的日益增大,人们对安全性、可靠性要求越来越高,为保证人身和车辆的安全,必须为汽车配备十分可靠的制动系统。 1.2制动系统设计的要求 本次的课程设计选择了鼓式制动器,制定出制动系统的结构方案,确定计算制动系统的主要设计参数制动器主要参数设计和液压驱动系统的参数计算。利用CATIA绘制装配图,布置图和零件图。最终进行制动力分配编程,对设计出的制动系统的各项指标进行评价分析。 第2章鼓式制动器的设计计算及相关说明 2.1鼓式制动器有关计算

SEW电机制动器使用说明

SEW异步电机制动器的使用及故障排除 1 制动电压的初步确定 (3) 2 制动电压的铭牌确定………………………………………………………

3 制动器的接线 (5) 4 变频器控制电机时制动器的使用 (7) 5制动器快速制动的使用 (9) 没有变频器控制电机时快速制动的使用 (9) 变频器控制电机时快速制动的使用 (10) 6 制动器组成元件好坏的检测 (12) 7 制动器使用中常易犯的错误 (13) 8 制动器使用中常易误解的地方 (15) 9 制动器制动反应时间和制动间隙数据表 (17)

1 制动电压的初步确定 根据中国的实际使用情况,SEW公司电机通常使用220VAC或380VAC制动电压的制动器,如果客户定货时没有指明制动电压的要求,SEW公司将按以下原则配置制动器的制动电压,机座号63—100的电机配置220VAC制动电压的制动器;机座号112以上的电机配置380VAC制动电压的制动器; (电机机座号与电机功率对照表见SEW《电机技术手册》) 对于最常使用的4级电机而言,—3Kw的电机配置220VAC制动电压的制动器(电机有56机座号和63机座号两种,56机座号除外);4Kw以上的电机配置380VAC制动电压的制动器。 当然,客户也可指明制动器制动电压的等级,电气设计人员为方便控制的要求,最好能与机械设计人员协商,指明制动器制动电压的等级。

2 制动电压的铭牌确定 电机的铭牌上左下脚标明了所配制动器制动电压的等级,请以此为准配置正确的制动电压。 3制动器的接线 对于单速电机,为方便客户使用,在电机出厂时SEW公司已将制动器控制

盘式制动器说明书

第二章可控自冷盘式制动器 K P Z— / ?? ?? 制动器副数?规格 ?? ?制动盘直径 ?? ?制动 ?? ?盘式 ?? ?可控 ?? ?KPZ型号含义 1.可控盘闸系统的选用型号含义 2. 结构特征与工作原理 2.1 机械系统结构及工作原理 ?? ?1 电动机;2 联轴器;3 牵引体;4 传动轮;5 联轴器;6 垂直轴减速器;7 制动盘;8 弹簧;9 活塞;10 闸瓦; 11 油管 图1 制动装置布置图 自冷盘式可控制动装置主要由制动盘,液压制动器(含活塞、闸瓦、弹簧等),底座,液压站等组成,图1是制动装置在系统中的布置示意图。它主要由制动盘7和液压制动器(8,9,10)等组成。盘式制动装置的制动力是由闸瓦10与制动盘7摩擦而产生的。因此调节闸瓦对制动盘的正压力即可改变制动力。而制动器的正压力N 的大小决定于油压P与弹簧8的作用结果。当机电设备正常工作时,油压P达最大值,此时正压力N为0,并且闸瓦与制动盘间留有1-1.5mm的间隙,即制动器处于松闸状态。当机电设备需要制动时,根据工况和指令情况,电液控制系统将按预定的程序自动减小油压以达到制动要求。 2. 盘式制动器的安装说明: 2.1 盘式制动器主机的安装: 盘式制动装置安装前要准确测定位置及距离。通常制动盘与减速器的某一低速轴相连,也可以直接与驱动轮连接实现各种工作制动。 安装制动器时制动闸座与底座安装必须对中安装。制动盘安装后要求盘面的旋转跳动量≤0.1mm,闸盘与闸瓦的平行度≤0.2mm。盘式制动器在松闸状态下,闸瓦与制动盘的间隙为1~1.5mm;制动时,闸瓦与制动盘工作面的接触面积不应小于80%。

安装于减速机倒数二轴上安装于滚筒轴上 电动机; 2-联轴器; 3-牵引体; 4-传动轮; 5-联轴器; 6-减速器; 7-制动盘; 8, 9, 10-液压制动器; 11-油管 图2 制动装置安装布置示意图 其中制动盘安装分两种情况,1、胀套联接2、键连接 2.2 盘式制动装置的连接方式 胀套联接 KZP自冷盘式可控制动装置胀套联接 胀套示意图 表3 安装尺寸表 和无损伤。在清洗后的胀套结合面上均匀涂一层薄润滑油(不含二硫化钼等极压添加剂),预装到滚筒轴上。把制动盘推移到滚筒轴上,使达到设计规定的位置,然后按胀套拧紧力矩的要求将胀套螺钉拧紧。 拧紧胀套螺钉的方法: (1) 使用扭矩扳手,按对角、交叉的原则均匀的拧紧。 (2) 拧紧螺钉时按以下步骤拧紧: a. 以1/3MAX值拧紧 b. 以2/3MAX值拧紧 c. 以MAX值拧紧 d. 以MAX值检查全部螺钉 安装完毕后,在胀套外漏端面及螺钉头部涂上一层防锈油脂,并进行整体二次灌浆。

制动器调整装置使用说明书

制动器调整装置使用说明书 1、调试前的准备 (1)关断电梯主电源,拆除曳引机抱闸接线端子所有外接线缆; (2)按信号名将本装置线缆分别连接至控制柜79、00、接地排及曳引机抱闸接线端子; (3)接通电梯主电源,确认79、00向本装置提供DC125V电压。 2、差值模式 (1)将STATUS开关拨至“STATUS1”位置,并将清零开关向“CLR”位置拨动一次以进入本模 式; (2)将BS开关拨至“LEFT”位置,打开左抱闸,数码管显示为左抱闸打开时间; (3)将BS开关拨至“RIGHT”位置,打开右抱闸,数码管显示为右抱闸打开时间; (4)将BS开关拨至中间位置,数码管显示为左侧减去右侧的差值时间; (5)完成上述操作后将清零开关拨向“CLR”位置,则装置恢复到准备状态; 注意 (1)本说明中抱闸打开时间指抱闸得电至微动开关动作之间的历时; (2)本装置所显示的时间为有符号十进制,单位为毫秒; (3)差值模式下,如果数码管显示左右两侧抱闸打开的差值时间在70ms以内,说明抱 闸触点动作已满足同步性要求。 (4)差值模式下,每次动作后应停顿一段时间,以便抱闸内的电磁力完全释放,该等待 时间的确认方法为同一侧相邻两次测试值相差不超过2毫秒。(例:第一次使用该 装置打开左侧抱闸,打开时间显示为280ms,等待数秒以后,再次使用该装置打开 左侧抱闸,打开时间应显示为280±2ms。如果显示的打开时间超出280±2ms范围,则应等待更长时间。) 3、间隙调节模式 (1)将STATUS开关拨至“STATUS2”位置,并将清零开关向“CLR”位置拨动一次以进入本模 式; (2)将BS开关拨至“LEFT”位置,全压打开左抱闸,持续120秒后自动切断电源输出; (3)将BS开关拨至“RIGHT”位置,全压打开右抱闸,持续120秒后自动切断电源输出。 4、故障代码列表

毕业设计盘式制动器设计说明书

汽车盘式制动器设计 摘要:本文主要是介绍盘式制动器的分类以及各种盘式制动器的优缺点,对所选车型制动器的选用方案进行了选择,针对盘式制动器做了主要的设计计算,同时分析了汽车在各种附着系数道路上的制动过程,对前后制动力分配系数和同步附着系数、利用附着系数、制动效率等做了计算。在满足制动法规要求及设计原则要求的前提下,提高了汽车的制动性能。 关键词:盘式制动器;制动力分配系数;同步附着系数;利用附着系数;制动效率

Automobile disc brake design Abstract:This paper is mainly the disc brake of the classification and various kinds of disc brake of the advantages and disadvantages are introduced, the selection scheme of the chosen vehicle brake was selected and for disc brake do the main design calculation and analysis of the car in a variety of attachment coefficient road on the braking process of, of braking force distribution coefficient and the synchronous adhesion coefficient, utilization coefficient of adhesion, braking efficiency calculated. Under the premise of meeting the requirements of the braking regulation requirement and design principle and improve the braking performance of automobile. Key words: Disc brake,Braking force distribution,coefficient,Synchronization coefficient,Synchronous adhesion coefficient,The use of adhesion coefficient,Braking efficiency

领从蹄鼓式制动器的设计

摘要:随着生活水平的提高和科技的迅猛发展,人们的生活节奏变得越来越快,因此人们对交通工具的快捷性要求越来越高。为了应对高车速对人们安全构成的威胁,许多法规对汽车的安全性提出了更高的要求,制动系的设计成为其中很重的一个方面。本设计根据制动器的工作原理,对多种制动器进行分析比较,选择了制动效能较高的鼓式制动器作为设计的对象。依据给定的参数,进行重要数值的计算。随后,又根据工艺学的知识,进行制动器零件的设计和工艺分析。 总之,本设计的目的是为了设计出高效、稳定的制动器,以提高汽车的安全性。 关键词:制动系; 制动效能; 制动器

Abstract Keywords:Braking system ; Braking quality ; Brake

1 绪论 1.1 汽车制动系概述 尽可能提高车速是提高运输生产率的主要技术措施之一。但这一切必须以保证行驶安全为前提。因此,在宽阔人少的路面上汽车可以高速行驶。但在不平路面上,遇到障碍物或其它紧急情况时,应降低车速甚至停车。如果汽车不具备这一性能,提高汽车行驶速度便不可能实现。所以,需要在汽车上安装一套可以实现减速行驶或者停车的制动装置——制动系统。 制动系是汽车的一个重要组成部分,它直接影响汽车的行驶安全性。随着高速公路的迅速发展和汽车密度的日益增大,交通事故时有发生。因此,为保证汽车行驶安全,应提高汽车的制动性能,优化汽车制动系的结构。 制动装置可分为行车制动、驻车制动、应急制动和辅助制动四种装置。其中行驶中的汽车减速至停止的制动系叫行车制动系。使已停止的汽车停驻不动的制动系称为驻车制动系。每种车都必须具备这两种制动系。应急制动系成为第二制动系,它是为了保证在行车制动系失效时仍能有效的制动。辅助制动系的作用是使汽车下坡时车速稳定的制动系。 汽车制动系统是一套用来使四个车轮减速或停止的零件。当驾驶员踩下制动踏板时,制动动作开始。踏板装在顶端带销轴的杆件上。踏板的运动促使推杆移动,移向主缸或离开主缸。 主缸安装在发动机室的隔板上,主缸是一个由驾驶员通过踏板操作的液压泵。当踏板被踩下,主缸迫使有压力的制动液通过液压管路到四个车轮的每个制动器。液压管路由钢管和软管组成。它们将压力液从主缸传递到车轮制动器。 盘式制动器多用于汽车的前轮,有不少车辆四个车轮都用盘式制动器。制动盘装在轮辋上、与车轮及轮胎一起转动。当驾驶员进行制动时,主缸的液体压力传递到盘式制动器。该压力推动摩擦衬片靠到制动盘上,阻止制动盘转动。

鼓式制动器设计说明书

课程设计 小型轿车后轮鼓式制动器设计 学生姓名: 专业班级: 指导教师: 学院: 年月

东北林业大学 课程设计任务书 小型轿车后轮鼓式制动器设计 学生姓名: 专业班级: 指导教师: 学院:

小型轿车后轮鼓式制动器设计 摘要 随着汽车保有量的增加,带来的安全问题也越来越引起人们的注意,制动系统是汽车主动安全的重要系统之一。如何开发出高性能的制动器系统,为安全行驶提供保障是我们要解决的主要问题。另外,随着汽车市场竞争的加剧,如何缩短开发周期、提高设计效率,降低成本等,提高产品的市场竞争力,已经成为企业成功的关键。 本说明书主要介绍了小型轿车(0.9t)后轮鼓式制动器的设计计算,主要零部件的参数选择的设计过程。 关键词:汽车;鼓式制动器

目录 摘要 1绪论.........................................................................................................错误!未定义书签。 1.1概述 .................................................................................................... 错误!未定义书签。 1.2设计要求 ............................................................................................ 错误!未定义书签。 1.3设计目标 ............................................................................................ 错误!未定义书签。 2 鼓式制动器结构参数选择.....................................................................错误!未定义书签。 2.1制动鼓直径D或半径R.................................................................... 错误!未定义书签。 2.2制动蹄摩擦衬片的包角β和宽度b................................................. 错误!未定义书签。 2.3 摩擦衬片起始角β0 ........................................................................... 错误!未定义书签。 2.4 张开力P的作用线至制动器中心的距离a ..................................... 错误!未定义书签。 2.5制动蹄支撑销中心的坐标位置k与c.............................................. 错误!未定义书签。 2.6 摩擦片系数f ..................................................................................... 错误!未定义书签。 2.7 制动轮缸直径 d和管路压力p....................................................... 错误!未定义书签。 w 3制动蹄片上制动力矩的有关计算..........................................................错误!未定义书签。 4 鼓式制动器主要零部件结构设计及校核计算.....................................错误!未定义书签。 4.1鼓式制动器主要零件结构设计 ........................................................ 错误!未定义书签。 4.1.1 制动鼓............................................................................................. 错误!未定义书签。 4.1.2 制动蹄............................................................................................. 错误!未定义书签。 4.1.3 制动底板......................................................................................... 错误!未定义书签。 4.1.4 制动蹄的支撑................................................................................. 错误!未定义书签。 4.1.5 制动轮缸......................................................................................... 错误!未定义书签。 4.1.6 自动间隙调整机构......................................................................... 错误!未定义书签。 4.1.7 制动蹄回位弹簧............................................................................. 错误!未定义书签。 4.2 校核 .................................................................................................... 错误!未定义书签。 4.2.1 摩擦力矩和摩擦材料的校核......................................................... 错误!未定义书签。 4.2.2 摩擦衬片的磨损特性计算............................................................. 错误!未定义书签。 4.2.3 制动蹄支撑销剪切应力的校核计算............................................. 错误!未定义书签。结论 (14) 参考文献 (15) 附录 (16) 致谢 (17)

制动器的正确使用

制动器的正确使用汽车上一般都设有脚制动和手制动两套独立的制动机构。使用制动 的目的是强制汽车迅速减速直至停车,或在下坡时维持一定车速, 另外,还可用来使停歇的汽车可靠地保持在原地不溜滑。在行车中,正确使用制动,不仅有利于保证行车安全,而且有利于节约燃料, 减少轮胎磨损,防止机件损坏。 一、预见性制动 驾驶员按照自己的目的或针对已发现的情况,为停车采取的提前减 速制动措施,称预见性制动。方法是迅速抬起油门踏板,充分利用 发动机的牵制作用,同时轻踩制动踏板,使汽车降低车速。当汽车 接近停止时,踏下离合器踏板,将变速器挡位置于空挡,将车平稳 地停在预定的位置上。这种方法最常用、最节约、也最安全。 二、紧急制动 行车中,遇到突然发生的危险情况,为使汽车迅速停住而采取的制 动措施称为紧急制动。方法是迅速抬起油门踏板并立即用力踏下制

动踏板,同时急拉手制动,使汽车迅速停住。这种方法不仅使轮胎 和底盘机件损坏严重,而且极易产生甩尾,不利于行车安全,因此,不在万不得己的情况下不可使用。 三、下坡路制动 谁也不会否认,下坡没有制动是不行的,但下坡绝不能完全靠制动。下坡时应减速,并挂上与车速相符的挡位,只有在发动机声音难听 和挡位控制不住车速时,才辅之以制动。方法是,对气压制动来说,踏板不宜过多地随踏随放,避免过快降低气压。应该根据所需制动 强度,适当踏下制动踏板的行程,使控制阀保持“双阀齐闭”状态。当车速较快需加大制动强度时,可继续踏下一段行程;需减少制动 强度时,就少许放松踏板。在下长陡坡时,只要气压能满足需要, 可采用适当的间歇制动。这样,有利于制动毂与制动蹄片的冷却。 如果你驾驶的汽车有排气制动,应尽量多用排气制动。对液压制动 来说,应将制动踏板踏踩两次后,用脚踩住踏板,使踏板处在较为 高的临近制动状态。需增强制动力时,往下再踏一点,需减少制动 力时稍抬一点。当制动踏板高度逐渐降低后,可再踏踩两次,使踏 板高度重新升起。

盘式制动器设计

目录 绪论 (3) 一、设计任务书 (3) 二、盘式制动器结构形式简介 ................... 错误!未定义书签。 2.1、盘式制动器的分类...................... 错误!未定义书签。 2.2、盘式制动器的优缺点.................... 错误!未定义书签。 2.3、该车制动器结构的最终选择.............. 错误!未定义书签。 三、制动器的参数和设计 ....................... 错误!未定义书签。 3.1、制动盘直径 ........................... 错误!未定义书签。 3.2、制动盘厚度 ........................... 错误!未定义书签。 3.3、摩擦衬块的内半径和外半径.............. 错误!未定义书签。 3.4、摩擦衬块面积 ......................... 错误!未定义书签。 3.5、制动轮缸压强 ......................... 错误!未定义书签。 3.6、摩擦力的计算和摩擦系数的验算.......... 错误!未定义书签。 3.7、制动力矩的计算和验算.................. 错误!未定义书签。 3.8、驻车制动计算 ......................... 错误!未定义书签。 四、制动器的主要零部件的结构设计 ............. 错误!未定义书签。 4.1、制动盘 ............................... 错误!未定义书签。 4.2、制动钳 ............................... 错误!未定义书签。 4.3、制动块 ............................... 错误!未定义书签。 4.4、摩擦材料 ............................. 错误!未定义书签。

汽车鼓式制动器开题报告

毕业设计(论文)开题报告 设计(论文)题目:路宝汽车后轮制动器的设计 院系名称: 汽车与交通工程学院 专业班级: 车辆工程 学生姓名: 导师姓名: 开题时间: 指导委员会审查意见: 签字:年月日

一、课题研究目的和意义 制动系统是保证行车安全的极为重要的一个系统,既可以使行驶中的汽车减速,又可保证停车后的汽车能驻留原地不动。对汽车起到制动作用的是作用在汽车上,其方向与汽车行驶方向相反的外力。作用在行驶汽车上的滚动阻力、上坡阻力、空气阻力都能对汽车起到制动作用,但这些外力的大小都是随机的、不可控制的。因此,汽车上必须装设一系列专门装置,以便驾驶员能根据道路和交通等情况,使外界(主要是路面)对汽车某些部分(主要是车轮)施加一定的力,对汽车进行一定程度的强制制动。这种可控制的对汽车进行制动的外力称为制动力,相应的一系列专门的装置即称为制动装置。由此可见,汽车制动系对于汽车行驶的安全性,停车的可靠性和运输经济效益起着重要的保证作用。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,汽车制动系的工作可靠性显得日益重要。因此,许多制动法规对制动系提出了许多详细而具体的要求。 鼓式制动也叫块式制动,是靠制动块在制动轮上压紧来实现刹车的。鼓式制动是早期设计的制动系统,其刹车鼓的设计1902年就已经使用在马车上了,直到1920年左右才开始在汽车工业广泛应用。现在鼓式制动器的主流是内张式,它的制动块(刹车蹄)位于制动轮内侧,在刹车的时候制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。相对于盘式制动器来说,鼓式制动器的制动效能和散热性都要差许多,鼓式制动器的制动力稳定性差,在不同路面上制动力变化很大,不易于掌控。而由于散热性能差,在制动过程中会聚集大量的热量。制动块和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。另外,鼓式制动器在使用一段时间后,要定期调校刹车蹄的空隙,甚至要把整个刹车鼓拆出清理累积在内的刹车粉。当然,鼓式制动器也并非一无是处,它造价便宜,而且符合传统设计。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,前轮制动力要比后轮大,后轮起辅助制动作用,因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。不过对于重型车来说,由于车速一般不是很高,刹车蹄的耐用程度也比盘式制动器高,因此许多重型车至今仍使用四轮鼓式的设计。 二、课题研究现状及分析

鼓式制动器设计

一《车辆工程专业课程设计》设计任务书 一.设计任务:商用汽车制动系统设计 二.基本参数: P285 三.设计内容 主要进行制动器系统设计,设计的内容包括: 1.查阅资料、调查研究、制定设计原则 2.根据给定的设计参数(发动机功率?,汽车轴距,车轮滚动半径,汽车空(满)载时的总质量、轴荷分布、质心位置),选择制动器的基本结构及驱动机构布置方案,设计出一套完整的制动系统,设计过程中要进行必要的计算。 3.制动系统结构设计和主要技术参数的确定 (1)制动器主要参数确定 (2)制动器设计计算 (3)制动器主要结构元件设计 (4)制动驱动机构的设计计算 4.绘制制动器装配图及主要零部件的零件图 四.设计要求 1.制动器总成(前或后)的装配图,1号图纸一张。 装配图要求表达清楚各部件之间的装配关系,标注出总体尺寸,配合关系及其它需要标注的尺寸,在技术要求部分应写出总成的调整方法和装配要求。 2.主要零部件的零件图,3号图纸4张。

要求零件形状表达清楚、尺寸标注完整,有必要的尺寸公差和形位公差。在技术要求应标明对零件毛胚的要求,材料的热处理方法、标明处理方法及其它特殊要求。 3.编写设计说明书。 五.设计进度与时间安排 本课程设计为3周 1.明确任务,分析有关原始资料,复习有关讲课内容及熟悉参考资料0.5周。 2.设计计算 1.0周 3.绘图 1.0周 4.编写说明书、答辩0.5周 六、主要参考文献 1.成大先机械设计手册(第三版) 2.汽车工程手册机械工业出版社 3.陈家瑞汽车构造(下册)人民交通出版社 4.王望予汽车设计机械工业出版社 5.余志生汽车理论机械工业出版社 6.王丰元汽车设计课程设计指导书中国电力出版社 七.注意事项 (1)为保证设计进度及质量,设计方案的确定、设计计算的结果等必须取得指导教师的认可,尤其在绘制总布置图前,设计方案应由指导教师审阅。图面要清晰干净;尺寸标注正确。 (2)编写设计说明书时,必须条理清楚,语言通达,图表、公式及其标注要清晰明确,对重点部分,应有分析论证,要能反应出学生独立工作和解决问题的能力。 (3)独立完成图纸的设计和设计说明书的编写,若发现抄袭或雷同按不及格处理。

轻型货车鼓式制动器设计

轻型货车鼓式制动器设计 摘要汽车是现代人们生活中重要的交通工具其是由多个系统组成的,制动系统就是其中一个重要的组成部分。它既要使行驶中的汽车减速,又要保证车辆能稳定的停驻在原地不动。因此,汽车制动系对于汽车的安全行驶起着举足轻重的作用。在本次设计中,根据已有的 CA1046 车辆的数据对制动系统进行设计。其中对制动系统的组成、制动系统主要部件的方案论证、制动力矩的计算、鼓式制动器结构参数的设计、制动器相关部件的校核、制动主缸和制动轮缸的直径工作容积的计算、制动踏板力与踏板行程的计算等方面进行了设计分析。设计所附的多张图纸对设计的思想、制动系统的布置设计表达的非常清晰。希望在翻阅说明书的过程中能够结合图纸,这样就可以更加有效的理解设计的思想和意图。关键词:汽车;鼓式制动器;制动系统;制动力矩;制动主缸全套 CAD 图纸,加 153893706 ABSTRACT Automobile is the important transportation tools in the modern life. It iscompositive by many systems. The most important parts are the brake system. Thesystem made the autocar slowdown what’s more the automobile is stopped steadily.There by the brake system play an important part in security steer. In the designwhich based on the data of brake system used in CA1041. Decompose of the brakesystem is designed. And the main piece applied with CA1041 is demonstrated. Thebraking force and the parameters of drum brake’s configuration are included in thisdesign also. What’s more the validating of correlation parts in the brake system andthe diameter of the main crock of braking and the crock applied in brake wheel aredesigned . Meantime the its stroke volume are referred to The force effected thefootplate when braking and the travel of footplate and so on are analyzed . The drawings are very detail to explain the ideas of design and the dispositionfor the brake system . When you thumb the annotation text you can combine thedrawings which made you understand the ideas and meaning in this

相关文档
相关文档 最新文档