文档库 最新最全的文档下载
当前位置:文档库 › 基于ANSYS的ITER重力支撑结构有限元模态分析

基于ANSYS的ITER重力支撑结构有限元模态分析

基于ANSYS的ITER重力支撑结构有限元模态分析
基于ANSYS的ITER重力支撑结构有限元模态分析

第39卷第6期四川大学学报(工程科学版)V o.l39No.6 2007年11月J O URNAL OF S I CHUAN UNI VERS I TY(ENGI NEER I NG SC I ENCE ED I TI ON)Nov.2007 文章编号:1009 3087(2007)06 0158 05

基于ANSYS的ITER重力支撑结构有限元模态分析

梁尚明,王贤宙,闫喜江

(四川大学制造科学与工程学院,四川成都610065)

摘 要:为了分析I TER装置重力支撑结构的动态特性针对I TER重力支撑系统具有周期对称性的结构特点,应用有限元分析软件AN S Y S建立了I T ER重力支撑结构环向20度三维有限元分析模型,同时采用了精度比较高,而且规模又可以接受的单元网格划分方法,得到了网格划分图。在法兰之间的界面上定义接触单元。采用B lock L anc zos方法对I T ER重力支撑系统进行有限元模态分析,求出了I TER重力支撑系统的前10阶固有频率和振型。模态分析的结果对ITER装置的设计与改进具有一定的指导意义。

关键词:ITER;有限元;模态分析;周期对称性

中图分类号:TH132文献标识码:A

Finite E lem entM odal Anal ysis of G ravity Supports of

ITER Based on AN S YS

LI ANG Shang m ing,WANG X ian zhou,Y AN X i jiang

(School ofM anu fact u ri ng Sc.i and Eng.,S ichuan Un i v.,Chengdu610065,C h i na)

Abst ract:To ana l y ze the dyna m ic characteristics o f the grav ity support syste m of I T ER,accord i n g to the character istics o f cyclic sy mm e try o f the grav ity support syste m of I TER,t h e3-D FE M m ode lw ith20degree sector of the grav ity support syste m w as bu ilt by using ANSYS.M eanti m e,a m esh d i v i d i n g m ethod,w hich has high prec i s ion and an acceptab le ca lculating scale,w as used.A fter t h e m esh of the m odel had been div i d ed,the con tact e l e m en ts w ere defi n ed on the i n terfaces bet w een flanges.The m oda l analysis of the grav ity support syste m w as m ade and the first ten natural frequencies and vibration m odes of the grav ity support syste m w ere solved by using B lock Lanczos m ethod.The results o f the m odal ana lysis can be used to the desi g n and i m prove m ent of t h e grav ity support syste m of I T ER.

K ey w ords:I TER;fi n ite e le m en;t m odal analysis;cyclic sy mm etry

国际热核实验反应堆(The I n ter national Ther m onuc lear Experi m enta lR eactor,缩写为I T ER)被称作 人造太阳热核试验装置。它将集成当今国际受控磁约束核聚变研究的主要科学和技术成果,第一次在地球上实现能与未来实用聚变堆规模相比拟的受控热核聚变实验堆,解决通向聚变电站的关键

收稿日期:2006-09-20

基金项目:核工业西南物理研究院I TER计划资助项目

作者简介:梁尚明(1965-),男,教授.研究方向:机械工程.问题。I TER重力支撑结构是一个大型复杂组合结构,除了承受整个纵向场磁体系统和极向场系统重量以及部分电磁力和热收缩力外,还可能受到强风、地震等多种动载荷的作用,在工作时支撑结构部件之间相互接触,产生振动激励,辐射出噪声,其情况非常复杂,因此,有必要对I TER支撑结构进行动态特性分析。目前,I TER计划还处于初级阶段,把动态特性分析的结果与I T ER结构的设计和改进相结合以提高结构的工作性能,具有重要的实际意

义[1-2]。

在进行结构动力学分析时,通常采用的方法是将连续系统离散化为只有有限个自由度的系统,由此求解出连续系统的近似解。这些离散化的方法有集中质量法、假设模态法、模态综合法和有限元法。集中质量法虽然做法简单,但如何选择各个集中点以及如何配置各点的质量才能使所得结果比较接近于实际情况,这都需要大量的经验和试验,缺乏一般的理论指导。假设模态法和模态综合法的精度在很大程度取决于所选择的结构或子结构的假设模态,对于复杂结构没有通用性。而有限元法是对每个单元取假设模态,由于单元的数目通常都比较大,假设模态就可以取得非常简单;而且它以节点位移作为系统的广义坐标,可以降低系统微分方程的耦合程度,给用计算机求解带来方便,所以有限元法已成为分析复杂结构的有效方法和手段[3]。

作者采用有限元法,以商业化有限元软件AN SYS为平台,利用ANSYS自带的强大的实体建模功能,建立I T ER重力支撑结构1/18动力学有限元模型,定义周期对称条件,对I T ER重力支撑系统进行模态分析,求解了结构的固有频率和振型。关于这些问题的研究还未见有文报道。

1 I T ER重力支撑结构有限元模型的建立

1.1 实体模型的建立

由于I T ER支撑系统中含有键槽、垫片以及各种螺栓联接孔等各种局部小结构,这些局部小结构对模态分析结果影响甚微,故在建立有限元模型时,应依据等效原理对其进行规划,即对结构体上与分析目标关系不大的部分进行简化,以缩小模型求解规模。考虑到起主导作用的因素,在建立I T ER重力支系统有限元模态分析模型时,进行了以下简化:

1)磁体系统(主要包括纵向场磁体系统TF Co ils,极向场磁体系统PF Co ils)在径向和周向有很大的机械刚度,并且相邻的纵向场线圈之间通过内线圈间结构在周向彼此连接。在有限元模型中,磁体系统被等效为一个刚性整体;

2)由焊接形成的组合板零件,焊接处可以认为材料连续分布;

3)法兰之间视为弹性联接;

4)法兰之间的螺栓联接为受拉螺栓联接,螺栓只受轴向拉应力作用,不受剪切应力作用。螺栓联接刚度K为EA/L。其中E为螺栓弹性模量;A螺栓截面积;L为螺栓有效长度;

5)忽略垫片、倒角等局部小结构对模态分析的影响。

ANSYS软件提供了与其他CAD软件(如PRO/ E、UG等)的接口,可以把其他C AD软件中建立的模型通过一定的文件格式输入到ANSYS中。可是计算实例发现,对于大型而复杂的CAD模型,AN SYS提供的图形接口在导入的过程中通常会遇到一些意想不到的困难,一般需要大量的修补工作,而效果也不一定很理想,因此本文选择直接在ANSYS中建模。

如果结构绕其轴旋转一个角度 ,结构(包括材料属性)与其旋转前完全相同,这种结构称为周期对称结构,符合这一条件的最小转角 称为对称周期,从结构中任意取出夹角为 的部分都可以称为结构的基本扇区。由基本扇区绕其轴旋转并复制N (N=2 / ,N为整数)份,则可得到整个完整的结构[4]。本文利用I T ER支撑结构具有周期对称性特点,在建立模型和求解时只对一个基本扇区(20度)建模和分析,在后处理中再进行扩展,可得到完整结构的结果。这样可以极大地降低分析规模,缩小求解代价,大大提高计算效率。

1.2 各零部件材料属性的确定

在有限元模态分析中,必须定义材料的弹性模量、泊松比和密度。各零部件材料基本参数见表1。

表1 各零部件的材料属性

Tab.1 M ater i a l characteristics of parts

零部件

名称

弹性模量

/M Pa

泊松

密度

/(kg!m-3) TF腿,韧性板及其法兰1.93?1050.2918030剪切键、联接螺栓2?1050.2988190

环形支座、恒温器中间板、支撑柱1.95?1050.297900环向等效壳2?1070.319890 1.3 确定单元属性进行网格划分

除支撑圆柱选用三维实体单元so li d73外,I TER 支撑结构主要为三维壳模型组成,如图1。故首先确定所选单元为三维壳体单元,又由于支撑结构各部件均具有较规则的轴对称形状,故可考虑用S H ELL63弹性壳单元模拟。SHELL63单元每个节点具有6个自由度:沿节点坐标系X、Y、Z方向的平动和绕节点坐标系X、Y、Z轴的转动,它既具有弯曲能力又具有薄膜力,可以承受平面内荷载和法向荷载;由于前面已假设了联接螺栓为受拉螺栓,主要受拉应力作用,在此可用弹簧-阻尼单元COMB I N14模拟其联接作用;用S HELL28单元模拟上下法兰剪

159

第6期梁尚明,等:基于AN S Y S的I TER重力支撑结构有限元模态分析

切键之间剪切力的传递;对于TF腿法兰和韧性板上法兰之间、韧性板下法兰和支撑环上表面之间、支撑环下表面和支撑柱上表面之间的连接,本文在充分考虑它们接触面特性的基础上,在接触界面上定义接触单元建立了法兰连接件动力学有限元模型,用TARGE170和TARGE173单元定义接触对;再利用ANSYS提供的专用预紧单元PRETS179考虑每个螺栓预紧力的作用。

图1 ITER支撑结构有限元模型(9扇区)

F i g.1 F i n ite e le m en t model of gravity support syste m

of ITER(9sectors)

该模型具有3375个SHELL63单元;776个SOLI D73单元;80个SHELL28单元;152个COMB I N14单元;各接触副共有469个TARGE170单元,740个C ONTA173单元;76个PRETS179单元。

1.4 定义边界条件

1.4.1 定义普通边界条件

支撑圆柱底端面与装置底板完全固定,约束圆柱底端面所有节点6个自由度,取自由度值为0。恒温器环板的径向边缘凸台周向(环向)固定,对凸台处约束其节点自由度UY,取自由度值为0。

1.4.2 定义周期对称边界条件

要进行周期对称分析,需要生成周期对称边界条件。周期对称条件就是要求对称边界上的各个方向的位移完全一致。周期对称边界条件可以通过ANSYS提供的C YCLI C宏自动生成,也可以通过定义耦合集来模拟周期对称边界条件。作者采用定义耦合集来模拟周期对称边界条件。其GU I步骤: Preprocessor>Coup li n g/Ceqn>O ffset N odes,在弹出

C oup le O ffset Nodes对话框中KCN项输入坐标号 1,在DY项输入偏移角度 20度。单击OK完成周期对称边界条件的设置。

2 I TER重力支撑结构有限元模态分

由弹性力学有限元法[5-6],经分析得I T ER重力支撑结构的运动微分方程为:

[M]{#a(t)}+[C]{

a(t)}+[K]{a(t)}={F(t)}

(1)式中,[M],[C],[K]分别为系统的质量矩阵,阻尼矩阵和刚度矩阵;{a(t)},{

a(t)},{#a(t)}分别为系统的位移列向量、速度列向量和加速度列向量; {F(t)}为系统的载荷列向量。

若无外力作用,即系统自由振动,有{F(t)}= {0};在求解结构自由振动的固有频率和振型时,阻尼对它们影响不大,因此,阻尼项可以略去,这时无阻尼自由振动的运动方程为:

[M]{#a(t)}+[K]{a(t)}={0}(2)其对应的特征方程为:

([K]-2[M]){a(t)}={0}(3)式中,为系统的固有频率。

求解式(3),即得系统的固有频率和振型。

对式(3)广义特征值问题,ANSYS提供了7种求解方法:1)Subspace(子空间)法;2)B lock Lanczos (分块的兰索斯)法;3)Po w er Dyna m i c s(动力学)法;

4)Reduced(缩减)法;5)Unsymm etric(非对称)法;

6)D a m ped(阻尼)法;7)QR Da m ped(QR阻尼)法。本文采用B l o ck Lanczos法求解式(3),这种方法求解精度高、速度快,特别适用于大型对称特征值求解问题。

3 I TER重力支撑结构有限元模态分

析结果

结构的振动可以表达为各阶固有振型的线性组合,其中低阶固有振型较高阶对结构的振动影响较大,越是低阶影响越大,低阶振型对结构的动态特性起决定作用,故进行结构的振动特性的分析计算时通常取前5~10阶即可。因此,文中计算了I TER重力支撑结构的前10阶固有频率和振型。固有频率值如表2所示。

限于篇幅,文中只给出单个扇区较具代表性的第1、2、3,4阶振型图,见图2~5所示。

160四川大学学报(工程科学版)第39卷

表2

ITER 重力支撑结构前10阶固有频率

Tab .2

F irst ten natural frequ enc ies of gravity suppor t syste m of ITER

模态数固有频率/H z

1阶模态7.38582阶模态8.63143阶模态15.9194阶模态24.1325阶模态24.2256阶模态24.2517阶模态24.4048阶模态24.4349阶模态24.71210阶模态

24.

747

图2 第1阶振型图F i g .2 1st vi bration

mode

图3

第2阶振型图

F ig .3 2nd v i bration mod e

由前十阶振型的动画显示分析可知,支撑结构前10阶模态中,只有第1阶,第3阶为结构的整体

模态,其余各阶均为结构各部件的局部振动。第1

阶振型表示支撑结构绕Z 轴周向扭摆,其他局部振动不明显;第2阶振型表示恒温器环板在Z 轴方向

振动,其他振动不明显;第3阶表示整个支撑结构在Z 轴方向振动,同时伴随着恒温器环板外缘强烈的上下振动;第4~10阶分别对应于韧性板在径向的不同弯曲振动情况,其他局部振动均不明显。

图4 第3阶振型图F ig .4 3rd v i bration mode

图5 第4阶振型图F i g .5 4th vibrat i on m ode

3 结 论

1)建立了I TER 重力支撑结构的三维有限元模

型,对I T ER 重力支撑系统进行了有限元模态分析,求出了I TER 重力支撑系统的固有频率和振型。动态性能分析的结果为进一步系统地研究I T ER 重力

支撑结构的动力学性能,为I TER 装置的设计和改进提供了一定的依据;

2)通过振型图和动画显示,可直观地分析I T ER 重力支撑结构的动态特性,发现薄弱环节。分析表明支撑结构韧性板和低温恒温器环板为整个结

161

第6期

梁尚明,等:基于AN S Y S 的I TER 重力支撑结构有限元模态分析

构中相对薄弱的部位。

参考文献:

[1]Shi m omura Y,SpearsW.R ev i ew of the I TER P ro ject[J].

A ppli ed Superconduc ti v ity,2004,14:1369-1375.

[2]L ibeyre P,D o l getta N.M echanical tests o f the I TER to

ro ida l field model co il[J].A ppli ed Supe rconductiv it y, 2004,14:1832-1837.

[3]赵汝嘉.机械结构有限元分析[M].西安:西安交通大

学出版社,1990.

[4]叶先磊,亚杰.ANSY S工程分析软件应用实例[M].北

京:清华大学出版社,2003.

[5]王勖成.有限单元法[M].北京:清华大学出版社,

2003.

[6]谭建国.使用AN S Y S6.0进行有限元分析[M].北京:

北京大学出版社,2002.

(编辑 黄小川)

(上接第80页)

[6]Ser i o M D,T esser R,D i m i cco li M,et a.l Synthesis of

b i odiese l v ia homogeneous L e w is acid ca talyst[J].Journa l

o f M o lecu l a r Ca talysis A:Che m ica,l2005,239:111-

115.

[7]S i egfried K F,R uth G,H ans P N,et a.l A lcoho l ys i s o f tr i

acy l g lycero ls by hete rogeneous cata l ys i s[J].European Journa l of L i p i d Sc i ence and T echno l ogy,2002,104:324 -330.

[8]X ieW,H uang X.Synt hesis of biod i esel fro m soybean o il u

si ng hete rogeneous K F/Z n O cata l y st[J].Ca talysis L etters,

2006,7:53-59.

[9]G ao Peng,Y an Shu l,i Lu H ou fang,et a.l T ransester ifi ca

ti on of rapeseed o il over zi nc ox ide ca talyst to produce

b i odiese l[J].Industrial C ata l ysis,2006,14:45-48.[

高鹏,颜姝丽,鲁厚芳,等.氧化锌催化菜籽油制生物柴油[J]工业催化,2006,14:45-48.]

[10]颜姝丽,梁斌,杜泽学.一种生物柴油制备方法.

200610008075.x[P].2006.

[11]D avid G C,L isa JG,A da m F L,e t a.l S tructure reactiv i

ty correlations i n M gA l hydro talc ite cata l ysts for b i odiese l synt hesis[J].A ppli ed Ca talysis A:G enera,l2005,287:

183-190.

[12]V accar A.P reparati on and ca talytic properti es o f cation ic

and an i on i c c l ays[J].Cata lysis T oday,1998,41:53-

59.

[13]W alte r T R.Cata l y ti c reacti on by ther m a lly activated,syn

the tic,an i on i c m inera l s[J].Journal o f Catalysis,1985,

94:547-557.

(编辑 黄小川)

162四川大学学报(工程科学版)第39卷

ansys经典例题步骤

Project1 梁的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: beam。 NOTE:要求选择不同形状的截面分别进行计算。 梁承受均布载荷:1.0e5 Pa 图1-1梁的计算分析模型 梁截面分别采用以下三种截面(单位:m): 矩形截面:圆截面:工字形截面: B=0.1, H=0.15 R=0.1 w1=0.1,w2=0.1,w3=0.2, t1=0.0114,t2=0.0114,t3=0.007 1.1进入ANSYS 程序→ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: beam→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete… →Add… →select Beam 2 node 188 →OK (back to Element Types window)→Close (the Element Type window) 1.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural→Linear→Elastic→Isotropic→input EX:2.1e11, PRXY:0.3→OK 1.5定义截面 ANSYS Main Menu: Preprocessor →Sections →Beam →Common Sectns→分别定义矩形截面、圆截面和工字形截面:矩形截面:ID=1,B=0.1,H=0.15 →Apply →圆截面:ID=2,R=0.1 →Apply →工字形截面:ID=3,w1=0.1,w2=0.1,w3=0.2,t1=0.0114,t2=0.0114,t3=0.007→OK

ANSYS实体建模有限元分析-课程设计报告

南京理工大学 课程设计说明书(论文) 作者:学号: 学院(系):理学院 专业:工程力学 题目:ANSYS实体建模有限元分析 指导者: (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 20 年月日

练习题一 要求: 照图利用ANSYS软件建立实体模型和有限元离散模型,说明所用单元种类、单元总数和节点数。 操作步骤: 拟采用自底向上建模方式建模。 1.定义工作文件名和工作标题 1)选择Utility Menu>File>Change Jobname命令,出现Change Jobname对话框,在[/FILNAM ] Enter new jobname文本框中输入工作文件名learning1,单击OK按钮关闭该对话框。 2)选择Utility Menu>File>Change Title命令,出现Change Title对话框,在[/TITLE] Enter new title文本框中输入08dp,单击OK按钮关闭该对话框。 2.定义单元类型 1)选择Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,出现Element Types对话框,单击Add按钮,出现 Library of Element Types 对话框。在Library of Element Types 列表框中选择 Structural Solid, Tet 10node 92,在Element type reference number文本框中输入1,单击OK按钮关闭该对话框。 2)单击Element Types对话框上的Close按钮,关闭该对话框。 3.创建几何模型 1)选择Utility Menu>P1otCtrls>Style>Colors>Reverse Video命令,设置显示颜色。 2)选择Utility Menu>P1otCtrls>View Settings>Viewing Direction命令,出现Viewing Direction对话框,在XV,YV,ZV Coords of view point文本框中分别输入1, 1, 1,其余选项采用默认设置,单击OK按钮关闭该对话框。 3)建立支座底块 选择Main Menu>Preprocessor> Modeling>Create>volumes>Block>By Demensios 命令,出现Create Block by Demensios对话框,在X1,X2 X-coor dinates文本框

ansys模态分析及详细过程

压电变换器的自振频率分析及详细过程 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

[整理]《ANSYS120宝典》习题.

第1章 习题 1.ANSYS软件程序包括几大功能模块?分别有什么作用? 2.如何启动和退出ANSYS程序? 3.ANSYS程序有哪几种文件类型? 4.ANSYS结构有限元分析的基本过程是什么? 5.两杆平面桁架尺寸及角度如习题图1.1所示,杆件材料的弹性模量为2.1×1011Pa,泊松 比为0.3,截面面积为10cm2,所受集中力载荷F=1000N。试采用二维杆单元LINK1计算集中力位置节点的位移和约束节点的约束反力。 习题图1.1 两杆平面桁架 第2章 习题 1.建立有限元模型有几种方法? 2.ANSYS程序提供了哪几种坐标系供用户选择? 3.ANSYS程序中如何平移和旋转工作平面? 4.试分别采用自底向上的建模方法和自顶向下的建模方法建立如习题图2.1所示的平面图 形,其中没有尺寸标注的图形读者可自行假定,并试着采用布尔运算的拉伸操作将平面图形沿法向拉伸为立体图形。

习题图2.1 平面图形 5.试分别利用布尔运算建立如习题图2.2所示的立体图形,其中没有尺寸标注的图形读者 可自行假定。 习题图2.2 立体图形 6.试对习题图2.3所示的图形进行映射网格划分,并任意控制其网格尺寸,图形尺寸读者 可自行假定。 习题图2.3 映射网格划分

第3章 习题 1.试阐述ANSYS载荷类型及其加载方式。 2.试阐述ANSYS主要求解器类型及其适用范围。 3.如何进行多载荷步的创建,并进行求解? 4.试建立如习题图3.1所示的矩形梁,并按照图形所示施加约束和载荷,矩形梁尺寸及载 荷位置大小读者可自行假定。 习题图3.1 矩形梁约束与载荷 5.试建立如习题图3.2所示的平面图形,并按照图形所示施加约束和载荷,平面图形的尺 寸及载荷大小读者可自行假定。 习题图3.2 平面图形约束与载荷 第4章 习题

ansys齿轮模态分析

基于ANSYS 的齿轮模态分析 齿轮传动是机械传动中最重要的传动部件,被广泛的应用在各个生产领域中,经常用在重要的场合;传动齿轮在工作过程中受到周期性载荷力的作用,有可能在标定转速内发生强烈的共振,动应力急剧增加,致使齿轮过早出现扭转疲劳和弯曲疲劳。静力学计算不能完全满足设计要求,因此有必要对齿轮进行模态分析,研究其振动特性,得到固有频率和主振型(自由振动特性)。同时,模态分析也是其它动力学分析如谐响应分析、瞬态动力学分析和谱分析的基础。 本文运用UG 对齿轮建模并用有限元软件ANSYS 对齿轮进行模态分析,为齿轮动态设计提供了有效的方法。 1.模态分析简介 由弹性力学有限元法,可得齿轮系统的运动微分方程为: []{}[]{}[]{}{()}M X C X K X F t ++= (1) 式中,[]M ,[]C ,[]K 分别为齿轮质量矩阵、阻尼矩阵和刚度矩阵;分别为齿轮振动加速度向量、速度向量和位移向量,{}X 、{}X 、{}X 分别为齿轮振动加速度向量、速度向量和位移向量,12{}{,, ,}T n X x x x =;{()}F t 为齿轮所受外界激振力向量,{}12{()},,T n F t f f f =。若无外力作用,即{}{()}0F t =,则得 到系统的自由振动方程。在求齿轮自由振动的频率和振型即求齿轮的固有频率和固有振型时,阻尼对它们影响不大,因此,可以作为无阻尼自由振动问题来处理 [2]。无阻尼项自由振动的运动方程为: []{}[]{}0M X K X += (2) 如果令 {}{}sin()X t φωφ=+ 则有 2{}{}sin()X t ωφωφ=+ 代入运动方程,可得 2([][]){}0i i K M ωφ-= (3) 式中i ω为第I 阶模态的固有频率,i φ为第I 阶振型,1,2, ,i n =。 2.齿轮建模 在ANSYS 中直接建模有一定的难度,考虑到其与多数绘图软件具有良好的数据接口,可以方便的转化,而UG 软件以其参数化、全相关的特点在零件造型方面表现突出,可以通过参数控制模型尺寸的变化,因此本文采用通过UG 软件对齿轮进行参数化建模,保存为IGES 格式,然后将模型导入到ANSYS 软件中的方法。设有模数m=2.5mm ,齿数z=20,压力角β=20°,齿宽b=14mm ,孔径为¢20mm 的标准齿轮模型。如图1

ANSYS实体建模有限元分析-课程设计报告

南京理工大学课程设计说明书(论文) 作者:学号:11370108 学院(系):理学院 专业:工程力学 题目:ANSYS实体建模有限元分析 指导者: (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 20 年月日

练习题一 要求: 照图利用ANSYS软件建立实体模型和有限元离散模型,说明所用单元种类、单元总数和节点数。 操作步骤: 拟采用自底向上建模方式建模。 1.定义工作文件名和工作标题 1)选择Utility Menu>File>Change Jobname命令,出现Change Jobname对话框,在[/FILNAM ] Enter new jobname文本框中输入工作文件名learning1,单击OK按钮关闭该对话框。 2)选择Utility Menu>File>Change Title命令,出现Change Title对话框,在[/TITLE] Enter new title文本框中输入0911370108dp,单击OK按钮关闭该对话框。2.定义单元类型 1)选择Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,出现Element Types对话框,单击Add按钮,出现 Library of Element Types 对话框。 在Library of Element Types 列表框中选择 Structural Solid, Tet 10node 92,在Element type reference number文本框中输入1,单击OK按钮关闭该对话框。 2)单击Element Types对话框上的Close按钮,关闭该对话框。 3.创建几何模型 1)选择Utility Menu>P1otCtrls>Style>Colors>Reverse Video命令,设置显示颜色。

ANSYS模态分析实例

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete

①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

有限元模态分析报告实例

ANSYS模态分析实例 5.2ANSYS建模 该课题研究的弹性联轴器造型如下图5.2: 在ANSYS中建立模型,先通过建立如5.2所式二分之一的剖面图,通过绕中轴线旋转建立模拟模型如下图5.3

5.3单元选择和网格划分 由于模型是三给实体模型,故考虑选择三维单元,模型中没有圆弧结构,用六面体单元划分网格不会产生不规则或者畸变的单元,使分析不能进行下去,所以采用六面体单元。经比较分析,决定采用六面体八结点单元SOLID185,用自由划分的方式划分模型实体。课题主要研究对象是联轴器中橡胶元件,在自由划分的时候,中间件2网格选择最小的网格,smart size设置为1,两端铁圈的smart size设置为6,网格划分后模型如图5.4。 5.4边界约束 建立柱坐标系R-θ-Z,如5-5所示,R为径间,Z为轴向

选择联轴器两个铁圈的端面,对其面上的节点进行坐标变换,变换到如图5.5所示的柱坐标系,约束节点R,Z方向的自由度,即节点只能绕Z轴线转 5.5联轴器模态分析 模态分析用于确定设计中的结构或者机器部件振动特性(固有频率和振型),也是瞬态变动力学分析和谐响应分析和谱分析的起点。 在模态分析中要注意:ANSYS模态分析是线性分析,任何非线性因素都会被忽略。因此在设置中间件2的材料属性时,选用elastic材料。 5.5.1联轴器材料的设置 材料参数设置如下表5-1: 表5.1材料参数设置 表5.1材料参数设置 铁圈1 中间件2 铁圈3 泊松比0.3 0.4997 0.3 弹性模量Mpa 2E5 1.274E3 2E5 密度kg/m 7900 1000 7900 5.5.2联轴器振动特性的有限元计算结果及说明 求解方法选择Damped方法,频率计算结果如表5-2,振型结果为图5.6: 表5.2固有频率 SET TEME/FREQ LOAO STEP SUBSTEP CUMULATIVE 1 40.199 1 1 1 1 73.63 2 1 2 2 3 132.42 1 3 3 4 197.34 1 4 4

课程设计ANSYS有限元分析(最完整)

有限元法分析与建模课程设计报告 学院:机电学院 专业:机械制造及其自动化指导教师:**** 学生:* *** 学号:2012011**** 2015-12-31

摘要 本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。力求较为真实地反映光盘在光驱中实际应力和应变分布情况,为人们进行合理的标准光盘结构设计和制造工艺提供理论依据。 关键词:ANSYS10.0;光盘;应力;应变。

目录 第一章引言 (3) 1.1 引言 (3) 第二章问题描述 (4) 2.1有限元法及其基本思想 (4) 2.2 问题描述 (4) 第三章力学模型的建立和求解 (5) 3.1设定分析作业名和标题 (5) 3.2定义单元类型 (6) 3.3定义实常数 (9) 3.4定义材料属性 (12) 3.5建立盘面模型 (14) 3.6对盘面划分网格 (22) 3.7施加位移边界 (27) 3.8施加转速惯性载荷并求解 (30) 第四章结果分析 (32) 4.1 旋转结果坐标系 (32) 4.2查看变形 (33) 4.3查看应力 (35) 总结 (38) 参考文献 (39)

第一章引言 1.1 引言 光盘业是我国信息化建设中发展迅速的产业之一,认真研究光盘产业的规律和发展趋势,是一件非常迫切的工作。光盘产业发展的整体性强,宏观调控要求高,因此,对于光盘产业的总体部署、合理布局和有序发展等问题,包括节目制作、软件开发、硬件制造、节目生产、技术标准等。 在高速光盘驱动器中,光盘片会产生应力和应变,在用ANSYS分析时,要施加盘片高速旋转引起的惯性载荷,即可以施加角速度。需要注意的是,利用ANSYS施加边界条件时,要将内孔边缘节点的周向位移固定,为施加周向位移,而且还需要将节点坐标系旋转到柱坐标系下。 本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。

几个ansys经典实例(长见识)

平面问题斜支座的处理 如图5-7所示,为一个带斜支座的平面应力结构,其中位置2及3处为固定约束,位置4处为一个45o的斜支座,试用一个4节点矩形单元分析该结构的位移场。 (a)平面结构(b)有限元分析模型 图5-7 带斜支座的平面结构 基于ANSYS平台,分别采用约束方程以及局部坐标系的斜支座约束这两种方式来进行处理。 (7) 模型加约束 左边施加X,Y方向的位移约束 ANSYS Main Menu: Solution →Define Loads →Apply →-Structural→Displacement On Nodes →选取2,3号节点→OK →Lab2: All DOF(施加X,Y方向的位移约束) →OK 以下提供两种方法处理斜支座问题,使用时选择一种方法。 ?采用约束方程来处理斜支座 ANSYS Main Menu:Preprocessor →Coupling/ Ceqn →Constraint Eqn :Const :0, NODE1:4, Lab1: UX,C1:1,NODE2:4,Lab2:UY,C2:1→OK 或者?采用斜支座的局部坐标来施加位移约束 ANSYS Utility Menu:WorkPlane →Local Coordinate System →Create local system →At specified LOC + →单击图形中的任意一点→OK →XC、YC、ZC分别设定为2,0,0,THXY:45 →OK ANSYS Main Menu:Preprocessor →modeling →Move / Modify →Rotate Node CS →To active CS → 选择4号节点 ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement On Nodes →选取4号节点→OK →选择Lab2:UY(施加Y方向的位移约束) →OK 命令流; !---方法1 begin----以下的一条命令为采用约束方程的方式对斜支座进行处理 CE,1,0,4,UX,1,4,UY,-1 !建立约束方程(No.1): 0=node4_UX*1+node_UY*(-1) !---方法1 end --- !--- 方法2 begin --以下三条命令为定义局部坐标系,进行旋转,施加位移约束 !local,11,0,2,0,0,45 !在4号节点建立局部坐标系 !nrotat, 4 !将4号节点坐标系旋转为与局部坐标系相同 !D,4,UY !在局部坐标下添加位移约束 !--- 方法2 end

一个经典的ansys热分析实例(流程序)

/PREP7 /TITLE,Steady-state thermal analysis of pipe junction /UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches) ! /SHOW, ! Specify graphics driver for interactive run ET,1,90 ! Define 20-node, 3-D thermal solid element MP,DENS,1,.285 ! Density = .285 lbf/in^3 MPTEMP,,70,200,300,400,500 ! Create temperature table MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 ! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values MPDATA,C,1,,.113,.117,.119,.122,.125 ! Define specific heat values(比热) MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144 ! Define film coefficient;除144是单位问题,上面的除12也是单元问题 ! Define parameters for model generation RI1=1.3 ! Inside radius of cylindrical tank RO1=1.5 ! Outside radius Z1=2 ! Length RI2=.4 ! Inside radius of pipe RO2=.5 ! Outside pipe radius Z2=2 ! Pipe length CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning VOVLAP,1,2 ! 交迭体;Overlap the two cylinders /PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on /VIEW,,-3,-1,1

基于某ANSYS地典型零件有限元分析报告

基于ANSYS的典型零件的有限元分析通过对典型零件的有限元分析来验证里零件的强度是否符合设计标准,可以及早发现缺陷,实现优化设计。对产品的设计安全性有重要意义。我们从零件的静力分析和模态分析两个方面来做CAE分析。 使用ANSYS软件的不同模块:ANSYS经典界面 ANSYS WORKBENCH 一、轮毂的模态分析 1.1轮毂的CAD模型: 该模型由NX建模,导入Ansys WorkBench中。 1.2网格划分: 采用自由网格划分 1、分析时采用的单位制: Metric (mm, kg, N, s, mV, mA) 2、轮毂的材料 铝合金:Aluminum Alloy 密度:2.77e-006 kg mm^-3 杨氏模量:710000MP 泊松比:0.33 1.3添加约束: 在五个螺栓孔添加固定约束:

1.4求解结果 阶数频率(HZ)最大位移(mm) 1 2470.4 89.844 2 3044.1 127.1 3 3047.6 127.27 4 3294.1 210.18 5 3295.5 209.73 6 4509.5 94.061 7 6040.5 247.04 8 6041.9 245.43

2、传动齿轮的静应力分析 该模型为传动系变速器与托深差速器动力传递的齿轮,该齿轮在传动系中起到关键作用,所以对其结构安全性分析是非常有必要的。 2.1模型建立 该齿轮首先在PRO/E中建模,导出IGES文件,再导入Ansys经典中,由于出现错误,只有面体,所以本人将模型的进行修改,通过删除面、线、点的方法,最终的到一个齿轮面。 2 2.2网格划分 在本例中,我采用由面网格扫略生成体同时生成体网格的方法。 采用的单元:1 PLANE42 面单元 2 SOLID45 体单元 材料参数:杨氏模量:2.7X10^5 MP 泊松比:0.33 首先对齿轮面进行网格划分,让后由面网格进拉伸成体网格 具体操作如下: modeling—operate—extrude—Elem Ext Opets—在element type number 中选择2 solid45, 同时在No. Elem divs 中设置要拉伸网格的数量。

ANSYS模态分析报告实例和详细过程

均匀直杆的子空间法模态分析 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

ansys实验报告

有限元上机实验报告 姓名柏小娜 学号0901510401

实验一 一 已知条件 简支梁如图所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚度t=10mm 。上边承受均布载荷,集度q=1N/mm 2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: )534()4 (6222 23-+-=h y h y q y x L h q x σ 二 实验目的和要求 (1)在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 (2)计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 (3)针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 三 实验过程概述 (1) 定义文件名 (2) 根据要求建立模型:建立长度为1m ,外径为0.2m ,平行四边行区域 (3) 设置单元类型、属性及厚度,选择材料属性: (4) 离散几何模型,进行网格划分 (5) 施加位移约束 (6) 施加载荷 (7) 提交计算求解及后处理 (8) 分析结果 四 实验内容分析 (1)根据计算得到应力云图,分析本简支梁模型应力分布情况和规律。主要考察x σ和y σ,并分析有限元解与理论解的差异。 由图1看出沿X 方向的应力呈带状分布,大小由中间向上下底面递增,上下底面应力方向相反。由图2看出应力大小是由两侧向中间递增的,得到X 方向

上最大应力就在下部中点,为0.1868 MPa 。根据理论公式求的的最大应力值为0.1895MPa 。由结果可知,有限元解与理论值非常接近。由图3看出Y 的方向应力基本相等,应力主要分布在两侧节点处。 图 1 以矩形单元为有限元模型时计算得出的X 方向应力云图 图 2 以矩形单元为有限元模型时计算得出的底线上各点x 方向应力图 (2)对照理论解,对最大应力点的x σ应力收敛过程进行分析。列出各次计算 应力及其误差的表格,绘制误差-计算次数曲线,并进行分析说明。 答:在下边中点位置最大应力理论值为: MPa h y h y q y x L h q x 1895.0)5 34()4(622223=-+-=σ

有限元分析报告大作业

基于ANSYS软件的有限元分析报告 机制1205班杜星宇U201210671 一、概述 本次大作业主要利用ANSYS软件对桌子的应力和应变进行分析,计算出桌子的最大应力和应变。然后与实际情况进行比较,证明分析的正确性,从而为桌子的优化分析提供了充分的理论依据,并且通过对ANSYS软件的实际操作深刻体会有限元分析方法的基本思想,对有限元分析方法的实际应用有一个大致的认识。 二、问题分析 已知:桌子几何尺寸如图所示,单位为mm。假设桌子的四只脚同地面完全固定,桌子上存放物品,物品产生的均匀分布压力作用在桌面,压力大小等于300Pa,其中弹性模量E=9.3GPa,泊松比μ=0.35,密度ρ=560kg/m3,分析桌子的变形和应力。

将桌脚固定在地面,然后在桌面施加均匀分布的压力,可以看作对进行平面应力分析,桌脚类似于梁单元。由于所分析的结构比较规整且为实体,所以可以将单元类型设为八节点六面体单元。 操作步骤如下: 1、定义工作文件名和工作标题 (1)定义工作文件名:执行Utility Menu/ File/Change Jobname,在弹出Change Jobname 对话框修改文件名为Table。选择New log and error files复选框。 (2)定义工作标题:Utility Menu/File/ Change Title,将弹出Change Title对话框修改工作标题名为The analysis of table。 (3)点击:Plot/Replot。 2、设置计算类型 (1)点击:Main Menu/Preferences,选择Structural,点击OK。

ANSYS模态分析详细解释

Ansys模态分析详细论述 1、有限元概述 将求解域分解成若干小域,有限元模型由单元组成,单元之间通过节点连接,并承受载荷,节点自由度是随着连接该点单元类型变化的。 1.1分析前准备 (1)研读相关理论基础; (2)参考别人的分析方法和思路; (3)考虑时间和设备,做适当的简化假设,设定条件、材料并决定分析方式;(4)了解力学现象、分析关键位置并预先评估。 1.2 Von Mises 应力 Von Mises 应力是非负值,应力表达式可表示为: 1.3结果的分析 (1)建立疏密不同的三至五种网络,选择适中密度,不能以存在应力集中点处的结果做对比; (2)检验网格,分析结果的合理性,选择安全系数,并且要分析应力集中的真实性与危险性。 (3)接触收敛速度的提高:在不影响结构的前提下,控制或减少接触单元生成数目,并采用线性搜索,与打开自适应开关来提高收敛速度。 2、模态分析中的几个基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。2.1主要模态 一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率

的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。 实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。 所以模态的阶数就是对应的固有频率的阶数。振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列来说,有第一振型,第二振型等等,此处的振型就是指在该固有频率下结构的振动形态,频率越高则,振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 固有频率也称为自然频率(natural frequency)。物体做自由振动时,其位移随时间按正弦或余弦规律变化,振动的频率与初始条件无关,而仅与系统的固有特性有关(如质量、形状、材质等),称为固有频率,其对应周期称为固有周期。物体做自由振动时,其位移随时间按正弦规律变化,又称为简谐振动。简谐振动的振幅及初相位与振动的初始条件有关,振动的周期或频率与初始条件无关,而与系统的固有特性有关,称为固有频率或者固有周期。 物体的频率与它的硬度、质量、外形尺寸有关,当其发生形变时,弹力使其恢复。弹力主要与尺寸和硬度有关,质量影响其加速度。同样外形时,硬度高的频率高,质量大的频率低。一个系统的质量分布,内部的弹性以及其他的力学性质决定。 2.2模态扩展

ansys考试题

1、 使用 ansys 可以进行的分析类型有哪些? 结构分析、热分析、电磁分析、流体分析以及耦合场分析 2、ANSYS 典型分析过程由哪三个部分组成? 前处理、求解计算和后处理 3、 a nsys 第一次运行时缺省的文件名是什么? 4、 前处理模块主要包括哪两部分? 5、简述 ANSYS 软件的分析具体求解步骤 具体步骤如下: 1) 启动ansyso 已交互模式进入 ansys,定义工作文件名 2) 设定单元类型。对于任何分析,必须在单元库中选择一个或几个合适分析的单元类 型,单 元类型决定了辅加的自由度,许多单元还要设置一些单元选项,诸如单元特 性和假设 3) 定义材料属性。材料属性是与结构无关的本构属性,例如杨氏模量、密度等,一个 分析中 可以定义多种材料,每种材料设定一个材料编号。 4) 对几何模型划分网格 5)加载 6)结果后处理 6、ansys 常用的文件类型有哪些? 1)Jobname.db ansys 数据库文件,记录有限元单元、节点、载荷等数据,它包含了所 有的输入数据和部分结果数据。 2)Jobname.log ansys 日志文件,以追加式记录所有执行过的命令,使用 INPUT 命令 读取,可以对崩溃的系统或严重的用户错误进行恢复。 3) Jobname.err ANSYS 出错记录文件,记录所有运行中的警告、错误信息 4) Jobname.out ANSYS 输出文件,记录命令执行情况 7、 A NSYS 使用的模型可分为哪两大类? 实体模型和有限元模型,其中实体模型不参与有限元分析 8、 A NSYS 的整体坐标系有哪三类? 笛卡尔坐标系、柱坐标系、球坐标系 9、在ansys 对话框中"0K"按钮和“ Apply "按钮的区别是什么? 在ansys 对话框中“ 0K "按钮表示执行操作,并退出此对话框;而“ apply "按钮表示执 行操作,但并不退出此对话框,可以重复执行操作。 10、ANSYS 软件中提供了的创建模型的方法有哪些? 5) Jobname.rst ANSYS 结果文件,记录一般结构分析的结果数据 6) Jobname.rth ANSYS 结果文件,记录一般热分析的结果数据 7) Jobname.rmg ANSYS 结果文件,记录一般磁场分析的结果数据 File 参数定义和建立有限元模型

ANSYS模态分析实例和详细过程

模态分析的过程和实例 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

相关文档
相关文档 最新文档