文档库 最新最全的文档下载
当前位置:文档库 › 2011高考数学知识点

2011高考数学知识点


1. 集合中元素具有确定性、无序性、互异性.
2. 集合的性质:
①任何一个集合是它本身的子集,记为 ;
②空集是任何集合的子集,记为 ;
③空集是任何非空集合的真子集;
如果 ,同时 ,那么A = B.
如果 .
[注] ①Z= {整数}(√) Z ={全体整数} (×)
②已知集合S 中A的补集是一个有限集,则集合A也是有限集.(×)
(例:S=N; A= ,则CsA= {0})
③ 空集的补集是全集.
④若集合A=集合B,则CBA = , CAB = CS(CAB)= D ( 注 :CAB = ).
3. ①{(x,y)|xy =0,x∈R,y∈R}坐标轴上的点集.
②{(x,y)|xy<0,x∈R,y∈R 二、四象限的点集.
③{(x,y)|xy>0,x∈R,y∈R} 一、三象限的点集.
[注]:①对方程组解的集合应是点集.
例: 解的集合{(2,1)}.
②点集与数集的交集是 .
(例:A ={(x,y)| y =x+1} B={y|y =x2+1} 则A∩B = )
4. ①n个元素的子集有2n个.
②n个元素的真子集有2n -1个.
③n个元素的非空真子集有2n-2个.
5. ⑴ ①一个命题的否命题为真,它的逆命题一定为真. 否命题 逆命题.
②一个命题为真,则它的逆否命题一定为真. 原命题 逆否命题.
例:①若 应是真命题.
解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真.
② .
解:逆否:x + y =3 x = 1或y = 2.
,故 是 的既不是充分,
又不是必要条件.
⑵小范围推出大范围;大范围推不出小范围.
例:若 .


6.De Morgan公式 CuA∩ CuB = Cu(A∪ B) CuA∪ CuB = Cu(A∩ B)

第二部分 函数
1. 函数的三要素:定义域,值域,对应法则.
2. 函数的单调区间可以是整个定义域,也可以是定义域的一部分. 对于具体的函数来说可能有单调区间,也可能没有单调区间,如果函数在区间(0,1)上为减函数,在区间(1,2)上为减函数,就不能说函数在 上为减函数.
3. 反函数定义:只有满足 ,函数 才有反函数. 例: 无反函数.
函数 的反函数记为 ,习惯上记为 . 在同一坐标系,函数 与它的反函数 的图象关于 对称.
[注]:一般地, 的反函数. 是先 的反函数,在左移三个单位. 是先左移三个单位,在 的反函数.
4. ⑴单调函数必有反函数,但并非反函数存在时一定是单调的.因此,所有偶函数不存在反函数.
⑵如果一个函数有反函数且为奇函数,那么它的反函数也为奇函数.
⑶设函数y = f(x)定义域,值域分别为X、Y. 如果y = f(x)在X上是增(减)函数,那么反函数 在Y上一定是增(减)函数,即互为反函数的两个函数增减性相同.
⑷一般地,如果函数 有反函数,且 ,那么 . 这就是说点( )在函数 图象上,那么点( )在函数 的图象上.
5. 指数函数: ( )

,定义域R,值域为( ).
⑴①当 ,指数函数: 在定义域上为增函数;
②当 ,指数函数: 在定义域上为减函数.
⑵当 时, 的 值越大,越靠近 轴;
当 时,则相反.
6. 对数函数:如果 ( )的 次幂等于 ,就是 ,数 就叫做以 为底的 的对数,记作 ( ,负数和零没有对数);其中 叫底数, 叫真数.
⑴对数运算:

(以上 )
注⑴:当 时, .
⑵:当 时,取“+”,当 是偶数时且 时, ,而 ,故取“—”.
例如: 中x>0而 中x∈R).
⑵ ( )与 互为反函数.
当 时, 的 值越大,越靠近 轴;当 时,则相反.
7. 奇函数,偶函数:
⑴偶函数:
设( )为偶函数上一点,则( )也是图象上一点.
偶函数的判定:两个条件同时满足
①定义域一定要关于 轴对称,例如: 在 上不是偶函数.
②满足 ,或 ,若 时, .
⑵奇函数:
设( )为奇函数上一点,则( )也是图象上一点.
奇函数的判定:两个条件同时满足
①定义域一定要关于原点对称,例如: 在 上不是奇函数.
②满足 ,或 ,若 时, .
8. 对称变换:①y = f(x)
②y =f(x)
③y =f(x)
9. 判断函数单调性(定义)作差法:对带根号的一定要分子有理化,例如:


在进行讨论.
10. 外层函数的定义域是内层函数的值域.
例如:已知函数f(x)= 1+ 的定义域为A,函数f[f(x)]的定义域是B,则集合A与集合B之间的关系是 .
解: 的值域是 的定义域 , 的值域 ,故 ,而A ,故 .
11. 常用变换:
① .
证:

证:
12. ⑴熟悉常用函数图象:
例: → 关于 轴对称. → →

→ 关于 轴对称.

⑵熟悉分式图象:
例: 定义域 ,
值域 →值域 前的系数之比.



第三部分 直线和圆

一、直线方程.
1. 直线的倾斜角:一条直线向上的方向与 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 .
注:①当 或 时,直线 垂直于 轴,它的斜率不存在.
②每一条直线都存在惟一的倾斜角,除与 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
特别地,当直线经过两点 ,即直线在 轴, 轴上的截距分别为 时,直线方程是: .
注:若 是一直线的方程,则这条直线的方程是 ,但若 则不是这条线.
附:直线系:对于直线的斜截式方程 ,当 均为确定的数值时,它表示一条确定的直线,如果 变化时,对应的直线也会变化.①当 为定植, 变化时,它们表示过定点(0, )的直线束.②

当 为定值, 变化时,它们表示一组平行直线.
3. ⑴两条直线平行:
∥ 两条直线平行的条件是:① 和 是两条不重合的直线. ②在 和 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.
(一般的结论是:对于两条直线 ,它们在 轴上的纵截距是 ,则 ∥ ,且 或 的斜率均不存在,即 是平行的必要不充分条件,且 )
推论:如果两条直线 的倾斜角为 则 ∥ .
⑵两条直线垂直:
两条直线垂直的条件:①设两条直线 和 的斜率分别为 和 ,则有 这里的前提是 的斜率都存在. ② ,且 的斜率不存在或 ,且 的斜率不存在. (即 是垂直的充要条件)
4. 直线的交角:
⑴直线 到 的角(方向角);直线 到 的角,是指直线 绕交点依逆时针方向旋转到与 重合时所转动的角 ,它的范围是 ,当 时 .
⑵两条相交直线 与 的夹角:两条相交直线 与 的夹角,是指由 与 相交所成的四个角中最小的正角 ,又称为 和 所成的角,它的取值范围是 ,当 ,则有 .
5. 过两直线 的交点的直线系方程
为参数, 不包括在内)
6. 点到直线的距离:
⑴点到直线的距离公式:设点 ,直线 到 的距离为 ,则有 .
⑵两条平行线间的距离公式:设两条平行直线
,它们之间的距离为 ,则有 .
7. 关于点对称和关于某直线对称:
⑴关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.
⑵关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.
若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.
⑶点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程①),过两对称点的直线方程与对称直线方程垂直(方程②)①②可解得所求对称点.
注:①曲线、直线关于一直线( )对称的解法:y换x,x换y. 例:曲线f(x ,y)=0关于直线y=x–2对称曲线方程是f(y+2 ,x –2)=0.
②曲线C: f(x ,y)=0关于点(a ,b)的对称曲线方程是f(a – x, 2b – y)=0.
二、圆的方程.
1. ⑴曲线与方程:在直角坐标系中,如果某曲线 上的 与一个二元方程 的实数建立了如下关系:
①曲线上的点的坐标都是这个方程的解.
②以这个方程的解为坐标的点都是曲线上的点.
那么这个方程叫做曲线方程;这条曲线叫做方程的曲线(图形).
⑵曲线和方程的关系,实质上是曲线上任一点 其坐标与方程 的一种关系,曲线上任一点 是方程 的解;反过来,满足方程 的解所对应的点是曲线上的点.
注:如果曲线C的方程是f(x ,y)=0,那么点P0(x0 ,y)线C上的充

要条件是f(x0 ,y0)=0
2. 圆的标准方程:以点 为圆心, 为半径的圆的标准方程是 .
特例:圆心在坐标原点,半径为 的圆的方程是: .
注:特殊圆的方程:①与 轴相切的圆方程
②与 轴相切的圆方程
③与 轴 轴都相切的圆方程
3. 圆的一般方程: .
当 时,方程表示一个圆,其中圆心 ,半径 .
当 时,方程表示一个点 .
当 时,方程无图形(称虚圆).
注:①圆的参数方程: ( 为参数).
②方程 表示圆的充要条件是: 且 且 .
③圆的直径或方程:已知 (用向量可征).
4. 点和圆的位置关系:给定点 及圆 .
① 在圆 内
② 在圆 上
③ 在圆 外
5. 直线和圆的位置关系:
设圆圆 : ; 直线 : ;
圆心 到直线 的距离 .
① 时, 与 相切;
附:若两圆相切,则 相减为公切线方程.
② 时, 与 相交;
附:公共弦方程:设

有两个交点,则其公共弦方程为 .
③ 时, 与 相离.
附:若两圆相离,则 相减为圆心 的连线的中与线方程.
由代数特征判断:方程组 用代入法,得关于 (或 )的一元二次方程,其判别式为 ,则:
与 相切;
与 相交;
与 相离.
注:若两圆为同心圆则 , 相减,不表示直线.
6. 圆的切线方程:圆 的斜率为 的切线方程是 过圆
上一点 的切线方程为: .
①一般方程若点(x0 ,y0)在圆上,则(x – a)(x0 – a)+(y – b)(y0 – b)=R2. 特别地,过圆 上一点 的切线方程为 .
②若点(x0 ,y0)不在圆上,圆心为(a,b)则 ,联立求出 切线方程.
7. 求切点弦方程:方法是构造图,则切点弦方程即转化为公共弦方程. 如图:ABCD四类共圆. 已知 的方程 …① 又以ABCD为圆为方程为 …②
…③,所以BC的方程即③代②,①②相切即为所求.







第四部分 三角函数
1. ①与 (0°≤ <360°)终边相同的角的集合(角 与角 的终边重合):
②终边在x轴上的角的集合:
③终边在y轴上的角的集合:
④终边在坐标轴上的角的集合:
⑤终边在y=x轴上的角的集合:
⑥终边在 轴上的角的集合:
⑦若角 与角 的终边关于x轴对称,则角 与角 的关系:
⑧若角 与角 的终边关于y轴对称,则角 与角 的关系:
⑨若角 与角 的终边在一条直线上,则角 与角 的关系:
⑩角 与角 的终边互相垂直,则角 与角 的关系:
2. 角度与弧度的互换关系:360°=2 180°= 1°=0.01745 1=57.30°=57°18′
注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.



3. 三角函数的定义域:
三角函数 定义域
sinx

cosx

tanx

cotx

secx

cscx

4. 三角函数的公式:
(一)基本关系


公式组二 公式组三





公式组四 公式组五 公式组六

(二)角与角之间的互换
公式组一 公式组二






公式组三 公式组四 公式组五



, , , .
5. 正弦、余弦、正切、余切函数的图象的性质:





(A、 >0)
定义域 R R

R
值域

R R
周期性




奇偶性 奇函数 偶函数 奇函数 奇函数 当 非奇非偶
当 奇函数






单调性 上为增函数; 上为减函数( )
;上为增函数
上为减函数
( )
上为增函数( )
上为减函数( )
上为增函数;
上为减函数( )
对称性 对称轴为 ,对称中心为 ,
对称轴为 ,对称中心为
无对称轴,
对称中心为
无对称轴,
对称中心为

对称轴是直线
凡是该图象与直线
的交点都是该
图象的对称中心

注意:① 与 的单调性正好相反; 与 的单调性也同样相反.一般地,若 在 上递增(减),则 在 上递减(增).
② 与 的周期是 .
③ 或 ( )的周期 .
的周期为2 ( ,如图,翻折无效).
④ 的对称轴方程是 ( ),对称中心( ); 的对称轴方程是 ( ),对称中心( ); 的对称中心( ).

⑤当 ? ; ? .
⑥ 与 是同一函数,而 是偶函数,则
.
⑦函数 在 上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域, 为增函数,同样也是错误的].
⑧定义域关于原点对称是 具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数: ,奇函数: )
奇偶性的单调性:奇同偶反. 例如: 是奇函数, 是非奇非偶.(定义域不关于原点对称)
奇函数特有性质:若 的定义域,则 一定有 .( 的定义域,则无此性质)
⑨ 不是周期函数; 为周期函数( );
是周期函数(如图); 为周期函数( );
的周期为 (如图),并非所有周期函数都有最小正周期,例如:
.
⑩ 有 .

第五部分 向量与解三角形

1. 长度相等且方向相同的两个向量是相等的量.
注意:①若 为单位向量,则 . ( ) 单位向量只表示向量的模为1,并未指明向量的方向.
②若 ,则 ∥ . (√)
2. ① = ② ③
④设
(向量的模,针对向量坐标求模)
⑤平面向量的数量积: ⑥ ⑦

注意:① 不一定成立; .

向量无大小(“大于”、“小于”对向量无意义),向量的模有大小.
③长度为0的向量叫零向量,记 , 与任意向量平行, 的方向是任意的,零向量与零向量相等,且 .
④若有一个三角形ABC,则 0;此结论可推广到 边形.
⑤若 ( ),则有 . ( ) 当 等于 时, ,而 不一定相等.
⑥ ? = , = (针对向量非坐标求模), ≤ .
⑦当 时,由 不能推出 ,这是因为任一与 垂直的非零向量 ,都有 ? =0.
⑧若 ∥ , ∥ ,则 ∥ (×)当 等于 时,不成立.
3. ①向量 与非零向量 共线的充要条件是有且只有一个实数 ,使得 (平行向量或共线向量).
当 与 共线同向:当 与 共线反向;当 则为 与任何向量共线.
注意:若 共线,则 (×)
若 是 的投影,夹角为 ,则 , (√)
②设 = ,


③设 ,则A、B、C三点共线 ∥ = ( )
( )= ( )( )
( )?( )=( )?( )
④两个向量 、 的夹角公式:

⑤线段的定比分点公式:( 和 )
设 = (或 = ),且 的坐标分别是 ,则

推广1:当 时,得线段 的中点公式:

推广2: 则 ( 对应终点向量).
三角形重心坐标公式:△ABC的顶点 ,重心坐标 :
注意:在△ABC中,若0为重心,则 ,这是充要条件.
⑥平移公式:若点P 按向量 = 平移到P‘ ,则
4. ⑴正弦定理:设△ABC的三边为a、b、c,所对的角为A、B、C,则 .
⑵余弦定理:
⑶正切定理:
⑷三角形面积计算公式:
设△ABC的三边为a,b,c,其高分别为ha,hb,hc,半周长为P,外接圆、内切圆的半径为R,r.
①S△=1/2aha=1/2bhb=1/2chc ②S△=Pr ③S△=abc/4R
④S△=1/2sinC?ab=1/2ac?sinB=1/2cb?sinA ⑤S△= [海伦公式]
⑥S△=1/2(b+c-a)ra[如下图]=1/2(b+a-c)rc=1/2(a+c-b)rb
[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心.


如图: 图1中的I为S△ABC的内心, S△=Pr
图2中的I为S△ABC的一个旁心,S△=1/2(b+c-a)ra




附:三角形的五个“心”;
重心:三角形三条中线交点.
外心:三角形三边垂直平分线相交于一点.
内心:三角形三内角的平分线相交于一点.
垂心:三角形三边上的高相交于一点.
旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.
⑸已知⊙O是△ABC的内切圆,若BC=a,AC=b,AB=c [注:s为△ABC的半周长,即 ]
则:①AE= =1/2(b+c-a)


②BN= =1/2(a+c-b)
③FC= =1/2(a+b-c)
综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4).
特例:已知在Rt△ABC,c为斜边,则内切圆半径r= (如图3).
⑹在△ABC中,有下列等式成立 .
证明:因为 所以 ,所以 , 结论!
⑺在△ABC中,D是BC上任意一点,则 .
证明:在△ABCD中,由余弦定理,有 ①
在△ABC中,由余弦定理有 ②,②代入①,化简
可得, (斯德瓦定理)
①若AD是BC上的中线, ;
②若AD是∠A的平分线, ,其中 为半周长;
③若AD是BC上的高, ,其中 为半周长.
⑻△ABC的判定:
△ABC为直角△ ∠A + ∠B =
< △ABC为钝角△ ∠A + ∠B<
> △ABC为锐角△ ∠A + ∠B>
附:证明: ,得在钝角△ABC中,
⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.



第六部分 数列


等差数列 等比数列
定义

递推公式 ;

通项公式
( )
中项 ( )
( )
前 项和


重要性质



1. ⑴等差、等比数列:
⑵看数列是不是等差数列有以下三种方法:

②2 ( )
③ ( 为常数).
⑶看数列是不是等比数列有以下四种方法:

② ( , )①
注①:i. ,是a、b、c成等比的双非条件,即 a、b、c等比数列.
ii. (ac>0)→为a、b、c等比数列的充分不必要.
iii. →为a、b、c等比数列的必要不充分.
iv. 且 →为a、b、c等比数列的充要.
注意:任意两数a、c不一定有等比中项,除非有ac>0,则等比中项一定有两个.
③ ( 为非零常数).
④正数列{ }成等比的充要条件是数列{ }( )成等比数列.
⑷数列{ }的前 项和 与通项 的关系:
[注]: ① ( 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若 不为0,则是等差数列充分条件).
②等差{ }前n项和 → 可以为零也可不为零→为等差的充要条件→若 为零,则是等差数列的充分条件;若 不为零,则是等差数列的充分条件.
③非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列)
2. ①等差数列依次每k项的和仍成等差数列,其公差为原公差的k2倍 ;
②若等差数列的项数为2 ,则 ;
③若等差数列的项数为 ,则 ,且 ,
.
3. 常用公式:①1+2+3 …+n =


[注]:熟悉常用通项:9,99,999,… ; 5,55,555,… .
4. 等比数列的前 项和公式的常见应用题:
⑴生产部门中有增长率的总产量问题. 例如,第一年产量为 ,年增长率为 ,则每年的产量成等比数列,公比为 . 其中第 年产量为 ,且过 年后总

产量为:

⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存 元,利息为 ,每月利息按复利计算,则每月的 元过 个月后便成为 元. 因此,第二年年初可存款:
= .
⑶分期付款应用题: 为分期付款方式贷款为a元;m为m个月将款全部付清; 为年利率.

5. 数列常见的几种形式:
⑴ (p、q为二阶常数) 用特证根方法求解.
具体步骤:①写出特征方程 ( 对应 ,x对应 ),并设二根 ②若 可设 ,若 可设 ;③由初始值 确定 .
⑵ (P、r为常数) 用①转化等差,等比数列;②逐项选代;③消去常数n转化为 的形式,再用特征根方法求 ;④ (公式法), 由 确定.
①转化等差,等比: .
②选代法:
.
③用特征方程求解: .
④由选代法推导结果: .
6. 几种常见的数列的思想方法:
⑴等差数列的前 项和为 ,在 时,有最大值. 如何确定使 取最大值时的 值,有两种方法:
一是求使 ,成立的 值;二是由 利用二次函数的性质求 的值.
⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前 项和可依照等比数列前 项和的推倒导方法:错位相减求和. 例如:
⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差 的最小公倍数.



第七部分 不等式

1. ⑴平方平均≥算术平均≥几何平均≥调和平均(a、b为正数):
(当a = b时取等)
特别地, (当a = b时, )

幂平均不等式:
⑵含立方的几个重要不等式(a、b、c为正数):


( , );

( )
⑶绝对值不等式:

⑷算术平均≥几何平均(a1、a2…an为正数): (a1=a2…=an时取等)
⑸柯西不等式:设 则

等号成立当且仅当 时成立.(约定 时, )
例如: .
⑹常用不等式的放缩法:①

2. 常用不等式的解法举例(x为正数):


类似于


第八部分 导数

1. 导数(导函数的简称)的定义:设 是函数 定义域的一点,如果自变量 在 处有增量 ,则函数值 也引起相应的增量 ;比值 称为函数 在点 到 之间的平均变化率;如果极限 存在,则称函数 在点 处可导,并把这个极限叫做 在 处的导数,记作 或 ,即 = .
注:① 是增量,我们也称为“改变量”,因为 可正,可负,但不为零.
②以知函数 定义域为 , 的定义域为 ,则 与 关系为 .
2. 函数 在点 处连续与点 处可导的关系:
⑴函数 在点 处连续是 在点 处可导的必要不充分条件.
可以证明,如果 在点 处可导,那么 点 处连续.
事实上,令 ,则 相当于 .
于是
⑵如果 点 处连续,那么 在点

处可导,是不成立的.
例: 在点 处连续,但在点 处不可导,因为 ,当 >0时, ;当 <0时, ,故 不存在.
注:①可导的奇函数函数其导函数为偶函数.
②可导的偶函数函数其导函数为奇函数.
3. 导数的几何意义:
函数 在点 处的导数的几何意义就是曲线 在点 处的切线的斜率,也就是说,曲线 在点P 处的切线的斜率是 ,切线方程为
4. 求导数的四则运算法则:

( 为常数)

注:① 必须是可导函数.
②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.
例如:设 , ,则 在 处均不可导,但它们和
在 处均可导.
5. 复合函数的求导法则: 或
复合函数的求导法则可推广到多个中间变量的情形.
6. 函数单调性:
⑴函数单调性的判定方法:设函数 在某个区间内可导,如果 >0,则 为增函数;如果 <0,则 为减函数.
⑵常数的判定方法;
如果函数 在区间 内恒有 =0,则 为常数.
注:① 是f(x)递增的充分条件,但不是必要条件,如 在 上并不是都有 ,有一个点例外即x=0时f(x) = 0,同样 是f(x)递减的充分非必要条件.
②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的.
7. 极值的判别方法:(极值是在 附近所有的点,都有 < ,则 是函数 的极大值,极小值同理)
当函数 在点 处连续时,
①如果在 附近的左侧 >0,右侧 <0,那么 是极大值;
②如果在 附近的左侧 <0,右侧 >0,那么 是极小值.
也就是说 是极值点的充分条件是 点两侧导数异号,而不是 =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).
注①: 若点 是可导函数 的极值点,则 =0. 但反过来不一定成立. 对于可导函数,其一点 是极值点的必要条件是若函数在该点可导,则导数值为零.
例如:函数 , 使 =0,但 不是极值点.
②例如:函数 ,在点 处不可导,但点 是函数的极小值点.
8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.
注:函数的极值点一定有意义.
9. 几种常见的函数导数:
I. ( 为常数)
( )
II.

III. 求导的常见方法:
①常用结论: .
②形如 或 两边同取自然对数,可转化求代数和形式.
③无理函数或形如 这类函数,如 取自然对数之后可变

形为 ,对两边求导可得

第九部分 立体几何
一、 平面.
1. 经过不在同一条直线上的三点确定一个面.
注:两两相交且不过同一点的四条直线必在同一平面内.
2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)
3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)
[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.
4. 三个平面最多可把空间分成 8 部分.(X、Y、Z三个方向)
二、 空间直线.
1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内
[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)
②直线在平面外,指的位置关系:平行或相交
③若直线a、b异面,a平行于平面 ,b与 的关系是相交、平行、在平面 内.
④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.
⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)
⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点向这个平面所引的垂线段和斜线段)
⑦ 是夹在两平行平面间的线段,若 ,则 的位置关系为相交或平行或异面.
2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)
3. 平行公理:平行于同一条直线的两条直线互相平行.
4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).
(二面角的取值范围 )
(直线与直线所成角 )
(斜线与平面成角 )
(直线与平面所成角 )
(向量与向量所成角
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.
5. 两异面直线的距离:公垂线的长度.
空间两条直线垂直的情况:相交(共面)垂直和异面垂直.
是异面直线,则过 外一点P,过点P且与 都平行平面有一个或没有,但与 距离相等的点在同一平面内. ( 或 在这个做出的平面内不能叫 与 平行的平面)
三、 直线与平面平行、直线与平面垂直.
1. 空间直线与平面位置分三种:相交、平行、在平面内.
2. 直线与平面平行判定定

理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)
[注]:①直线 与平面 内一条直线平行,则 ∥ . (×)(平面外一条直线)
②直线 与平面 内一条直线相交,则 与平面 相交. (×)(平面外一条直线)
③若直线 与平面 平行,则 内必存在无数条直线与 平行. (√)(不是任意一条直线,可利用平行的传递性证之)
④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)
⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)
⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)
⑦直线 与平面 、 所成角相等,则 ∥ .(×)( 、 可能相交)
3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)
4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.
? 若 ⊥ , ⊥ ,得 ⊥ (三垂线定理),
得不出 ⊥ . 因为 ⊥ ,但 不垂直OA.
? 三垂线定理的逆定理亦成立.
直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)
直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.
推论:如果两条直线同垂直于一个平面,那么这两条直线平行.
[注]:①垂直于同一平面的两个平面平行.(×)(可能相交,垂直于同一条直线的两个平面平行)
②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)
③垂直于同一平面的两条直线平行.(√)
5. ⑴垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.
[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]
⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上
四、 平面平行与平面垂直.
1. 空间两个平面的位置关系:相交、平行.
2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面

面平行”)
推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.
[注]:一平面间的任一直线平行于另一平面.
3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)
4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.
两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)
注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.
5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.
推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.
证明:如图,找O作OA、OB分别垂直于 ,
因为 则 .
6. 两异面直线任意两点间的距离公式: ( 为锐角取加, 为钝取减,综上,都取加则必有 )
7. ⑴最小角定理: ( 为最小角,如图)
⑵最小角定理的应用(∠PBN为最小角)
简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.
成角比交线夹角一半大,又比交线夹角补角小,一定有2条.
成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.
成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有.
五、 棱锥、棱柱.
1. 棱柱.
⑴①直棱柱侧面积: ( 为底面周长, 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.
②斜棱住侧面积: ( 是斜棱柱直截面周长, 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.
⑵{四棱柱} {平行六面体} {直平行六面体} {长方体} {正四棱柱} {正方体}.
{直四棱柱} {平行六面体}={直平行六面体}.

⑶棱柱具有的性质:
①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形.
②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.
③过棱柱不相邻的两条侧棱的截面都是平行四边形.
注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)
(直棱柱不能保证底面是钜形可如图)
②(直棱柱定义)棱柱有一条侧棱和底面垂直.
⑷平行六面体:
定理一:平行六面体的对角线交于一点,并且在交点处互相平分.
[注]:四棱柱的对角线不一定相交于一点.
定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.
推论一:长方体一条对角线与同一个顶点的

三条棱所成的角为 ,则 .
推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为 ,则 .
[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形)
②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直棱柱才行)
③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)
④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)
2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.
[注]:①一个棱锥可以四各面都为直角三角形.
②一个棱柱可以分成等体积的三个三棱锥;所以 .
⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.
[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)
ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等
iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.
②正棱锥的侧面积: (底面周长为 ,斜高为 )
③棱锥的侧面积与底面积的射影公式: (侧面与底面成的二面角为 )
附: 以知 ⊥ , , 为二面角 .
则 ①, ②, ③ ①②③得 .
注:S为任意多边形的面积(可分别多个三角形的方法).
⑵棱锥具有的性质:
①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).
②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.
⑶特殊棱锥的顶点在底面的射影位置:
①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.
②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.
③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.
④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.
⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.
⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.
⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;
⑧每个四面体都有内切球,球心 是四面体各个二面角的平分面的交点,到各面的距离等于半径.
[注]:i. 各个侧面都

是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)
ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.
简证:AB⊥CD,AC⊥BD BC⊥AD. 令
得 ,已知
则 .
iii. 空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.
iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.
简证:取AC中点 ,则 平面 90°易知EFGH为平行四边形 EFGH为长方形.若对角线等,则 为正方形.
3. 球:⑴球的截面是一个圆面.
①球的表面积公式: .
②球的体积公式: .
⑵纬度、经度:
①纬度:地球上一点 的纬度是指经过 点的球半径与赤道面所成的角的度数.
②经度:地球上 两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点 的经线是本初子午线时,这个二面角的度数就是 点的经度.
附:①圆柱体积: ( 为半径, 为高)
②圆锥体积: ( 为半径, 为高)
③锥形体积: ( 为底面积, 为高)
4. ①内切球:当四面体为正四面体时,设边长为a, , ,
得 .
注:球内切于四面体:
②外接球:球外接于正四面体,可如图建立关系式.
六. 空间向量.(空间向量部分 文科生不做要求)
1. (1)共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.
注:①若 与 共线, 与 共线,则 与 共线.(×) [当 时,不成立]
②向量 共面即它们所在直线共面.(×) [可能异面]
③若 ∥ ,则存在小任一实数 ,使 .(×)[与 不成立]
④若 为非零向量,则 .(√)[这里用到 之积仍为向量]
(2)共线向量定理:对空间任意两个向量 , ∥ 的充要条件是存在实数 (具有唯一性),使 .
(3)共面向量:若向量 使之平行于平面 或 在 内,则 与 的关系是平行,记作 ∥ .
(4)①共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对x、y使 .
②空间任一点O和不共线三点A、B、C,则 是PABC四点共面的充要条件.(简证: P、A、B、C四点共面)
注:①②是证明四点共面的常用方法.
2. 空间向量基本定理:如果三个向量 不共面,那么对空间任一向量 ,存在一个唯一的有序实数组x、y、z,使 .
推论:设O、A、B、C是不共面的四点,则对空间任一点P, 都存在唯一的有序实数组x、y、z使 (这里隐含x+y+z≠1).
注:设四面体ABCD的三条棱, 其
中Q是△BCD的重心,则向量 用 即证.
3. (1)空间向量的坐标:空间直角坐标系的x轴是横轴(对应为横坐标),y轴是纵轴(对应为纵轴),z轴是

竖轴(对应为竖坐标).
①令 =(a1,a2,a3), ,则

(用到常用的向量模与向量之间的转化: )

②空间两点的距离公式: .
(2)法向量:若向量 所在直线垂直于平面 ,则称这个向量垂直于平面 ,记作 ,如果 那么向量 叫做平面 的法向量.
(3)用向量的常用方法:
①利用法向量求点到面的距离定理:如图,设n是平面 的法向量,AB是平面 的一条射线,其中 ,则点B到平面 的距离为 .
②利用法向量求二面角的平面角定理:设 分别是二面角 中平面 的法向量,则 所成的角就是所求二面角的平面角或其补角大小( 方向相同,则为补角, 反方,则为其夹角).
③证直线和平面平行定理:已知直线 平面 , ,且CDE三点不共线,则a∥ 的充要条件是存在有序实数对 使 .(常设 求解 若 存在即证毕,若 不存在,则直线AB与平面相交).


第十部分 圆锥曲线 (本部分参考08大纲,部分内容09不做要求)
一、椭圆方程.
1. 椭圆方程的第一定义:

⑴①椭圆的标准方程:
i. 中心在原点,焦点在x轴上: . ii. 中心在原点,焦点在 轴上: .
②一般方程: .③椭圆的标准参数方程: 的参数方程为 (一象限 应是属于 ).
⑵①顶点: 或 .②轴:对称轴:x轴, 轴;长轴长 ,短轴长 .③焦点: 或 .④焦距: .⑤准线: 或 .⑥离心率: .⑦焦点半径:
i. 设 为椭圆 上的一点, 为左、右焦点,则
由椭圆方程的第二定义可以推出.
ii.设 为椭圆 上的一点, 为上、下焦点,则
由椭圆方程的第二定义可以推出.
由椭圆第二定义可知: 归结起来为“左加右减”.
注意:椭圆参数方程的推导:得 方程的轨迹为椭圆.
⑧通径:垂直于x轴且过焦点的弦叫做通经.坐标: 和
⑶共离心率的椭圆系的方程:椭圆 的离心率是 ,方程 是大于0的参数, 的离心率也是 我们称此方程为共离心率的椭圆系方程.
⑸若P是椭圆: 上的点. 为焦点,若 ,则 的面积为 (用余弦定理与 可得). 若是双曲线,则面积为 .
二、双曲线方程.
1. 双曲线的第一定义:

⑴①双曲线标准方程: . 一般方程: .
⑵①i. 焦点在x轴上:
顶点: 焦点: 准线方程 渐近线方程: 或
ii. 焦点在 轴上:顶点: . 焦点: . 准线方程: . 渐近线方程: 或 ,参数方程: 或 .
②轴 为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率 . ④准线距 (两准线的距离);通径 . ⑤参数关系 . ⑥焦点半径公式:对于双曲线方程 ( 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)
“长加短减”原则:
构成满足 (与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不

带符号)

⑶等轴双曲线:双曲线 称为等轴双曲线,其渐近线方程为 ,离心率 .
⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线. 与 互为共轭双曲线,它们具有共同的渐近线: .
⑸共渐近线的双曲线系方程: 的渐近线方程为 如果双曲线的渐近线为 时,它的双曲线方程可设为 .
例如:若双曲线一条渐近线为 且过 ,求双曲线的方程?
解:令双曲线的方程为: ,代入 得 .
⑹直线与双曲线的位置关系:
区域①:无切线,2条与渐近线平行的直线,合计2条;
区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;
区域③:2条切线,2条与渐近线平行的直线,合计4条;
区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;
区域⑤:即过原点,无切线,无与渐近线平行的直线.
小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.
(2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入 法与渐近线求交和两根之和与两根之积同号.
⑺若P在双曲线 ,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m︰n.
简证: = .
常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.
三、抛物线方程.
3. 设 ,抛物线的标准方程、类型及其几何性质:




图形



焦点



准线



范围



对称轴 轴

顶点 (0,0)
离心率
焦半径



注:① 顶点 .
② 则焦点半径 ; 则焦点半径为 .
③通径为2p,这是过焦点的所有弦中最短的.
④ (或 )的参数方程为 (或 )( 为参数).
四、圆锥曲线的统一定义..
4. 圆锥曲线的统一定义:平面内到定点F和定直线 的距离之比为常数 的点的轨迹.
当 时,轨迹为椭圆;
当 时,轨迹为抛物线;
当 时,轨迹为双曲线;
当 时,轨迹为圆( ,当 时).
5. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.
因为具有对称性,所以欲证AB=CD, 即证AD与BC的中点重合即可.



第十一部分 复数
1. ⑴复数的单位为i,它的平方等于-1,即 .
⑵复数及其相关概念:
① 复数—形如a + bi的数(其中 );
② 实数—当b = 0时的复数a + bi,即a;
③ 虚数—当 时的复数a + bi;
④ 纯虚数—当a = 0且 时的复数a + bi,即bi.
⑤ 复数a + bi的实部与虚部—a叫做复数的实部,b叫做虚部(注意a,b都是实数)

复数集C—全体复数的集合,一般用字母C表示.
⑶两个复数相等的定义:
.
⑷两个复数,如果不全是实数,就不能比较大小.
注:①若 为复数,则 若 ,则 .(×)[ 为复数,而不是实数]
若 ,则 .(√)
②若 ,则 是 的必要不充分条件.(当 ,
时,上式成立)
2. ⑴复平面内的两点间距离公式: .
其中 是复平面内的两点 所对应的复数, 间的距离.
由上可得:复平面内以 为圆心, 为半径的圆的复数方程: .

3. 共轭复数的性质:

, ( a + bi)

( )
注:两个共轭复数之差是纯虚数. (×)[之差可能为零,此时两个复数是相等的]
4. ⑴①复数的乘方:
②对任何 , 及 有

注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如 若由 就会得到 的错误结论.
②在实数集成立的 . 当 为虚数时, ,所以复数集内解方程不能采用两边平方法.
⑵常用的结论:



若 是1的立方虚数根,即 ,则 .
5. ⑴复数 是实数及纯虚数的充要条件:
① .
②若 , 是纯虚数 .
⑵模相等且方向相同的向量,不管它的起点在哪里,都认为是相等的,而相等的向量表示同一复数. 特例:零向量的方向是任意的,其模为零.
注: .

第十二部分 概率与统计(部分内容文科不作要求,请参考文科教材)
一、概率.
1. 概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值.
2. 等可能事件的概率:如果一次试验中可能出现的结果有年n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是 ,如果某个事件A包含的结果有m个,那么事件A的概率 .
3. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B),推广: .
②对立事件:两个事件必有一个发生的互斥事件叫对立事件. 例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立事件,因为其中一个必发生.
注意:i.对立事件的概率和等于1: .
ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.
③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等

于每个事件发生的概率的积,即P(A?B)=P(A)?P(B). 由此,当两个事件同时发生的概率P(AB)等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A:“抽到老K”;B:“抽到红牌”则 A应与B互为独立事件[看上去A与B有关系很有可能不是独立事件,但 .又事件AB表示“既抽到老K对抽到红牌”即“抽到红桃老K或方块老K”有 ,因此有 .
推广:若事件 相互独立,则 .
注意:i. 一般地,如果事件A与B相互独立,那么A 与 与B, 与 也都相互独立.
ii. 必然事件与任何事件都是相互独立的.
iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件.
④独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的. 如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k次的概率: .
4. 对任何两个事件都有
二、随机变量.
1. 随机试验的结构应该是不确定的.试验如果满足下述条件:
①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.
它就被称为一个随机试验.
2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a,b是常数.则 也是一个随机变量.一般地,若ξ是随机变量, 是连续函数或单调函数,则 也是随机变量.也就是说,随机变量的某些函数也是随机变量.
设离散型随机变量ξ可能取的值为:
ξ取每一个值 的概率 ,则表称为随机变量ξ的概率分布,简称ξ的分布列.





P



有性质① ; ② .
注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如: 即 可以取0~5之间的一切数,包括整数、小数、无理数.
3. ⑴二项分布:如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是: [其中 ]
于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作 ~B(n?p),其中n,p为参数,并记 .
⑵二项分布的判断与应用.
①二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件,

随机变量就不服从二项分布.
②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.
4. 几何分布:“ ”表示在第k次独立重复试验时,事件第一次发生,如果把k次试验时事件A发生记为 ,事A不发生记为 ,那么 .根据相互独立事件的概率乘法分式: 于是得到随机变量ξ的概率分布列.

1 2 3 … k …
P q qp


我们称ξ服从几何分布,并记 ,其中
5. ⑴超几何分布:一批产品共有N件,其中有M(M<N)件次品,今抽取 件,则其中的次品数ξ是一离散型随机变量,分布列为 .〔分子是从M件次品中取k件,从N-M件正品中取n-k件的取法数,如果规定 < 时 ,则k的范围可以写为k=0,1,…,n.〕
⑵超几何分布的另一种形式:一批产品由 a件次品、b件正品组成,今抽取n件(1≤n≤a+b),则次品数ξ的分布列为 .
⑶超几何分布与二项分布的关系.
设一批产品由a件次品、b件正品组成,不放回抽取n件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数 的分布列可如下求得:把 个产品编号,则抽取n次共有 个可能结果,等可能: 含 个结果,故 ,即 ~ .[我们先为k个次品选定位置,共 种选法;然后每个次品位置有a种选法,每个正品位置有b种选法] 可以证明:当产品总数很大而抽取个数不多时, ,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.
三、数学期望与方差.
1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为





P



则称 为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.
2. ⑴随机变量 的数学期望:
①当 时, ,即常数的数学期望就是这个常数本身.
②当 时, ,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.
③当 时, ,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.
ξ 0 1
P q p
⑵单点分布: 其分布列为: .
⑶两点分布: ,其分布列为:(p + q = 1)
⑷二项分布: 其分布列为 ~ .(P为发生 的概率)
⑸几何分布: 其分布列为 ~ .(P为发生 的概率)
3.方差、标准差的定义:当已知随机变量ξ的分布列为 时,则称 为ξ的方差. 显然 ,故 为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度. 越小,稳定性越高,波动越小.
4.方差的性质.
⑴随机变量

的方差 .(a、b均为常数)
ξ 0 1
P q p
⑵单点分布: 其分布列为
⑶两点分布: 其分布列为:(p + q = 1)
⑷二项分布:
⑸几何分布:
5. 期望与方差的关系.
⑴如果 和 都存在,则
⑵设ξ和 是互相独立的两个随机变量,则
⑶期望与方差的转化: ⑷ (因为 为一常数) .
四、正态分布.
1.密度曲线与密度函数:对于连续型随机变量ξ,位于x轴上方,ξ落在任一区间 内的概率等于它与x轴.直线 与直线 所围成的曲边梯形的面积
(如图阴影部分)的曲线叫ξ的密度曲线,以其作为
图像的函数 叫做ξ的密度函数,由于“ ”
是必然事件,故密度曲线与x轴所夹部分面积等于1.
2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为: . ( 为常数,且 ),称ξ服从参数为 的正态分布,用 ~ 表示. 的表达式可简记为 ,它的密度曲线简称为正态曲线.
⑵正态分布的期望与方差:若 ~ ,则ξ的期望与方差分别为: .
⑶正态曲线的性质.
①曲线在x轴上方,与x轴不相交.
②曲线关于直线 对称.
③当 时曲线处于最高点,当x向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.
④当 < 时,曲线上升;当 > 时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x轴为渐近线,向x轴无限的靠近.
⑤当 一定时,曲线的形状由 确定, 越大,曲线越“矮胖”.表示总体的分布越分散; 越小,曲线越“瘦高”,表示总体的分布越集中.
3. ⑴标准正态分布:如果随机变量ξ的概率函数为 ,则称ξ服从标准正态分布. 即 ~ 有 , 求出,而P(a< ≤b)的计算则是 .
注意:当标准正态分布的 的X取0时,有 当 的X取大于0的数时,有 .比如 则 必然小于0,如图.
⑵正态分布与标准正态分布间的关系:若 ~ 则ξ的分布函数通
常用 表示,且有 .
4.⑴“3 ”原则.
假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布 .②确定一次试验中的取值 是否落入范围 .③做出判断:如果 ,接受统计假设. 如果 ,由于这是小概率事件,就拒绝统计假设.
⑵“3 ”原则的应用:若随机变量ξ服从正态分布 则 ξ落在 内的概率为99.7% 亦即落在 之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).


第十三部分 计数原理与二项式定理
一、两个原理.
1. 乘法原理、加法原理.
2. 可以有重复元素的排列.
从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上

相关文档
相关文档 最新文档