文档库 最新最全的文档下载
当前位置:文档库 › ANSYS 17.0 linux 集群安装以及Fluent多核配置

ANSYS 17.0 linux 集群安装以及Fluent多核配置

ANSYS 17.0 linux 集群安装以及Fluent多核配置
ANSYS 17.0 linux 集群安装以及Fluent多核配置

ANSYS FLUENT 介绍

想起CFD,人们总会想起FLUENT,丰富的物理模型使其应用广泛,从机翼空气流动到熔炉燃烧,从鼓泡塔到玻璃制造,从血液流动到半导体生产,从洁净室到污水处理工厂的设计,另外软件强大的模拟能力还扩展了在旋转机械,气动噪声,内燃机和多相流系统等领域的应用。今天,全球数以千计的公司得益于FLUENT的这一工程设计与分析软件,它在多物理场方面的模拟能力使其应用范围非常广泛,是目前功能最全的CFD软件。 FLUENT因其用户界面友好,算法健壮,新用户容易上手等优点一直在用户中有着良好的口碑。长期以来,功能强大的模块,易用性和专业的技术支持所有这些因素使得FLUENT受到企业的青睐。 网格技术,数值技术,并行计算 计算网格是任何CFD计算的核心,它通常把计算域划分为几千甚至几百万个单元,在单元上计算并存储求解变量,FLUENT使用非结构化网格技术,这就意味着可以有各种各样的网格单元:二维的四边形和三角形单元,三维的四面体核心单元、六面体核心单元、棱柱和多面体单元。这些网格可以使用FLUENT的前处理软件GAMBIT自动生成,也可以选择在ICEM CFD工具中生成。 在目前的CFD市场, FLUENT以其在非结构网格的基础上提供丰富物理模型而著称,久经考验的数值算法和鲁棒性极好的求解器保证了计算结果的精度,新的NITA算法大大减少了求解瞬态问题的所需时间,成熟的并行计算能力适用于NT,Linux或Unix平台,而且既适用单机的多处理器又适用网络联接的多台机器。动态加载平衡功能自动监测并分析并行性能,通过调整各处理器间的网格分配平衡各CPU的计算负载。

湍流和噪声模型 FLUENT的湍流模型一直处于商业CFD软件的前沿,它提供的丰富的湍流模型中有经常使用到的湍流模型、针对强旋流和各相异性流的雷诺应力模型等,随着计算机能力的显著提高,FLUENT已经将大涡模拟(LES)纳入其标准模块,并且开发了更加高效的分离涡模型(DES),FLUENT提供的壁面函数和加强壁面处理的方法可以很好地处理壁面附近的流动问题。 气动声学在很多工业领域中倍受关注,模拟起来却相当困难,如今,使用FLUENT可以有多种方法计算由非稳态压力脉动引起的噪音,瞬态大涡模拟(LES)预测的表面压力可以使用FLUENT内嵌的快速傅立叶变换(FFT)工具转换成频谱。Fflow-Williams&Hawkings声学模型可以用于模拟从非流线型实体到旋转风机 叶片等各式各样的噪声源的传播,宽带噪声源模型允许在稳态结果的基础上进行模拟,这是一个快速评估设计是否需要改进的非常实用的工具。

如何在超算中心使用fluent做并行计算——入门

现在国内的开放式机群环境越来越多,许多都部署了fluent(大好事),不过还是有许多人不太清楚如何利用这些有用的资源。这里结合我所在单位的情况做一个简单的介绍,其他的机群环境大同小异。 1、什么是机群?有什么特点? 机群又叫集群,当然就是许多的计算机(废话),因为机器太多 了,又需要协同工作,所以需要按照一定的方式来管理,管理 的结构形式叫做拓扑(这个不用管)。机群使用的电脑是刀片(又 薄又长的机箱)形式(为了便于插入机柜),一个刀片一般称为 一个节点。 一般而言,机群会分为三种节点:管理节点(若干台),编译节 点(若干台),计算节点(其余全部)。这三种节点的配置略有 不同(废话),管理节点主要用来存储使用机群的用户的信息,如名字,密码,可以使用机器数的权限,用户状态等等;编译 节点一般用来预查程序故障,用户的程序先在这里试运行,查 看是否与系统兼容等;计算节点用来直接计算其他节点提供来 的程序。 就配置而言,管理节点和编译节点一般相同,会部署软件环境; 计算节点只会部署简单的必要运行文件。计算机点之间会采用 高速交换机,速度可达几十GB/s,如IB等;计算节点与编译、登陆节点之间采用普通的万兆交换机。 2、如何使用机群? 机群中一般采用linux操作系统来操作(多用户情况下效率高),

用户会通过远程登录软件(如xshell)来登录到登陆节点进行个 人的操作(一般会通过VPN网络加密数据传输)。 Linux集群将程序任务分解发送到计算节点上时,是通过LSF作 业调度系统(也有其他的,如PBS等)来实现的,这个系统的 作用是使整个机群负载均衡,便于管理,所以我们使用fluent 也要通过这个系统。在成熟的集群中,用户登录之后,默认便 可以使用作业调度系统了。使用时,除了常见的linux命令以外,调度系统也有一些简单的命令,这个一般会有手册介绍,常用 的就3、5个,很好记。 3、如何在集群中使用fluent? 因为fluent是成熟的封装好的商业软件,所以用户直接使用命 令调用即可。 但是因为大部分的linux下的远程登录是不支持图形界面的,所 以我们看不到在windows下的熟悉界面,无法进行操作。其实, fluent最早也是linux下的软件,它提供了一种jou脚本来操作 各种命令(即帮助中的TUI命令),我们在windows的图形界面 中,也可以在控制台窗口中查看如何使用。这样,我们在启动 fluent软件时,指定它的jou执行脚本即可使软件按照我们的意 图来进行操作了。如果在帮助中找太慢,可以在windows的 fluent图形界面下,右下角控制台中用回车键显示文字命令,q 键返回。 4、实例

windows 系统下启动linux主机群的fluent并行操作

windows 系统下启动linux主机群的fluent并行操作 第一步,首先在linux系统下安装好fluent,包括更改环境变量,操作如下: ANSYS 12.0产品的linux安装方法 1.将ANSYS 12.0 安装光盘放进光驱,后,系统会自动Mount,但是这个Mount指定的参数可能不对,则需要执行以下命令: 1.mkdir dvdrom_dir (在根目录下) 2.mount -t iso9660 /dev/cdrom dvdrom_dir 3.cd dvdrom_dir 4../INSTALL (直接运行命令INSTALL即可) 2. 出现下图请选择“I AGREE ”并单击“Next” 3 出现下图请选择对应的操作系统,并单击“ Next” 4. 出现下图,请在“Install directory:” 里写入安装的路径,或者单击“Browse”选择,这里就使用默认路径了

5.出现下图,请选择要安装的产品 6. 出现下图,请单击“Next” 7.出现下图,请选择“Next”

8.出现下图,请选择Next 9. 出现下图证明安装正在进行 10.出现下图证明产品安装完毕,请单击“ Next” 11. 出现下图,请单击“Exit” 12. 出现下图,产品安装完毕,请单击“Next”

13.弹出以下窗口,配置服务器相关信息 请在hostname1下面输入服务器主机名,如“server”,并单击OK。如果碰到无法输入的情况,这时直接点击cancel。再进入ansys的安装目录, ../ansys_inc/shared_files/licensing下,编辑文件ansyslmd.ini,内容为: SERVER=1055@hostname ANSYSLI_SERVERS=2325@hostname 注意:大小写一致。

FLUENT和ANSYS的并行计算设置

Fluent并行计算 以2核为例: 1:找到fluent安装目录中的启动程序,在地址栏中复制目录例如:C:\Fluent.Inc\ntbin\ntx86 2:开始-->程序-->附件-->命令提示符 cd C:\Fluent.Inc\ntbin\ntx86 3:fluent 3d –t2 (启动3d模型,两核) 6.在ansys中使用多核处理器的方法: 使用AMG算法,可以使多个核同时工作。使用方法1或2. 方法1: (1). 在ansys product lancher 里面lauch标签页选中parallel performance for ansys. (2). 然后在求解前执行如下命令: finish /config,nproc,n!设置处理器数n=你设置的CPU数。 /solu eqslv,amg !选择AMG算法 solve !求解 方法2: (1). 在ansys product lancher 里面lauch标签页选中parallel performance for ansys. (2). 在D:\professional\Ansys Inc\v90\ANSYS\apdl\start90.ans中添加一行:/config,nproc,2.别忘了把目录换成你自己的安装目录. 化学反应软件 FactSage_Demo COMSOL

Courant number实际上是指时间步长和空间步长的相对关系,系统自动减小courant数,这种情况一般出现在存在尖锐外形的计算域,当局部的流速过大或者压差过大时出错,把局部的网格加密再试一下。 在FLUENT中,用courant number来调节计算的稳定性与收敛性。一般来说,随着courant number的从小到大的变化,收敛速度逐渐加快,但是稳定性逐渐降低。所以具体的问题,在计算的过程中,最好是把courant number从小开始设置,看看迭代残差的收敛情况,如果收敛速度较慢而且比较稳定的话,可以适当的增加courant number的大小,根据自己具体的问题,找出一个比较合适的courant number,让收敛速度能够足够的快,而且能够保持它的稳定性。FLUENT计算开始迭代最好使用较小的库朗数,否则

用ANSYS和FLUENT进行管壳式换热器整体分析

用ANSYS和FLUENT进行管壳式换热器整体分析 作者:郭崇志林长青 利用数值模拟计算软件进行管壳式换热器的流体力学和传热性能计算及评估已经成为开发和研究管壳式换热器的重要手段之一,由于结构和流道复杂,导致准确地进行换热器的流体力学性能和传热性能计算和评估有一定的困难。而对换热器的结构性能进行准确分析一般都需要进行流固耦合模拟,如果要同时进行换热器的流体流动与传热和结构性能分析就更加困难。 有关管壳式换热器的温度场研究,目前大多数文献集中于研究管板的温度场及所产生温差应力、以及由此导致的结构强度等问题,通常利用ANSYS 大型商用软件行管壳式换热器管板结构的温度场研究,采用简化的三维实体模型较多,一般利用已知的平均温度或利用已知的换热(膜)系数对几何结构模型加载,而这些已知条件通常来源于手册提供的数据或者经验数据,并非来源于严格的换热器流体力学与传热工艺的数值计算,因此是产生结果计算偏差的主要原因之一。 目前文献对于给定工艺条件下管壳式换热器的整体温度场研究的并不多,由于准确的温度场是研究温差应力及其危害的前提,因此本文利用FLUENT 和ANSYS 软件对一台固定管板换热器的约束构件之间的整体结构在正常运行工况下的数值模拟问题进行了研究,首先从计算流体力学与传热的角度出发,利用FLUENT软件进行换热器流体流动与传热的工艺状况数值模拟。然后把FLUENT 软件的数值模拟结果导入ANSYS中作节点插值,完成温度场的重建,作为进行换热器的热分析以及结构分析的边界条件。从而实现了管壳式换热器的FLUENT 和ANSYS 联合仿真模拟,综合整个过程可以很好地完成同一条件下换热器的流体力学与传热和结构性能分析,使得换热器的工艺性能计算与结构分析计算完整地结合在一起,计算精度更高。 1 CFD数值模拟 本文研究的换热器结构示意如图1所示,在对实际结构进行合理简化的基础上,以影响流动和传热的主要结构建立了某固定管板式换热器温度场数值计算模型,采用分段模拟、整体综合的方法,利用FLUENT软件对该换热器在正常操作工况下的流动与传热情况进行数值模拟[8] ,得到计算流道上有关各个构件的壁温场分布。

Fluent17.2在基于Linux下PC集群的并行计算

Fluent17.2在基于Linux PC集群的并行计算 软件需求可联系QQ:2294976284

目录 一、CentOS7.2.1.15安装及配置 (3) 1.1软件下载及安装 (3) 1.2配置 (4) 1.2.1网络配置 (4) 1.2.2用户名更改 (4) 二、计算集群配置 (5) 2.1NFS配置 (5) 2.2无密访问连接(RSH、SSH) (8) 2.2.1SSH配置 (8) 三、Ansys17.2安装及配置 (9) 3.1图形化安装过程 (10) 3.2安装License server (16) 3.3配置和启动License server (19) 3.4启动fluent GUi界面 (23) 3.4fluent并行计算 (24)

一、CentOS7.2.1.15安装及配置 1.1软件下载及安装 为方便后期软件环境的配置,采用CentOS-7-x86_64-Everything-1511.ISO版本,安装采用光盘转U盘启动,可以通过UltraISO软件实现,在软件中“文件”打开CentOS7的ISO镜像文件,“启动”选择“写入硬盘映像”,硬盘驱动器选择插入的U盘,保证U盘空间在9G 以上,写入方式选择USB-HDD+v2,点击写入等待完成即可,注意写入过程会格式化整个U 盘,为防止文件丢失,作为启动U盘应为空白盘。 U盘插入目标电脑,以BIOS模式启动,清华同方电脑为启动时按F12进入,选择U盘点击开始安装,出现安装界面后选择第二项“Test and install…”,为防止Fluent计算环境配置出错,采用英文环境安装,进入图形化安装界面,“DATE&TIME”选择city Shanghai,调整时间后左上角点击Done返回上一级页面;点击SOFTWARE SELECTION进入软件安装界面,由于linux下软件依赖性强,对于系统不是很精通选择全部安装,在左侧每一项对应的右侧选项上左键选中,依次全选后点击Done返回;点击INSTALLATION DESTINATION进行系统安装位置的配置,上方选择要安装系统的硬盘,下方选择“I will configure a portitioning”,点击Done进行配置,若选择安装的硬盘内有其他文件占用空间,选择左下方条目,选择“—”号弹出删除界面,点击并选择Delete It将删除原有文件并释放空间,选择“New mount points will…”下的下拉框,格式选为Standard,上方选择“Click here to creat them automatically”将自动产生分区,依次点击,在右侧Desired Capacity进行容量分配,其中/boot和/swap选择 4GiB~10GiB,/和/home分配剩余所有空间,其中/home可以分配很大,(参考个人总容量为931G,

Materials Studio Linux 集群安装手册(比较详细)

Materials Studio Linux集群安装手册 一、安装Linux操作系统,进行系统配置 一般都建议最小化安装,不用安装图形界面。下面我以red hat enterprise linux 6.0 x86-64在AMD Athlon(tm)64 X2 Dual Core Processor 4400+ 电脑上的安装为例。rhel6.0的安装过程和windows差不多,一路下一步(或Next)基本就ok了,在您要进行哪种类型的安装?你如果是第一次安装,是新硬盘的话可以选使用所有空间,并勾选下边的查看并修改分区布局,然后下一步,你可以看下大概的分区情况,在Red Hat Enterprise Linux 的默认安装是基本服务器安装。如果对Linux不太熟的话,最好选择软件开发工作站(或Software Development Workstation),这样基本上把要用的软件都安装上了,然后再选上下边的现在自定义(或 Customize now),再下一步,然后把所有能选上的软件都选上,再一路下一步。安装完以后,创建一个非root用户,比如创建一个msi用户,root和msi用户密码设的简单一些比较好,别一会儿你自己都忘了,我是root和msi用的一个密码,当然将来你自己真正组建集群用于计算的时候再设置复杂一些,这样课题提高系统的安全性。 gcc glibc-2.3.4-2.43 (32-bit and 64-bit) libgcc-3.4.6-11 (32-bit and 64-bit) libstdc++-33-3.4.6-11 (32-bit and 64-bit) compat-libstdc++-33-3.2.3-47.3 (32-bit) hpmpi-2.03.01.00-20090402r.x86_64 这几个补丁,好像除了hpmpi-2.03.01.00-20090402r.x86_64和 libstdc++-33-3.4.6-11 (32-bit)没有装上之外,别的都给你装好了。这里要说的是,这些补丁每个节点都要装,千万记住。你可以用命令: rpm -qa|grep gcc 查询,当然你要查libstdc++就要用命令:rpm -qa|grep libstdc++了。对于hpmpi-2.03.01.00-20090402r.x86_64和libstdc++-33-3.4.6-11 (32-bit)的安装可以用命令rpm安装,首先切换到这两个软件包所在的目录下,执行下列命令,格式如下: rpm -ivh libstdc++-33-3.4.6-11.i386.rpm rpm -ivh hpmpi-2.03.01.00-20090402r.x86_64.rpm

Ansys与FLUENT中MHD(Magnetohydrodynamics)模型接口

用户手册

目录 1 免责声明 (1) 2 前言 (2) 3 软件概述 (2) 3.1 软件简介 (2) 3.2 功能特点 (2) 4 软件安装 (2) 5 软件操作指南 (3) 5.1 整体操作流程 (3) 5.2 如何得到坐标文件(Coordinate File)和磁场文件(B File) (3) 5.3 将坐标与磁场文件导入软件 (6) 5.4 设置参数 (6) 5.5 计算并得到目标文件(*.mag) (9) 5.6 将目标文件导入FLUENT (9) 6 帮助 (10)

1 免责声明 本软件为北京科技大学绿色冶金及冶金过程模拟仿真研究室(Laboratory of Green Process Metallurgy and Modeling,以下称LGPMM)为提供ANSYS与FLUENT中MHD模型的接口而制作,本说明书所载所有内容(包括但不限于文字叙述、图片与其它信息等)均受著作权法及其它智慧财产权法规保护,LGPMM保留一切法律权利,非经LGPMM授权同意使用,此处数据或内容均不得以任何形式予以重制或其它不当侵害。 免责声明 本服务及软件乃依其ANSYS模拟结果文件为基础提供FLUENT中MHD所需磁场文件,不提供ANSYS模拟结果之前及FLUENT中MHD加载磁场文件之后之保证。对于因使用本服务及软件而产生任何损害(包括模拟结果及其权利纠纷之损害),即便本研究室已被告知此类损害之可能,均不负任何责任。 本研究室保留任何时刻修改本用户手册之权利,恕不另行通知。

2 前言 本手册是专为ANSYS与FLUENT中MHD(Magnetohydrodynamics)模型接口V2.0用户编写的。与本手册配套的软件版本为ANSYS与FLUENT中MHD(Magnetohydro-dynamics)模型接口V2.0,手册包含软件的总体介绍及用户操作说明。 3 软件概述 3.1 软件简介 ANSYS与FLUENT中MHD(Magnetohydrodynamics)模型接口是一款用于仿真模拟的软件,可将ANSYS磁场模拟结果转为FLUENT中MHD模型所需加载的磁场文件(*.mag)。使用该软件可节省大量人力及时间,并且不会产生因人为操作而导致的错误或误差。 该软件适用于ANSYS磁场的三维(3D)模拟,将其结果用于FLUENT中MHD模型的二维(2D)和三维(3D)模拟,暂不提供ANSYS磁场的二维(2D)模拟。 3.2 功能特点 ●软件界面简洁,操作简单,用户可以迅速上手。 ●节省人力及时间,且不会产生人为错误或误差。 ●支持ANSYS三维(3D)与FLUENT中MHD模型的二维(2D)和三维(3D)模拟操 作。 4 软件安装 该软件是基于MATLAB R2012a开发,其运行环境为MATLAB R2012a,即需安装MATLAB R2012a.exe或安装该版本库函数包MCRInstaller.exe。运行该软件前需安装与其配套使用的KEY.exe文件(如图4-1)。 图4-1

ansysfluent13.0or14.0tutorials教程

Ansys FLUENT Tutorials └─ANSYS FLUENT ├─ANSYS-FLUENT-Intro_13.0_1st-ed_pdf ││fluent_13.0_Agenda.pdf ││fluent_13.0_TOC.pdf ││ │├─lectures ││fluent_13.0_lecture01-welcome.pdf ││fluent_13.0_lecture02-intro-to-cfd.pdf ││fluent_13.0_lecture03-solver-basics.pdf ││fluent_13.0_lecture04-boundary-conditions.pdf ││fluent_13.0_lecture05-solver-settings.pdf ││fluent_13.0_lecture06-turbulence.pdf ││fluent_13.0_lecture07-heat-transfer.pdf ││fluent_13.0_lecture08-udf.pdf ││fluent_13.0_lecture09-physics.pdf ││fluent_13.0_lecture10-transient.pdf ││fluent_13.0_lecture11-post.pdf ││ │├─workshop-input-files ││├─workshop1-mixing-tee │││ fluidtee.meshdat │││ ││├─workshop2-airfoil-new │││ NACA0012.msh │││ mach_0.5_ │││ mach_0.5_ │││ mach_0.7_ │││ mach_0.7_ │││ test-data-bottom.xy │││ test-data-top.xy │││ ││├─workshop3-multi-species │││ calc_activities.jou │││ garage.msh │││ workshop3- │││ workshop3- │││ ││├─workshop4-electronics │││ │││ ws4_no- │││ ws4_no- │││ ws4_s2s- │││ ws4_s2s-

基于Linux的集群存储系统

文章编号:1007-757X(2006)08-0053-03 基于Linux的集群存储系统 郭国文 摘 要:介绍了集群存储系统常用的模式、相关技术特点及其工作原理,以及L inux集群系统的软件构成,最后用实例说明了如何在L inux下构建集群存储系统 关键词:集群;均衡;节点;镜像 中图分类号:T P311.1 文献标识码:A 1 引言 集群(Cluster),是由一群同时运行同一个应用的服务器组成的服务器组,形成一个虚拟的服务器,为客户端用户提供统一的服务。为了均衡集群服务器的负载,达到优化系统性能的目的,集群服务器将众多的访问请求,分散到系统中的不同节点进行处理。从而实现了更高的有效性和稳定性。[1]早在几年前,集群技术就被应用于数据中心的服务器设备上,效果显著。与分布式文件系统相比,集群存储系统有几大优势:因为数据不需要从一个文件系统拷贝或复制到另一个文件系统,通过集群系统共享应用和数据的任务执行起来要比在单独的设备上执行快得多;集群可以为文件和文件系统提供更多的空间;如果集群内的某台服务器出现了故障,另一台服务器就可以把它的工作接手过来,故障恢复也成为了现实;用户也可以同时对位于其网络上的存储设备里的所有文件进行访问。 2 集群存储常见的两种模式的比较 集群中的每个节点能够访问集群中所有节点的所有数据、重做日志文件、控制文件和参数文件。数据磁盘由于在全局范围内可用,允许所有节点访问数据库。每个节点都有自己的重做日志和控制文件,但其他节点必须能够访问这些文件,以便在系统故障时恢复该节点。通过应用集群技术,不仅可有效提升数据中心服务器系统的稳定性、可用性及可管理性,同时,允许用户使用价格相对低廉的配置(如刀片)捆绑来替代昂贵的单块集成电路的高端服务器,在不影响性能的情况下节约了存储成本。 集群存储常见的两种模式是镜像服务器双机(如图1所示)和双机与磁盘阵列柜(如图2所示)。[2]集群中镜像服务器双机系统是硬件配置最简单和价格最低廉的解决方案,通常镜像服务的硬件配置需要两台服务器,在每台服务器有独立操作系统硬盘和数据存储硬盘,每台服务器有与客户端相连的网卡,另有一对镜像卡或完成镜像功能的网卡。 镜像服务器具有配置简单,使用方便,价格低廉诸多优点,但由于镜像服务器需要采用网络方式镜像数据,通过镜像软件实现数据的同步,因此需要占用网络服务器的CP U及内存资源,镜像服务器的性能比单一服务器的性能要低一些。 有一些镜像服务器集群系统采用内存镜像的技术,这个技术的优点是所有的应用程序和网络操作系统在两台服务器上镜像同步,当主机出现故障时,备份机可以在几乎没有感觉的情况下接管所有应用程序。但是因为两个服务器的内存完全一致,当系统应用程序带有缺陷从而导致系统死机时,两台服务器会同步死机。同时,在大数据量读写过程中两台服务器在某些状态下会产生数据不同步,因此镜像服务器适合那些预算较少、对集群系统要求不高的用户。 与镜像服务器双机系统相比,双机与磁盘阵列柜互联结构多出了第三方生产的磁盘阵列柜,目前,豪威公司、精业公司等许多公司都生产有磁盘阵列柜,在磁盘阵列柜中安装有磁盘阵列控制卡,阵列柜可以直接将柜中的硬盘配置成为逻辑盘阵。磁盘阵列柜通过SCSI电缆与服务器上普通SCSI卡相连,系统管理员需 直接在磁盘柜上配置磁盘阵列。 图1 镜像服务器双机 双机与磁盘阵列柜互联结构不采用内存镜像技术,因此需要有一定的切换时间(通常为60—180秒),它可以有效的避免由于应用程序自身的缺陷导致系统全部死机,同时由于所有的数据全部存储在磁盘阵列柜中,当工作机出现故障时, 作者简介:郭国文,浙江万里学院,讲师,宁波 315100

在Windows平台上使用多核CPU加速Fluent计算

在Windows平台上使用多核CPU加速Fluent计算 摘要:当利用Fluent计算3维问题时,普通PC显得相当吃力,尤其是使用其默认的串行版本时。其实Fluent完全可以通过简单的设置来进行并行计算。本文只示例一种在现在主流配置PC(CPU有2-6个核心)下的Windows版Fluent并行计算的设置, 关于Linux/Unix平台或并行集群计算机(分布式存储)等环境下的并行设置,请参考Fluent 官方文档(User’s Guide & Tutorial Guide)。 示例硬件软件环境: OS: M$ Windows7 64bit version CPU: AMD Athlon?IIX4 641 Quad-Core(四核心) RAM: 4.00GB Fluent:v6.36 求解问题: 大作业3(略) 步骤: 1.准备case文件 使用并行计算时,前期参数模型设置的方法与串行计算完全相同,区别只在与网格的分区与进程个数的指定。因此这里不再介绍Case Setup过程(设置边界条件、设置求解器、设置非预混模型等等)。本文假设已设置好并保存的case的名称为Project3.cas 。 2.启动并行版本的Fluent Fluent可以以多种方式启动并行版本,这里只介绍在多处理器计算机上通过命令行启动的方式。 a)打开Windows命令行窗口(i.e., Win-R 输入cmd回车) b)移动(cd)至Fluent可执行文件目录(i.e., X:/Program Files/Fluent.inc/ntbin/win64)(我实在不知道在M$ Word中怎么把这半行搞上去!!!) 将X换为相应盘符,对于32bit Windows版本须将win64换为 ntx86。 e.g., c)在cmd窗口输入fluent –t3: e.g., 根据你CPU的核心数量设置-t选项后的数字,这里的CPU是四核心的,所以设置的是3个。 3.设置并行求解器 File->Run

ansys与fluent区别

流动传热的问题建议用fluent,纯导热问题用ansys。因为ansys的热分析模块只能处理纯传热问题,不计算流场。ansys的强项在于处理固体问题,流体有关的问题不是它的擅长,是fluent的擅长。 所以楼主的问题属于固壁传热问题,原来的ansys就可以较好的解决。 另外,虽然说ansys先后收购了CFX和fluent这两个软件,但是ansys仅是指ansys本身的软件,不包括上面的两个。个人看法:暂时不会出新的混合了上述三种的所谓的新ansys,因为从算法上讲,ansys用的是有限元算法,而fluent和CFX用的是有限体积法,所以暂时无法整合到一起。 两者最根本的区别在于求解方法的不同,Fluent用的是有限容积法,而Ansys用的是有限元法。 如果是用来算固体的稳态或者非稳态传热,比如固体的热传导,耦合热应力,ansys好很多。) Y4 |( E& D$ a7 z! g1 t. m5 o- v 如果是有流场、自然对流等的情况下,fluen好些。 ; N! p$ `/ X, e/ d5 _三维,cad,机械,技术,汽车,catia,pro/e,ug,inventor,solidedge,solidworks,caxa,时空,镇江主要是应用的场合不同,要是用过这两个软件就知道了。 ( d1 I7 O0 j7 f D7 P& M) T7 j三维网技术论坛但平心而论,ansys的热分析功能强大不少。 有限容积法 其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。 编辑本段五部分 有限容积法(FVM)是计算流体力学(CFD)和计算传热学(NHT)中应用最广泛的数值离散方法。它通常包括如下五个部分: 1. 网格生成 2. 对流项的离散化 3. 边界条件的离散化 4. 压力速度耦合 5. 离散方程的求解对以上五个部分的处理将直接影响到最准结果的

ansys15.0-fluent操作步骤

Fluent 操作步骤 1.模型建立:用SolidWorks建模,保存成x_t格式(exercise1),用于稍后导入fluent。 2.网格划分:打开ansys15.0中的workbench15.0软件,在component systems中双击或者 拖mesh到project schematic; 导入文件:在geometry右键import geometry /browse /exercise1; 定义初始条件:在mesh右键edit,进入mesh-meshing[ansys icem cfd],定义流体inlet、outlet、wall等初始条件。点击,选择流体进口面右键create named selection ,把selection更改成inlet; 同理,定义出口面为outlet; 未定义的实体表面默认为wall。 开始划分网格:,单击中的mesh把default /Physics Preference下可选项更改成CFD,同时把solver preference下可选项更改成fluent,然后点击 进行网格划分,保存文件save project,关闭。 此时在workbench中出现两个对号,表示网格划分完成。 3.打开fluent软件,设置参数求解,如图: 出现界面:

应先update,再edit。 单击edit,如图。设置参数,单击OK。 出现界面,部分界面如图: 在solution setup下Generate,单击check检查网格。 单击models,单击viscous-laminar,单击edit进行设置,在model下选择K-epsilon,其他条件一般默认。 单击materials,单击fluid,单击create/edit对流体属性进行设置;单击solid,单击create/edit 对固体属性进行设置。

集群中应用FLUENT TUI复杂命令

在FLUNET中应用TUI复杂命令 集群中使用fluent往往要用到Tui命令制作jou文件,下面给出例子应用tui 命令做简单的后处理工作。 总压 ?report si awa(inlet outer)tp no Area-Weighted Average Total Pressure(pascal) ---------------------------------------------------- inlet0 outer357.27557 ------------------------------------ Net61.145008 ?report si awa(inlet outer)tp yes H:\optimal\impeller-09-1115-19\total-pressure.txt ?report si awa(inlet outer)tp yes total-pressure.txt 静压 ?report si awa(inlet outer)pressure no Area-Weighted Average Static Pressure(pascal) ---------------------------------------------------- inlet-3.1208441 outer235 ------------------------------------ Net37.631733 动压 ?report si awa(inlet outer)dy no Area-Weighted Average Dynamic Pressure(pascal) ---------------------------------------------------- inlet 3.1231101 outer120.85186 ------------------------------------ Net23.271494 流量 ?report si vfr(inlet outer)no Volumetric Flow Rate(m3/s) ---------------------------------------------------- inlet7.0884967 outer-7.0881147 ------------------------------------ Net0.00038173632

AnsysWorkbench_15_Fluent示例

Fluent示例 鉴于网上Fluent免费资料很少,又缺少实例教程。所以,分享此文章,希望对大家有所帮助。 1.1问题描述 本示例为ansys-fluent15.0-指南中的,不过稍有改动。

1.2 Ug建模图 1.3 Workbench设置 项目设置如下图所示。(为了凸显示例,所以个项目名称没改动; 并且用两种添加项目方式分析,还增加了一个copy项,以供对比。)

说明:ansys workbench15.0与ug8.5(当然,也包括同一时期的solidworks、Pro/e等三维CAD软件)可无缝连接,支持ug8.5建立的模型,可直接导入到ansys workbench15.0中。 方法:在workbench中的Geometry点击右键,弹出快捷菜单,选择“browse”,浏览到以保存的文件,打开即可。个人感觉workbench 建模不方便。 1.4 DM处理 Workbench中的DM打开模型,将导入的模型在DM中切片处理,以减少分网、计算对电脑硬件的压力(处理大模型常用的方法,也可 称之为技巧)。最终效果,如下图所示。

为以后做Fluent方便,在这里要给感兴趣的面“取名”(最好是给每一个面都取名。这样,便于后续操作)。 方法是右键所选择的面,在弹出的对话框中“添加名称”即可,给“面”取“名“成功后,会在左边的tree Outline中显示相应的“名”。结果如下图所示(图中Symmetry有两个,有一个是错的,声明一下)

1.5 Mesh设置 如下图所示。 在Mesh中insert一个sizing项(右键Mesh,选Sizing即可),以便分体网格,其设置如下:

fluent6.3算例在linux集群(服务器)上提交方法大全

LINUX系统上FLUENT算例提交方法大全 ——classic1573@https://www.wendangku.net/doc/0315422188.html, Fluent任务的提交方法有多种,我只会linux系统的一种一、对于**.pbs文件的修改: #!/bin/sh -l #PBS -N fluent #PBS -q batch #PBS -l nodes=1:ppn=4 ####fluent env ###### export PA TH=/opt/Fluent.Inc/bin:$PATH FLUENTSOLVER=2d cd $PBS_O_WORKDIR exportrDir=`pwd` echo $rDir exportjoufile=N-0.001.N2.jou exportoutfile=N-0.001.N2.out INPUT=$rDir/$joufile OUTPUT=$rDir/$outfile rm -f pnodes1 rm -f pnodes exportpnodes_tmp=`cat $PBS_NODEFILE` echo $pnodes_tmp | sort > pnodes1 sed 's/ /\n/g' pnodes1 >pnodes exportncpus=`cat pnodes | wc -l` fluent -pethernet -g $FLUENTSOLVER -t $ncpus -cnf=pnodes -i $INPUT >$OUTPUT 2>&1 1 增大ppn=?的值可以提高计算速度。 2 exportPATH=/opt/Fluent.Inc/bin:$PATH是linux刀片服务器上安装的fluent路径,入不确定可通过如下方法查找 (在ssh界面内输入指令) (首先输入cd回车返回主文件夹,输入ls查看所在文件夹内包含的文件(这时候是查不到fluent路径的,这不操作只是告诉你先在所处的位置),然后输入cd /opt回车,这是后就进入隐藏的文件夹路径opt里面(注意:里面的文件基本都是系统文件,不懂不要随意修改,比如当时差点把fluent6.3.26的license文件内容修改掉,那麻烦就大了),输入ls查看opt 中的文件内容,如果装有会有有关fluent的文件(比如Fluent.Inc等),然后在输入cd Fluent.Inc/回车,进入该文件夹,ls查看文件内容,里面会有bin文件夹,在输入cd bin/回车进入bin文件夹,ls可以查看里面的文件内容(千万不要对文件做修改),然会输入pwd 回车,界面就给出了你的fluent路径,复制到阴影部分就行了,然会记得输入cd返回主文件夹。 3 FLUENTSOLVER=2d(根据自己的算例是2维还是3维、单精度还是双精度来确定,有

[总结]windows下fluent并行

? 傲雪论坛 ? 『 Fluent 专版 』 打印话题 寄给朋友 作者 [总结]windows 下fluent 并行 [精华] bcomz 发帖: 34 积分: 1 雪币: 34 于 2005-05-25 01:29 首先说明,我是个十足的新手.24小时前我还在为什么并行不起来而郁闷.但是通过一天的实践.在宿舍三台.实验室两台机器上面都实现了并行.好像有些心得.总结了下.跟大家交流才能进步. 错误之处请大家指出. 如果你也是新手,首先应该干两件事情。 1把Fluent 中文帮助28章看两遍。这个贴在附件里面了,怕有些兄弟没有。 2看看dte4321兄弟写的“〖原创〗Winnt 平台下搭建Fluent 并行计算的一些经验 “ https://www.wendangku.net/doc/0315422188.html,/cgi-bin/bbs/topic_show.cgi?id=30034&h=1#230090 如果搞清这个了,下面就是具体操作了。 1 准备步骤 操作系统: win2000sp4 winxp sp2等都可以。2003我没用过。 fluent 软件:fluent 6.2.16 参与并行的机器都要装,并且把Fluent.Inc 目录共享 首先要解决与fluent 无关的网络问题 保证两个机器能够互访。用机器名跟ip 地址都要能互访。 运行窗口输入\\机器名 跟\\ip 都要能看到对方的共享目录 互相能ping 通机器名和ip 建议装上ipx 协议 rsh 的配置:rshd.exe 文件fluent 安装目录里面就有60k 大小。命令行下输入rshd -install

右键点我的电脑----管理---服务和应用程序---服务---找到RSH Daemon 配置一下,主要就是在登陆里面输入账号秘密,然后启动就可以了。好像还有安全性问题。我没管:) 上面这些东西,主要是电脑的一些基础知识了.跟fluent软件关系不大,也很容易搞定. 2 fluent软件设置 主机命令窗口里面进到 C:\Fluent.Inc\ntbin\ntx86 输入 fluent 3d -pnet fluent界面parallel---network---configue Hostname 填入节点机的机器名点add后,如果available hosts里面能出来 @computer2(X.X.X.X) 而不是 @computer2(unkonw) 那么前面的网络配置基本是没问题的 点spawn 如果不报错误,或者没有停止响应,那么恭喜你.基本就成功了.这时候,应该看到一些 Host 跟Node的信息computer1上放置了一个主节点.跟一个计算节点.computer2上放置了第二个计算节点 如果两个节点,那么准备工作就完成了.多个节点的话,重复下add---spawn就行了.如果节点比较多.可以点save保存一个*.hosts文件 以后再运行时可以用 fluent 3d -pnet -t2 -cnf=fluent.hosts 省了好多add--spawn了 双cpu机器可能得重复做一次,我没实验过. 读入case可以实现传说中的并行计算了.呵呵. 3 可能出现的问题及解决: 1.提示用户名密码错误不能登陆 2.点add后available hosts里面出现 @computer2(unknow) 这两个主要是网络的问题 解决的办法, 1.首先互访一下共享文件夹Fluent.Inc看有不有问题. 2互ping下机器名 3确保在一个工作组.有1时候子网掩码第三位不一样也可能出现问题. 4装ipx协议 点spawn后没有响应

相关文档
相关文档 最新文档