文档库 最新最全的文档下载
当前位置:文档库 › A Novel Direct-Drive Dual-Structure Permanent Magnet Mach

A Novel Direct-Drive Dual-Structure Permanent Magnet Mach

A Novel Direct-Drive Dual-Structure Permanent Magnet Mach
A Novel Direct-Drive Dual-Structure Permanent Magnet Mach

ANSYS 2011中国用户大会优秀论文

A Novel Direct-Drive Dual-Structure Permanent Magnet Machine

Shuangxia Niu, S. L. Ho and W. N. Fu

The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong By incorporating the merits of fractional-slot concentrated windings and Vernier machine structure, a new multi-pole dual-structure permanent magnet (PM) machine is proposed for low speed, direct-drive applications in this paper. In the outer stator, a fractional-slot concentrated winding is adopted to reduce the slot number and stator yoke height, hence saving space and improving torque density. In the inner stator, a Vernier structure is used to reduce the winding slots, thereby enlarging the slot area to accommodate more conductors, thus the inner stator space is fully utilized. Consequently, the merits of these two structures can be ingeniously integrated into one compact PM machine and the torque density is improved, cogging torque is reduced and the control flexibility with two sets of independent stator windings is increased. By using time-stepping finite element method with curvilinear elements for moving between the stator and the rotor, the steady state and transient performances of the PM machine are simulated and the validity of proposed dual-structure PM machine is verified.

Index Terms—Curvilinear element, dual-structure, finite-element method, fractional-slot concentrated winding, permanent magnetic motor, Vernier structure.

I.I NTRODUCTION

IGH TORQUE, low speed permanent magnet (PM)

machines have a wide range of applications in direct-

drive systems, such as in wind power generation, electric

traction of electric vehicles and robots. In such low speed

direct-drive machines, the pole number of the machine is

usually large. For conventional PM machines with integer slot

windings, high pole number implies high slot number and for

machines with a limited outside diameter, large slot number

will result in low copper fill factor, long slots, narrow tooth

width, and high magnetic flux leakage. In order to avoid such

undesirable effects, fractional-slot concentrated windings are

used [1]. In fractional-slot concentrated windings, each coil is

wound on one tooth and the slot number per pole per phase is

generally less than one. Compared with integer slot windings,

the end winding is shortened and manufacture cost is reduced.

Another method to reduce the slot number and produce high

torque at low speed is to adopt a Vernier machine structure. A

Vernier PM machine with concentrated winding can produce

specific space harmonics in the airgap magnetic field with low

armature pole pairs and slot number [2].

In this paper, the fractional-slot concentrated windings and

Vernier PM machine structure are ingeniously incorporated

into a compact dual-structure PM machine. A time-stepping

finite-element method with curvilinear elements for the

modeling of the rotation movement is developed to simulate

the dynamic operation of the proposed machine.

II.P ROPOSED M ACHINE

A.Machine Structure

The proposed dual-structure PM machine has 11 pole pairs with 24 slots in the outer stator, 1 pole pair with 3 slots in inner stator, 11 pole-pair surface mounted PMs on the inner and outer faces of the rotor, as shown in Fig. 1.

(b)

Fig. 1. Proposed machine. (a) Cross sectional view. (b) Structure.

1)Outer stator

For the outer stator, the fractional-slot concentrated windings are used, and the slot number

s

N and the pole number p

2 satisfies the following relationship

2

=

s

N

p(1) In the outer stator, 24

=

s

N and 22

2=

p. This combination of slots and poles in the outer stator has the following merits [3]:

(1) The fractional-slot concentrated winding arrangement in the outer stator can shorten the end winding, thus improving the utilization of copper materials, and reducing the copper losses. The efficiency of the machine is increased.

H

ANSYS 2011中国用户大会优秀论文

(2) Since the outer stator has 24 slots and there are 22 poles in the rotor, the slot pitch is 11/12 pole pitch. As the cogging torque caused by the slotting is approximately related to the inverse of the smallest common multiple of the number of slots and number of pole pairs, this arrangement of fractional number of slots per pole per phase can significantly reduce the cogging torque that usually occurs in PM machines.

(3) The multi-pole structure results in minimum core yoke height and small iron mass. This structure can further save the material costs and increase the torque density of the machine. (4) Since each coil is wound on alternate stator teeth, the phase windings are isolated magnetically and physically. The outer stator adopts modular structure in which only alternate stator teeth carry a wound coil, hence the stator may be assembled from pre-wound tooth/coil or stator segment sub-assemblies. Compared with conventional winding structures, the modular stator structure is more conducive to low-cost, high-volume manufacturing [4]. In addition, since the coil span of the stator windings is designed to have one slot pitch, the phase flux paths are independent of each other. Consequently, the mutual inductance of the phase windings is negligible, hence the controllability of the machine is improved.

2) Inner stator

For the inner stator, a Vernier structure is adopted. The fundamental rule is

p Z Z ±=12 (2) where; 1Z is the flux-modulation poles on the stator surface, also named the stator teeth [2], [5];2Z is the PM pairs and p

is the winding pole pairs. For the inner stator in this proposed dual-structure PM machine, the parameters are 121=Z , 112=Z , and 1=p . Then, based on “magnetic gear effect”, the flux-modulation poles can modulate the low harmonic components of the airgap magnetic field to produce the specific high harmonic component and the armature fundamental field rotates at p Z /2 times of the rotor speed, but in an opposite direction. The advantages of this inner stator structure of PM machine are distinct [2], [5]:

(1) The Vernier machine structure can reduce the slot number and enlarge the slot area, hence more conductors can be accommodated into the inner stator and improved torque density is obtained.

(2) The concentrated winding structure in the inner stator can also simplify the stator structure, and effectively save the inner stator space and further improve the torque density, accordingly.

(3) The modulation poles can modulate the low harmonic components, namely fundamental space harmonics, to produce the high harmonic components, namely the 11th space harmonics, in the airgap magnetic field with low armature pole pairs and slot number. The open-slot structure is also

simpler, compared with multi-pole closed-slot structure. On the whole, the dual-structure machine is a complicated structure and manufacturing cost is higher than that of conventional PM machines.

B. TS-FEM Analysis

Due to its unique structure and operating principle of the proposed dual-structure PM machine, a time-stepping finite-element method (CFT-TS-FEM) is employed for the analysis. Curvilinear elements are used to model the two sliding surfaces in the rotating PM machine. Maxwell’s equations applied to the airgap, iron core, stranded windings and PM regions give rise to the following diffusion equation [6,7]:

()c t

H J A

A ×?+=??+×?×?σ

ν (3) where, ν is the reluctivity of material, A is the magnetic vector potential and σ is the conductivity. J is the winding current density and it only exists in stranded windings; The second term on the right in (3) only exists in PM materials; H c is the coercivity of PM.

Simulating the rotation of the rotor between the two airgaps using matching boundary techniques is very important for the transient magnetic field analysis in the dual-structure machine. Each airgap of the machine is divided into two parts. One belongs to the stator mesh and another belongs to the rotor mesh. Three meshes, associated with one rotor and two stators, are generated separately. When the rotor rotates, the rotor mesh will rotate. The shape of the mesh is kept fixed; only the relations of the nodes on the moving interfaces are changed according to the positions of the rotor. Assuming the nodes on the sliding surface on the rotor mesh are the slave nodes, for example as shown in Fig. 2, the magnetic potentials on the slave nodes can be expressed as:

3322119A N A N A N A ++= 55443310A N A N A N A ++= where N is the shape function of the edge.

Sliding surface

Fig. 2. A straight line sliding surface.

In general, the system equations can be expressed:

[]{}{}P A C =nodes all _ (4)

where; C is the coefficient matrix; A all_nodes is the magnetic potentials on all nodes including master nodes and slave nodes and P is the column matrix associated with excitations. The relationship between the magnetic potentials on all nodes

ANSYS 2011中国用户大会优秀论文

A all_nodes and the magnetic potentials A solve_nodes required to be solved is:

{}[]{}nodes

solve nodes

all __A

M A

= (5)

where M is the transformation matrix. Substituting the above relationship into the system equations gives:

[][]{}{}P A M C =nodes solve _ (6)

Multiplying [M ]T on the two sides of the equations:

[][][]{}[]{}P M A M C M T nodes solve T =_ (7)

The new coefficient matrix [M ]T [C ] [M ] is still symmetrical. With rotation machines, the sliding surface is a circle. At the initial position, the meshes on the two sides of the sliding surface are consistent as illustrated in Fig. 3. However, after the rotor rotates, because the edge of the element is a straight line, the inner surface of the stator mesh and the outside surface of the rotor mesh on the two sides of the sliding surface become inconsistent as illustrated in Fig. 4. In some areas there may be a gap between meshes; in other areas the mesh may overlap. Here curvilinear elements, as shown in Fig. 5, are employed on the two sides of the sliding surface to model the rotation of the dual structure PM machine.

Fig. 5. Isoparametric second-order curvilinear element.

III. A NALYSIS R ESULTS

With curvilinear elements based TS-FEM, the steady and transient performance of the machine is analyzed. Fig. 6 shows a typical magnetic field distribution of the proposed machine on no-load and on full-load. Fig. 7 shows the flux

density waveforms in the inner and outer airgaps. It is shown that the armature field excited by the inner stator winding is effectively modulated by the split poles on the stator teeth. Fig. 8 shows the back emf waveforms induced in the inner and outer stator windings. It is shown that the magnitudes of the induced back emf in both sets of windings are almost the same. Due to the independent connection of the two sets of stator windings, they can be flexibly controlled by external circuits. Fig. 9 shows the transient load torque and the cogging torque waveforms at the rated speed of 270 rpm of the machine. It can be observed that the full load torque ripple is significantly larger than the cogging torque ripple. It is due to the fact that the harmonic torque, which is mainly caused by phase commutation during brushless DC operation and the high-order harmonic component in the full-load current, dominates the torque ripple. Meanwhile, the cogging torque is very small, namely only 1.3 % of the full load torque, which is actually governed by the inverse of the smallest common multiple of the numbers of slots and pole pairs. With this unique structure, the torque density can reach 50 kNm/m 3. The design data are shown in Table. I. Finally, the transient response of the eddy-current loss and phase current in the PMs during the commutation period are analyzed as shown in Fig. 10. It can be seen that the eddy-current loss increases drastically within the commutation time, which is actually due to a sudden large change in the armature current field during commutation.

(a)

(b)

Fig. 6. Magnetic field distribution. (a) No load. (b) Full load.

ANSYS 2011中国用户大会优秀论文

(a)

(b)

Fig. 7. Flux density in the airgap. (a) In the outer airgap. (b) In the inner

airgap.

(a)

(b)

Fig. 8. Back-EMF waveforms. (a) In the outer stator windings. (b) In the inner stator windings.

T o r q u e (N m )

(a)

(b)

Fig. 9. Torque waveforms. (a) Transient load torque. (b) Cogging torque. (can you show the cogging torque after removing the harmonic torque in (b)?) I believe Fig. 9 (b) shows cogging torque only. –WN Fu.

IV. C ONCLUSION

In this paper, a new multi-pole dual-structure PM machine is proposed for low speed, direct-drive applications. The merits of fractional-slot concentrated winding arrangements in the outer stator and the Vernier machine structure in the inner stator are incorporated in one compact PM machine. The torque density is improved, cogging torque is reduced, and the efficiency of the machine is increased. In this dual-structure machine, the inner and outer stator windings can either be used simultaneously or operated independently and fault tolerance capability is improved. By using time-stepping FEM with curvilinear elements for modeling the rotor rotation, the steady state and transient performance of the PM machine are simulated and the validity of proposed dual-structure PM

machine is verified.

(a)

0.160.20

0102030405060E d d y -c u r r e n t l o s s (W )

Time (s)

(b)

Fig. 10. Transient current and eddy-current loss response in PMs during commutation. (a) Phase current. (b) Eddy-current losses.

TABLE I

M ACHINE P ARAMETERS

Item

Proposed dual-structure

PM machine

Rated phase voltage (V) 220 V Rated speed 270 rpm

ANSYS 2011中国用户大会优秀论文 Rated torque 115 Nm

Number of phase 3

Pole number 22

Inner stator slot number 3

Inner stator teeth 12

Outer stator slot number 24

Stack length 50 mm

Inner air-gap length 0.6 mm

Outer air-gap length 0.6 mm

Inner stator inner diameter 92 mm

Inner stator outer diameter 165 mm

Outer stator inner diameter 191 mm

Outer stator outer diameter 245 mm

Number of turns per coil in outer stator 10

Number of turns per coil in inner stator 30

PM material Sintered NdFeB

R EFERENCES

[1]S. Niu, K.T. Chau, and C. Yu, “Quantitative comparison of double-stator

and traditional permanent magnet brushless machines,” Journal of

Applied Physics, vol. 105, no. 7, pp. 07F105-07F105-3, 2009.

[2] A. Toba and T.A. Lipo, “Novel dual-excitation permanent magnet

vernier machine, ” IEEE Industry Application Conference, vol. 4, pp.

2539-2544, 1999.

[3]S. Niu, K.T. Chau and J.Z. Jiang, “Analysis of eddy-current loss in a

double-stator cup-rotor PM machine,” IEEE Trans. Magn., vol. 44, no.

11, pp. 4401-4404, Nov. 2008.

[4]J. D. Ede, K. Atallah, J. Wang, and D. Howe, “Modular fault-tolerant

permanent magnet brushless machines,” Internatinal Conference on

Power Electronics, Machines and Drives, Bath, U.K., pp. 415–420,

2002.

[5] A. Toba, and T.A. Lipo, “Generic torque-maximizing design

methodology of surface permanent-magnet vernier machine,” IEEE

Trans. Ind. Appl., vol. 36, no. 6, pp. 1539-1546, Nov. 2000.

[6]W. N. Fu and S. L. Ho, “Enhanced nonlinear algorithm for the transient

analysis of magnetic field and electric circuit coupled problems,” IEEE

Trans. Magn., vol.45, no.2, Feb. 2009, pp.701-706.

[7]W.N. Fu and S.L. Ho, “Elimination of nonphysical solutions and

implementation of adaptive step size algorithm in time-stepping finite

element method for magnetic field-circuit-motion coupled problems,”

IEEE Trans. Magn., to appear.

各系列专业职称资格分类一览表

附件2、《各系列专业职称资格分类一览表》 国家各系列(专业)职称资格分类一览表 各系列(专业)分类 高、中、初级专业技术资格名称 正高级 副高级 中级 初级 (助理级) 初级 (员级) 工 程 系 列 建设专业 研 究 员 级 高 级 工 程 师 高 级 工 程 师 工 程 师 助 理 工 程 师 技 术 员 机械专业 纺织专业 轻工专业 冶金专业 石油化工专业 交通水路运输 专业 交通公路运输 专业 质量技术监督 专业 水利专业 水产专业 林业专业 环境保护专业 广播电影电视 工程专业 电子信息专业 煤炭专业 地质矿产专业 水文(工程、环境)地质专业 探矿专业 物化探与遥感 专业 地质实验测试 (选矿)专业 测绘专业 采矿专业 土地专业 岩土工程专业

工艺美术专业研究员级高 级工艺美术 师 高级工艺美 术师 工艺美术 师 助理工艺 美术师 工艺美术 员 农业系列 农技专业 农业技术推 广研究员 高级农艺师农艺师 助理农艺 师 技术员畜牧(兽医) 专 业 农业技术推 广研究员 高级畜牧 (兽医)师 畜牧(兽 医)师 助理畜牧 (兽医)师 技术员农业经济专业高级农经师 农经师 (考试) 助理农经 师(考试) 农经员 (考试) 财经系列 国际商务专业 高级国际商 务师 国际商务 师(执业资 格) 助理国际商 务师 (从业资格) 外销员 (从业资 格) 经济专业 研究员级高 级经济师 高级经济师 经济师 (考试) 助理经济 师(考试) 经济员 (考试) 会计专业 研究员级高 级会计师 高级会计师 (考评结合) 会计师 (考试) 助理会计 师(考试) 会计员 (考试) 统计专业高级统计师 统计师 (考试) 助理统计 师(考试) 统计员 (考试) 审计专业 高级审计师 (考评结合) 审计师 (考试) 助理审计 师(考试) 审计员 (考试) 思想政治 工作专业 研究员级高 级政工师 高级政工师政工师 助理政工 师 教师系列高校教师(思想 政治教育专职 教师) 教授副教授讲师助教 高校教管研究 专业 研究员副研究员 助理研究 员 研究实习 员 高校实验专业高级实验师实验师 助理实验 师 实验员中专校教师高级讲师讲师助理讲师教员中专实验专业高级实验师实验师 助理实验 师 实验员技工学校教师 教授级高级 讲师 高级讲师讲师助理讲师教员技校实习指导 教师 高级实习指 导教师 一级实习 指导教师 二级实习 指导教师 三级实习 指导教师党校教师 (市级以上) 教授副教授讲师助教 党校教师(县 级) 高级讲师讲师助理讲师

最全的专业技术职称分类标准

专业技术职称分类 系 列 高 级中 级 初 级正高级副高级 高等学校 教师 教授副教授讲师助理讲师 中等专业 学校教师 高级讲师讲师助理讲师、教员 技工学校教师 高级讲师讲师助理讲师、教员高级实习指导教师 一级实习指导教 师 二级实习指导教 师、三级实习指 导教师 中学教师中学高级教师中学一级教师中学二级教师、中学三级教师 小学(幼儿园)教 师 小学高级教师 小学一级教师、 小学二级教师、 小学三级教师幼儿园高级教师 幼儿园一级教 师、幼儿园二级 教师、幼儿园三 级教师 自然科学研究人员研究员 (Z) 副研究员 (Z) 助理研究员(Z)研究实习员(Z) 社会科学研究人员研究员 (S) 副研究员 (S) 助理研究员(S)研究实习员(S) 工程技术人员教授级高 级工程师 高级工程 师 工程师 助理工程师、技 术员 实验技术人员教授级高 级实验师 高级实验 师 实验师 助理实验师、实 验员 教授级高 级农艺师 高级农艺 师 农艺师 助理农艺师、农 业技术员

农业技术人员教授级高 级兽医师 高级兽医 师 兽医师 助理兽医师、兽 医技术员 教授级高 级畜牧师 高级畜牧 师 畜牧师 助理畜牧师、畜 牧技术员 卫生技术 人员主任医师 副主任 医师 主治(主管) 医师 医师、医士主任药师 副主任 药师 主管药师药师、药士主任护师 副主任 护师 主管护师护师、护士主任技师 副主任 技师 主管技师技师、技士 经济专业人员教授级高 级经济师 高级经济 师 经济师 助理经济师、经 济员 会计专业人员教授级高 级会计师 高级会计 师 会计师 助理会计师、会 计员 审计专业人员教授级高 级审计师 高级审计 师 审计师 助理审计师、审 计员 统计专业人员教授级高 级统计师 高级统计 师 统计师 助理统计师、统 计员 新闻专业人员高级记者主任记者记者助理记者高级编辑主任编辑编辑(X)助理编辑(X) 出版专业人员编审副编审编辑(C)助理编辑(C) 技术编辑 助理技术编辑、 技术设计员 一级校对 二级校对、三级 校对 图书资料专业人员研究馆员 (T) 副研究馆 员(T) 馆员(T) 助理馆员、管理 员(T) 文物博物专业人员研究馆员 (W) 副研究馆 员(W) 馆员(W) 助理馆员、管理 员(W)

专业技术职称等级分类

我国专业技术职称系列级别名称 序号系列 级别名称 高级 中级 初级 正高级副高级助理级员级 1 高级教师教授副教授讲师助教 2 自然科学研究研究员副研究员助理研究员研究实习员 3 社会科学研究研究员副研究员助理研究员研究实习员 4 卫生技术主任医师 主任药师 主任护师 主任技师 副主任医师 副主任药师 副主任护师 副主任技师 主治医师 主管药师 主管护师 主管技师 医师 药师 护师 技师 医士 药士 护士 技士 5 农业技术研究员高级农艺师 高级畜牧师 高级兽医师 农艺师 畜牧师 兽医师 助理农艺师 助理畜牧师 助理兽医师 技术员 6 工程技术高级工程师 (正高级) 高级工程师工程师助理工程师技术员 7 经济高级经济师经济师助理经济师经济员 8 会计 审计 高级会计师 高级审计师 会计师 审计师 助理会计师 助理审计师 会计员 审计员 9 统计高级统计师统计师助理统计师统计员 10 中专教师高级讲师讲师助理讲师教员 11 技校教师 高级讲师 高级实习指导教师 讲师 一级实习指导教 师 助理讲师 二级实习指导教 师 教员 三级实习指导教 师 12 中学教师中学高级教师中学一级教师中学二级教师中学三级教师 13 小学教师小学高级教师小学一级教师小学二级教师小学三级教师 14 档案研究馆员副研究馆员馆员助理馆员管理员 15 文物博物 群众文化 研究馆员副研究馆员馆员助理馆员管理员 16 图书资料研究馆员副研究馆员馆员助理馆员管理员 17 翻译译审副译审翻译助理翻译 18 律师一级律师二级律师三级律师四级律师律师助理 19 公证员一级公证员二级公证员三级公证员四级公证员公证员助理 20 新闻高级记者 高级编辑 主任记者 主任编辑 记者 编辑 助理记者 助理编辑 21 播音播音指导主任播音员一级播音员二级播音员三级播音员 22 出版编审副编审 编辑 技术编辑 一级校对 助理编辑 技术助理编辑 二级校对 技术设计员 三级校对 23 体育教练国家级教练高级教练一级教练二级教练三级教练 24 船舶 高级船长 高级轮机长 高级电机员 高级机务员 船长 大副 大管轮 电机员等 二副 二管轮 二级电机员等 三副 三管轮等 25 艺术一级演员等 二级演员 主任舞台技师 三级演员 舞台技师等 四级演员 舞台技术员等 26 工艺美术高级工艺美术师工艺美术师助理工艺美术师工艺美术员 27 试验高级试验师试验师助理试验师试验员 28 海关高级关务监督关务监督助理关务监督关务员 29 飞行一级飞行员二级飞行员三级飞行员四级飞行员

各系列专业技术职称一览表73628

各系列专业技术职称一览表 序号系列 专业技术职务 高级 中 级 初级正高 级 副高 级 助理 级 员 级 1高等学校教师教授副教授讲师助教 2中等专业学校教 师 高级讲师讲师助理讲师教员 3中小学(幼儿 园)教师 中学高级教师 中学一级教 师 中学二级教师中学三级教师小学中的中学高级教师 小学高级教 师 小学一级 教师 小学二级 教师 小学三级 教师 幼儿园高级 教师 幼儿园一级 教师 幼儿园二级 教师 幼儿园三级 教师 4技工学校教师 高级讲师讲师助理讲师教员 高级实习指导教师 一级实 习指导教师 二级实习指导教 师 三级实习指导 教师 5自然科学研究 人员研究员 副研究 员 助理研 究员 研究实习员 6社会科学研究 人员研究员 副研究 员 助理研 究员 研究实习员 7实验人员高级实验师实验师助理实验师实验员 8工程技术人员 教授级 高级工 程师 高级工 程师 工程师助理工程师技术员高级建筑师建筑师助理建筑师技术员高级城市规划师 城市规 划师 助理城市规划师技术员 9经济专业人员 高级经济师经济师助理经济师经济员高级农业经济师 农业经 济师 助理农业经济师农业经济员 1 0卫生技术人员主任医 师 副主任 医师 主治医 师 医师医士主任药 师 副主任 药师 主管药 师 药师药士主任护 师 副主任 护师 主管护 师 护师护士主任技 师 副主任 技师 主管技 师 技师技士 附 件4

2 3律师专业人员 一级律 师 二级律 师 三级律 师 四级律师律师助理 2 4公证专业人员 一级公 证员 二级公 证员 三级公 证员 四级公证员公证员助理 2 5群众文化系统 研究馆 员 副研究 馆员 馆员助理馆员管理员 2 6 职工教育系统高级讲师讲师助理讲师教员 2 7党校系统 教授副教授讲师助理讲师教员 高级讲师讲师助理讲师教员 2 8档案系列 研究馆 员 副研究 馆员 馆员助理馆员管理员 2 9文学创作系列 文学创作 一级 文学创作 二级 文学创作 三级 文学创作四级

各专业技术职称等级表

专业技术职称等级表 系列 高级 中级初级正高级副高级 高等学校 教师 教授副教授讲师助理讲师 中等专业 学校教师 高级讲师讲师助理讲师、教员 技工学校教师 高级讲师讲师助理讲师、教员 高级实习指导教师 一级实习 指导教师 二级实习指导教师、三级 实习指导教师 中学教师中学高级教师 中学一级 教师中学二级教师、中学三级 教师 小学(幼儿园)教师小学高级 教师 小学一级教师、小学二级 教师、小学三级教师幼儿园高 级教师 幼儿园一级教师、幼儿园 二级教师、幼儿园三级教 师 自然科学 研究人员研究员(Z) 副研究员 (Z) 助理研究 员(Z) 研究实习员(Z) 社会科学 研究人员研究员(S) 副研究员 (S) 助理研究 员(S) 研究实习员(S) 工程技术人员教授级高 级工程师 高级工程 师 工程师助理工程师、技术员 实验技术人员教授级高 级实验师 高级实验 师 实验师助理实验师、实验员

农业技术人员教授级高 级农艺师 高级农艺 师 农艺师 助理农艺师、农业技术员 教授级高 级兽医师 高级兽医 师 兽医师 助理兽医师、兽医技术员 教授级高 级畜牧师 高级畜牧 师 畜牧师 助理畜牧师、畜牧技术员 卫生技术人员主任医师副主任医 师 主治(主 管)医师 医师、医士主任药师副主任药 师 主管药师药师、药士主任护师副主任护 师 主管护师护师、护士主任技师副主任技 师 主管技师技师、技士 经济专业人员教授级高 级经济师 高级经济 师 经济师助理经济师、经济员 会计专业人员教授级高 级会计师 高级会计 师 会计师助理会计师、会计员 审计专业人员教授级高 级审计师 高级审计 师 审计师助理审计师、审计员 统计专业人员教授级高 级统计师 高级统计 师 统计师助理统计师、统计员

相关文档
相关文档 最新文档