文档库 最新最全的文档下载
当前位置:文档库 › 开关电源的电流采样电阻能否短接

开关电源的电流采样电阻能否短接

开关电源的电流采样电阻能否短接
开关电源的电流采样电阻能否短接

开关电源的电流采样电阻能否短接?!

变频器开关电源的故障检修中,有时碰到开关管源(射)极所串接电流采样电阻的断路现象,见图一中R37(1.5Ω2W)。检查开关管K2225、变压器B1、U1振荡芯片、D13、D14等关键元件均无损坏,故障可能只是R37开路而已,换用同型号优质元件,也许故障就能排除。

开关管源极串接此电阻的目的,是利用流入开关变压器初线绕组的工作电流,在R37上产生压降,此电压信号发映开关管工作的电流的大小,输入U1的3脚,用作限流及过电流动作保护。当1脚电压幅度(因过电流达600mA以上)升到1V 以上时,开关电源会作出停振动作,以保护开关管及负载电路的安全。因而该电阻被称为电流采样电阻。

该电阻的取值范围从0.几Ω~1.5Ω,按道理说,变频器的功率越大,开关电源输出的电流越大,显然该电阻的阻值会越小。但是也有相当多的例外(请参见图一、图二),例如5.5kW的变频器,该电阻取值为1.5Ω,但1.5kW的变频器,该电阻取值是1.1Ω,反而更小,小变频器反而需要输出更大的工作电流吗?当然不是。这是什么原因呢?

P1

图一:康沃CVF-G 5.5kW变频器开关电源的振荡电路

将上面的问号暂且按下不表,听我讲述一个故障实例:检修一台1.5kW德力西变频器的开关电源,查电流采样电阻(1.5Ω2W)已呈断路状态,检测其它元件未见异常。维修者手有头暂无功率电阻更换,为了应急修复,便将此电阻用短路线连接,然后上电开机,只听得“啪啦”一声响,电路冒烟。

停电检修,发现开关管K2225炸裂,开关管栅级电阻断路,振荡芯片损坏,初级绕组4只限流电阻烧毁,故障扩大!

维修者惶惑了:以前也这么干过呀,在二次负载电路无故障情况下,将此电阻短接,应急修复,是能正常运行的。但本台变频器,限流电阻为何不能短接呢?

以前有网友问过,将该电阻短接会怎么样?有无损坏开关管的风险?可不可以短接此电阻将开关电源应急修复?

答案是不一的,有人回答正常情况下不会损坏开关管,有人说,短接不得,上电即会损坏开关管。哪个答案才是正确的呢?两种答案其实都有道理又都不能说是完全正确!

图二:英威腾INVT-P9 1.5kW变频器开关电源的振荡电路

比对图一、图二的电路特点和电流采样电阻的取值的不同,并进行简要分析,基本上可以得出较为正确的结论。

图一电路:变频器功率稍大,为5.5kW,但电流采样电阻取值反而较大,为1.5Ω2W。我们看振荡芯片U1的外围振荡、稳压、供电等回路,一目了然,没有“上电软起”电路;

图二电路:变频器功率较小,为为1.5kW,但电流采样电阻取值反而较小,为1.1Ω。再看振荡芯片U1的外围电路,多出了三极管AQ1、电容AE1、电阻AR8、AR10、AR11等构成的“上电软起动”电路。其工作机理是这样的:1脚与8脚之间有一个输出电压过冲抑制电路(输出电压限幅电路),由AR11、AQ10、AQ1构成,上电瞬间,因反馈电压未来得及建立,经1、2脚内部放大器处理,1脚将输出过高的误差电压,由后级电路控制开关管的导通时间变长,输出电压大幅度上升。本电路上电期间,由于AE1的充电作用,形成AQ1的基极电流,AQ1的导通拉低了U1的1脚误差电压的幅度,并由AE1充电过程的进行,使次级绕组的电压“缓慢上升”,避免了输出电压的过冲(开关管工作电流的过冲)。

开关电源上电瞬间,因反馈电压尚未建立,稳压环节处于“短时失效状态”,因而会出现一个开关管的激励脉冲占比比最大、导通时间最长、导致电流最大、次级加路输出电压最高的一个短暂过程。实际工作中,希望这个过程在时间上愈短愈好,否则其危险性是不言而喻的。

图一电路对上电时输出电流/电压过冲的措施完全依赖于电流采样电阻,故该电阻取值较大,能取得较大的电流反馈信号。上电期间的电流过冲引起该电阻上的压降上升,产生电流反馈信号,改变了开关管激励脉冲的占空比,使开关管的工作电流减小,输出电压回落,随后输出电压反馈环节成立,电路进入闭环控制之下,输出电压得以稳定。因采样电阻直接串入开关管的源极,故有极快的反应速度,限流效果极佳。

图二电路中,电流采样电阻取值较小,对上电期间的输出电压过冲的抑制,更多是依赖于由AQ1构成的“上电软起动”电路。开关电源上电起振后,AQ1电路与U1内部误差电路相结合,对开关管的流通电流/次级绕组输出电压产生限幅动作(缓慢上升),直到输出电压的反馈环节成立,电容AE1充电过程结束,由AQ1构成的“软起动”电路才失去作用。

两种电路的明显特征为:图一电路电流采样电阻的取值偏大,无“上电软起电路”;图二电路电流采样电阻取值较小(有的甚至在1Ω以下),有“上电软起电路”。

可以设想:图二电路在维修中,将电流采样电阻应急短接,因AQ1等电路的电流/电压限幅作用,开关管等元件可以侥幸不坏,正常情况下,开关电路还能投入工作;图一电路,将电流采样电阻短接后,开关管因丢失最后一道“过流保护屏障”,造成开关管炸裂

和其它元件的损坏,则是可以预期的。

对变压器而言,一次绕组的激磁电流,取决于负载绕组的电流大小,在开关变压器二次绕组负载正常或为轻负载甚至脱开二次负载电路的情况下,短接电流采样电阻,仍有可能损坏开关管等元件,那么这一个上电浪涌电流是如何产生的呢?请看图三。

D8

7 6

图三开关变压器次级绕组的整流滤波电路

可以说,图三中,滤波电容C23、C27是开关电源上电瞬间,最重的负载元件。未上电前,电容内部电荷为零,上电瞬间,电荷为零的电容,呈现极小的“内阻”,故形成较大的“浪涌充电电流”。从一定意义上说,此一充电电流近乎为“短路电流”!正常工作时,滤波电容上因建立起一起的电压,其充、放电电流幅度便大为减小。所以说,上电期间,开关电源最危险的负载元件,并非负载电路中的IC、电阻等元件,而恰恰是电源本身容量较大的滤波电容!因而即使将负载电路全部脱开,短接电流采样电阻,也是危险的行为!

可以得出这样一个结论:短接电流采样电阻,开关电路还能“正常”工作,这是非常侥幸的一件事情,完全取决于开关电源电路的构成。因而提倡还是要换用原值电阻,并尽可量采用限流措施,如将开关电源的供电串入40W灯泡进行限流,修复后再恢复正常供电,则能将电路高效修复并避免了故障的进一步扩大。

不要图省事,短接电流采样电阻,对开关电源进行“非法维修”,为自己和用户带来更大的麻烦和损失!我也犯过这样的“低级错误”,吃过这样的亏,才有资格对你说长道短。对不对?我费这么大的劲,希望跟帖的同志热情一点才好!

旷野之雪

2010年5月4日星期二

开关电源的电流采样电阻能否短接

开关电源的电流采样电阻能否短接?! 变频器开关电源的故障检修中,有时碰到开关管源(射)极所串接电流采样电阻的断路现象,见图一中R37(1.5Ω2W)。检查开关管K2225、变压器B1、U1振荡芯片、D13、D14等关键元件均无损坏,故障可能只是R37开路而已,换用同型号优质元件,也许故障就能排除。 开关管源极串接此电阻的目的,是利用流入开关变压器初线绕组的工作电流,在R37上产生压降,此电压信号发映开关管工作的电流的大小,输入U1的3脚,用作限流及过电流动作保护。当1脚电压幅度(因过电流达600mA以上)升到1V 以上时,开关电源会作出停振动作,以保护开关管及负载电路的安全。因而该电阻被称为电流采样电阻。 该电阻的取值范围从0.几Ω~1.5Ω,按道理说,变频器的功率越大,开关电源输出的电流越大,显然该电阻的阻值会越小。但是也有相当多的例外(请参见图一、图二),例如5.5kW的变频器,该电阻取值为1.5Ω,但1.5kW的变频器,该电阻取值是1.1Ω,反而更小,小变频器反而需要输出更大的工作电流吗?当然不是。这是什么原因呢? P1 图一:康沃CVF-G 5.5kW变频器开关电源的振荡电路

将上面的问号暂且按下不表,听我讲述一个故障实例:检修一台1.5kW德力西变频器的开关电源,查电流采样电阻(1.5Ω2W)已呈断路状态,检测其它元件未见异常。维修者手有头暂无功率电阻更换,为了应急修复,便将此电阻用短路线连接,然后上电开机,只听得“啪啦”一声响,电路冒烟。 停电检修,发现开关管K2225炸裂,开关管栅级电阻断路,振荡芯片损坏,初级绕组4只限流电阻烧毁,故障扩大! 维修者惶惑了:以前也这么干过呀,在二次负载电路无故障情况下,将此电阻短接,应急修复,是能正常运行的。但本台变频器,限流电阻为何不能短接呢? 以前有网友问过,将该电阻短接会怎么样?有无损坏开关管的风险?可不可以短接此电阻将开关电源应急修复? 答案是不一的,有人回答正常情况下不会损坏开关管,有人说,短接不得,上电即会损坏开关管。哪个答案才是正确的呢?两种答案其实都有道理又都不能说是完全正确! 图二:英威腾INVT-P9 1.5kW变频器开关电源的振荡电路

采样电阻的选择

巧置采样电阻 一,电流检测电阻的基本原理: 根据欧姆定律,当被测电流流过电阻时,电阻两端的电压与电流成正比.当1W的电阻通过的电流为几百毫安时,这种设计是没有问题的. 然而如果电流达到10-20A,情况就完全不同,因为在电阻上损耗的功率(P=I2xR)就不容忽视了. 我们可以通过降低电阻阻值来降低功率损耗,但电阻两端的电压也会相应降低,所以基于取样分辨率的考虑,电阻的阻值也不允许太低. 二,长期稳定性 对于任何传感器来说,长期稳定性都非常重要.甚至在使用了一些年后,人们都希望还能维持早期的精度. 这就意味着电阻材料在寿命周期内一定要抗腐蚀,并且合金成分不能改变. 要使测量元件满足这些要求,可以使用同质复合晶体组成的合金,通过退火和稳定处理的生产制程,以达到基本热力学状态. 这样的合金的稳定性可以达到ppm/年的数量级,使其能用于标准电阻. 表面贴装电阻在140℃下老化1000小时后阻值只有大约-0.2%的轻微漂移,这是由于生产过程中轻微变形而导致的晶格缺损造成的. 阻值漂移很大程度上由高温决定,因此在较低的温度下比如+100℃,这种漂移实际是检测不出来的.

三,端子连接 在低阻值电阻中,端子的阻值和温度系数的影响往往是不能忽略的,实际设计中应充分考虑这些因素,可以使用附加的取样端子直接测量金属材料两端的电压. 由电子束焊接的铜-锰镍铜电阻实际上具有这样低的端子阻值,通过合理的布线可以作为两端子电阻使用而接近四端子连接的性能.

但是在设计时一定要注意取样电压的信号连线不能直接连接取样电阻的电流通道上,如果可能的话,最好能够从取样电阻下面连接到电流端子并设计成微带线. 四,低阻值 四引线设计推荐用于大电流和低阻值应用.通常的做法使用锰镍铜合金带直接冲压成电阻器,但这不是最好的办法. 尽管四引线电阻有利于改进温度特性和热电压,但总阻值有时高出实际阻值2到3倍,这会导致难以接受的功率损耗和温升. 此外,电阻材料很难通过螺丝或焊接与铜连接,也会增加接触电阻以及造成更大的损耗. 康铜丝电阻 说到电流/电压的采样电路,就像上图中万用表中所使用的那样,那么,什么是康铜丝电阻呢? 简单地说,康铜丝电阻是选用高精密合金丝并经过特殊工艺处理,其阻值低,精度高,温度系数低,具有无电感,高过载能力。 正是因为康铜丝具备以上这些优良的电气特性,所以它被广泛用于通讯系统,电子整机,自动化控制的电源等回路作限流,均流或取样检测电路连接等。

三相异步电机_电流采样电阻

三相异步电机电流采样电阻 采样电阻又称为电流检测电阻,电流感测电阻,取样电阻,电流感应电阻。英文一般译为Sampling resistor,Current sensing resistor。用简单的话描述就是一个阻值较小的电阻,串联在电路中用于把电流转换为电压信号进行测量。 此类电阻,是按照产品使用的功能来划分电阻。取样电阻功能上就是做为参考,常用在反馈电路里,以稳压电源电路为例,为使输出的电压保持恒定状态,要从输出电压取一部分电压做参考(常用取样电阻的形式),如果输出高了,输入端就自动降低电压,使输出减少;若输出低了,则输入端就自动升高电压,试输出升高。一般使用在电源产品,或者电子,数码,机电产品的电源部分,功能强大。在众多电子产品上均常看到取样电阻。 采样电阻一般使用的都是精密电阻,阻值低,精密度高,一般在阻值精密度在±1%以内,更高要求的用途时会采用0.01%精度的电

阻。国内工厂生产的大部分都是以锰铜为材质的插件电阻,但是,广大的用户更需要的是贴片的高精密电阻来实现取样功能,这是为了满足产品小型化产品生产的自动化的要求。能够生产在低温度系数,高精密度,超低阻值上做到满足用户要求电阻的厂商在国内是很少的。一般采样电阻的阻值会选在1欧姆以下,属于毫欧级电阻,但是部分电阻,有个采样电压等要求,必须选择大阻值电阻,但是这样电阻基数大,产生的误差大。这种情况下,需要选择高精度的捷比信电阻,深圳市捷比信科技有限公司专业生产销售电源专用高精密贴片电阻(可到0.01%精度,即万分之一精度),这样就可以让采样出来的数据非常可信。贴片超低阻值电阻(0.0005欧姆,2毫欧,3毫欧,10毫欧等),贴片合金电阻,大功率电阻(20W,30W,35W,50W,100W)等产品,温度系数可达到正负5PPM。 采样电阻和HCPL-7840 的连接如图2,采样电阻R1 的正端连接到Vin+ ,采样电阻的负端连接到Vin?,把实时的电机电流转化为模拟电压输入芯片;同时Vin?和GND1 连接,把供电电源的返回路径又作为采样线连接到采样电阻的负端,因为电机在工作时有很大的电流流过采样线路,电路中的寄生电感会产生很大的电流尖峰,而此种连接能把这些暂态噪声视为共模信号,不会对采样电流信号形成干扰;另外,为消除采样电流输入信号中的高频噪声,采样电阻上采集到的电压信号必须经过由R2 及C3组成的低通滤波器进入芯片。 采样电阻的选取是根据伺服驱动器的功率范围,选择合适的阻值。采样电阻较大,可使用HCPL-7840 的整个输入范围,从而提高采样电

采样电阻

3.1 单电阻电流采样 为了降低系统成本,本方案采用了先进的单电阻采样技术。一般来讲,矢量控制算 法需要采集电机至少两相电流,但单电阻采样只需要采集负母线的电流即可。 图 3 单电阻采样框图 表 1 单电阻采样状态表 图 3 是单电阻采样的框图, 对于桥臂的每一个开关状态, 其流过的电流状态如表 1 所示。 在表 1 中,“0”表示开关管关断,而“1”表示导通。由于电流在一个 PWM 周期内几乎 不变,因此只需要在一个 PWM 周期内采样两次即可得到该时刻电机每一相电流的状态, 因为三相电流之和为零。 单电阻采样会遇到一些挑战,空间矢量脉宽调制器(SVPWM)在空间矢量的扇区边 界和低调制区域的时候,会存在占空比两长一短和两短一长以及三个几乎一样长的时 刻。这样的话,如果有效矢量持续的时间少于电流采样时间,则会出错。本方案采取的 办法是在相邻边界的时候插入固定时间的有效矢量, 而在低调制区域的时候, 采用的是 轮流插入有效矢量的方法。 插入有效矢量会给电流波形带来失真, 这种情况下需要通过

软件来进行补偿。 单电阻采样的优点除了降低系统的成本, 还有就是它检测三相电流时都基于相同的增益 和偏移,一致性好。缺点也是明显的,对于 MCU 来说,算法复杂了其运算时间要增大, 代码比三电阻也要长一些;对于电流检测而言,其波形失真比起三电阻方法来说,要稍 微大一些。 其详细的对比如表 2 所示。 单电阻采样的性能对于变频空调的应用是完全可 以胜任的, 而且成本低廉, 这也就是为什么大部分家电厂家都愿意选择单电阻采样的原 因所在。 采样电阻 1. 产品介绍 采样电阻又称为电流检测电阻,电流感测电阻,取样电阻,电流感应电阻。英文一般译为

FOC控制基于电阻的电流采样方案比较

FOC控制基于电阻的电流采样方案比较 最近有时间把TI ST还有Microchip三家关于PMSM控制中使用电阻采样相的电路看了一下,发现各家都有自己的特点,就做个总结吧。 1.TI C2000系列双电阻采样法 原理说明 在U相和V相的下桥分别串联一个功率电阻,通过一个运放电路连接至A/D。采样时机放在PWM的下溢中断进行,U V两相电阻上的电流即为电机U V相的线电流。 关键点 (1)采样时机: 必须在下桥臂全部导通的时候进行采样。

在软件设计的时候,采用下溢中断(处于第7段和第1段零矢量区域中),将电流采样的任务安排在一个PWM周期的开始处,在比较匹配到来之前的期间,U、V两相的上桥臂都是关断的,也就是说下桥臂是导通的,这样就可以在每个PWM周期顺利采样一次两个相电流值。 (2)采样方式 因为电机绕组线圈呈感性,线圈上的相电流不能突变,因此从矢量U0 转换到零矢量后,其对应的工作状态转换如图所示,其中二极管能起到续流作用,此时,下桥臂采样电阻上流过的是相电流,因此在每个PWM周期前期通过下桥臂的采样电阻检测相电流是可行的。 开关状态为000时电流的流通路径

(3)采样电流电路 从上图可以看出,流经各相采样电阻的电流是正负的,故采样电阻上端的电压是一个带正负信号的正弦波形(下端为地),后级运放电路作用是将整体电压抬高,并且进行比例增益。 2.STM32的方案:三电阻采样法

(1)电流处理: 采样电阻上端采集到的电压是一个带正负的正弦波形,所以其后端一定要接一个运放电路,一方面是滤波,更重要的则是把采集到的信号缩放到AD能采集的电压范围。这个电路可以采用同相比例放大+偏移。 (2)AD触发: 在STM32的高级定时器中,除了产生三相PWM波的CH1,CH2,CH3之外还有一个CH4,这个通道只能产生一路PWM波,它可以用来触发AD,可以比较容易的和前面几个PWM波同步,而且配置好周期能非常灵活的取采样点。(3)相采样选择: 每次需要采集两个电流,采集哪两个电流由SVPWM当前扇区决定。每次只有在下桥臂打开的时候才能进行采样。 (4)干扰Tnoise和Trise: Tnoise是每次开关管打开或者关闭时,对当前采集的相电压的影响时间。Trise 是每次开关管打开的时候该相电流会有一个跳变,需要一段时间来稳定。在这两个时间里面不能采集电流。 (5)SVPWM: SVPWM是FOC算法的最后一步,根据前面运算得到的数据,修改PWM波形输出,从而修正电机的运行,同时确定下次相电流采样的扇区。 [R1]此处与TI方案不同,ST方案根据扇区号来确定当前需要采样的电流相,而TI根据二极管续流可以持续获得稳定的U/V相电流反馈,TI的方法更好

FOC控制基于电阻的电流采样方法比较

最近有时间把TIST还有Microchip三家关于PMSM控制中使用电阻采样相的电路看了一下,发现各家都有自己的特点,就做个总结吧。 1.TIC2000系列双电阻采样法 原理说明 在U相和V相的下桥分别串联一个功率电阻,通过一个运放电路连接至A/D。 采样时机放在PWM的下溢中断进行,UV两相电阻上的电流即为电机UV相的线电流。 关键点 (1)采样时机: 必须在下桥臂全部导通的时候进行采样。 在软件设计的时候,采用下溢中断(处于第7段和第1段零矢量区域中),将电流采样的任务安排在一 个PWM周期的开始处,在比较匹配到来之前的期间,U、V两相的上桥臂都是关断的,也就是说下桥 臂是导通的,这样就可以在每个PWM周期顺利采样一次两个相电流值。 (2)采样方式 因为电机绕组线圈呈感性,线圈上的相电流不能突变,因此从矢量U0转换到零矢量后,其对应的 工作状态转换如图所示,其中二极管能起到续流作用,此时,下桥臂采样电阻上流过的是相电流, 因此在每个PWM周期前期通过下桥臂的采样电阻检测相电流是可行的。 开关状态为000时电流的流通路径 (3)采样电流电路 从上图可以看出,流经各相采样电阻的电流是正负的,故采样电阻上端的电压是一个带正负信号 的正弦波形(下端为地),后级运放电路作用是将整体电压抬高,并且进行比例增益。 2.STM32的方案:三电阻采样法 (1)电流处理: 采样电阻上端采集到的电压是一个带正负的正弦波形,所以其后端一定要接一个运放电路,一方面 是滤波,更重要的则是把采集到的信号缩放到AD能采集的电压范围。这个电路可以采用同相比例 放大+偏移。 (2)AD触发:

在STM32的高级定时器中,除了产生三相PWM波的CH1,CH2,CH3之外还有一个CH4,这个通道只能产生一路PWM波,它可以用来触发AD,可以比较容易的和前面几个PWM波同步,而且配置好周期能非常灵活的取采样点。 (3)相采样选择: 每次需要采集两个电流,采集哪两个电流由SVPWM当前扇区决定?。每次只有在下桥臂打开的时候才能进行采样。 (4)干扰Tnoise和Trise: Tnoise是每次开关管打开或者关闭时,对当前采集的相电压的影响时间。Trise是每次开关管打开的时候该相电流会有一个跳变,需要一段时间来稳定。在这两个时间里面不能采集电流。 (5)SVPWM: SVPWM是FOC算法的最后一步,根据前面运算得到的数据,修改PWM波形输出,从而修正电机的运行,同时确定下次相电流采样的扇区。 [R1]此处与TI方案不同,ST方案根据扇区号来确定当前需要采样的电流相,而TI根据二极管续流可以持续获得稳定的U/V相电流反馈,TI的方法更好 [R2]TI的方案是在PWM关闭的时候采样的,也就没有了干扰的问题 下面这张表格是是运用ST库的时候三电阻和单电阻在效率等方面的比较: 3.Microchip方案(AN1299) 采用单电阻方式采样,在一组7段矢量的时间内,根据不同的开关顺序,进行多次采样 [R3]相比TI方案,采样次数较多,消耗的CPU资源较多,需要考虑死区对各个采样窗的影响,还有各采样窗口有最小宽度限制,处理算法相对比较麻烦 对于三相逆变器,我们将分析此周期的所有不同的PWMxL组合(T0、T1、T2和T3),了解电流测量代表着什么。从T0开始,在逆变器中我们有如下的电子开关(MOSFET或IGBT)组合,从中我们看到,没有电流流经单分流电阻(图10)。 前进到T1,我们看到PWM2L有效,同时PWM1H和PWM3H也有效(目前没有显示,但假设PWM输出是互补的)。由于有电流通过相A和C流入电机,通过相B流出电机,我们可以认为此电流测量值表示的是–IB,如图11所示。 在T2期间,PWM2L和PWM3L有效,且PWM1H有效。这种组合给出的是流经单分流电阻的电流IA,如图12所示。 T3的情形与T0一样,其中没有电流流经分流电阻,所以IBUS=0,如图13所示。 PIC单电阻采样时间点的计算 总结: 通过双电阻、三电阻和单电阻的相电流采样方法,都是基于电机绕组电感电流通过二极管续流的原理,然后通过通过公式“Iu?+?Iv?+?Iw?=?0”重构出该相电流。

光耦隔离运放HCPL-7800 在电机电流采样中的应用

光耦隔离运放HCPL-7800 在电机电流采样中的应用 摘要:本文介绍了一种专门适用于电机驱动电流检测的光耦隔离运放HCPL-7800的结构和特点,并重点介绍了此隔离运放的应用。 关键词:隔离运放,电流采样 Abstract: This paper introduces the construction and the characteristics of HCPL-7800.This isolation amplifier was designed for current sensing in electronic motor drives. The key is to introduce the application of this isolation amplifier. Keywords: isolation amplifier, current sensing 1. 概述 HCPL-7800隔离运放是专门为电机驱动电流的检测设计的。电机电流通过一个外部采样 电阻得到模拟电压,进入芯片。在隔离侧的另一边得到一个微分的输出电压。这个微分的输出电压正比与电机电流,通过一个光耦放大器转换成单端信号。由于在现代开关逆变器电机驱动中电压的共模干扰一般都有几百伏每微秒,而HCPL-7800能够抗至少10kv/us的共模干扰。正是基于这一点,HCPL-7800隔离运放为在很嘈杂的环境中,电机电流的检测提供了更高的准确性和稳定性,也为各种各样的电机控制提供了平滑控制的可能。它也能被用于在严重的噪声干扰的环境中需要很高的准确性,稳定性和线性的的模拟信号的隔离。HCPL-7800的增益为+/-3%,HCPL-7800(A)适用于比较精确的场合,因为它的增益为+/-1%,它应用了先进的(Σ-Δ)的模数转换技术, 斩波放大器和全微分电路拓扑。它的具体的原理图如图1所示: 图1 HCPL-7800的结构简图 HCPL-7800(A)隔离运放广泛应用于电机的相电流检测,逆变器的电流检测,开关电源的脉冲信号的隔离,一般的电流检测和监测,一般的模拟信号的隔离等方面。跟LEM比较,它更加适用于电机电流的检测,抗共模抑制比的能力较强,同时具有很高的性价比。 2. 典型应用 图2是HCPL-7800对电机电流采样的应用电路,从图中可以看出HCPL-7800(A)的电源 一般都从功率开关器件的门极驱动电路的电源中获得。旁路电容C1,C2尽可能地靠近HCPL-7800的管腿。旁路电容是必要的因为HCPL-7800内部的高速的数字信号的特点,由于输入电路的开关电容的本质,在输入侧也要加上旁路电容C3,输入的旁路电容也形成了滤波器的一部分,用于防止高频噪声。 对于采样电阻的选择也是本电路中的最重要的部分,电流采样电阻应该具有很低的阻抗(可以达到最小限度的功率损耗),很低的电感值(最小的di/dt变化引起的电压尖峰),。对于此电阻的选择,一般是考虑最小的功率损耗和最大的准确性的折中点。小的采样电阻能够减小功率损耗,而大的采样电阻能够用上HCPL-7800的整 个输入范围从而提高电路的准确性。

取样电阻的工作原理

一,电流检测电阻的基本原理: 根据欧姆定律,当被测电流流过电阻时,电阻两端的电压与电流成正比.当1W的电阻通过的电流为几百毫安时,这种设计是没有问题的.然而如果 电流达到10-20A,情况就完全不同,因为在电阻上损耗的功率(P=I2xR)就 不容忽视了.我们可以通过降低电阻阻值来降低功率损耗,但电阻两端的电压也会相应降低,所以基于取样分辨率的考虑,电阻的阻值也不允许太低。 二,长期稳定性 对于任何传感器来说,长期稳定性都非常重要.甚至在使用了一些年后,人们都希望还能维持早期的精度.这就意味着电阻材料在寿命周期内一定要抗腐蚀,并且合金成分不能改变.要使测量元件满足这些要求,可以使用同 质复合晶体组成的合金,通过退火和稳定处理的生产制程,以达到基本热力学状态.这样的合金的稳定性可以达到ppm/年的数量级,使其能用于标准电阻。 表面贴装电阻在140℃下老化1000小时后阻值只有大约-0.2%的轻 微漂移,这是由于生产过程中轻微变形而导致的晶格缺损造成的.阻值漂移很大程度上由高温决定,因此在较低的温度下比如+100℃,这种漂移实际是检测不出来的。

三,端子连接 在低阻值电阻中,端子的阻值和温度系数的影响往往是不能忽略的,实际设计中应充分考虑这些因素,可以使用附加的取样端子直接测量金属材料两端的电压。 由电子束焊接的铜-锰镍铜电阻实际上具有这样低的端子阻值,通过合理的布线可以作为两端子电阻使用而接近四端子连接的性能.但是在设计时一定要注意取样电压的信号连线不能直接连接取样电阻的电流通道上,如果可能的话,最好能够从取样电阻下面连接到电流端子并设计成微带线。

四,低阻值 四引线设计推荐用于大电流和低阻值应用.通常的做法使用锰镍铜合金带直接冲压成电阻器,但这不是最好的办法.尽管四引线电阻有利于改进温 度特性和热电压,但总阻值有时高出实际阻值2到3倍,这会导致难以接受 的功率损耗和温升.此外,电阻材料很难通过螺丝或焊接与铜连接,也会增 加接触电阻以及造成更大的损耗。 康铜丝电阻 说到电流/电压的采样电路,就像上图中万用表中所使用的那样,那么,什么是康铜丝电阻呢? 简单地说,康铜丝电阻是选用高精密合金丝并经过特殊工艺处理,其 阻值低,精度高,温度系数低,具有无电感,高过载能力。 正是因为康铜丝具备以上这些优良的电气特性,所以它被广泛用于通 讯系统,电子整机,自动化控制的电源等回路作限流,均流或取样检测电 路连接等。

大电流检测采样电阻选型考虑

大电流检测采样电阻选型考虑 廖智歆深圳市捷比信科技有限公司在电动工具,太阳能产品,电池保护板,各类电源的设计上,电流采样是恒久的话题了。 不管是为了做电路上一般性的电流控制、调整,还是过流保护,短路保护,第一步考虑的问题都是先检测出电流大小。 现行使用较多的采样方法有两种,一种是用电流互感器,另一种是用电流采样电阻。 电流互感器在某些大电流检测时表现不错,但由于价格昂贵,往往适合用量小,且对成本没什么要求的地方。 所以各类电源、电动工具、电池保护板、灯具、驱动电机或产品的电源部分等地方主流的都是用经济、高精高效、实用第二种方式,也就是本文介绍的台湾大毅合金电阻,用作电流采样。 用电阻做采样,一般就是将电阻放置在需要采样电流的位置,通过测量电阻两端的电压值来反馈,进而确定电路中的电流大小。 那么采样电阻的阻值一般要求比较小,这样才能让放进去的电阻不影响原电路中电流大小,以保证采样精准。 大毅产品主要的阻值范围在 0.0005 mΩ~200mΩ,阻值足够小,根据设计要求的采样电压可以相应选择。 先来看看大毅合金电阻的性能在使用中的优势。 相对于传统的陶瓷贴片电阻(如厚膜贴片电阻,薄膜贴片电阻),大毅合金电阻各方面性能优势巨大,表现在: 公差好很多,温度系数TCR更低,可以到±50PPM/℃,甚至更低;功率更高,同样封装情况下额定功率可以超越陶瓷电阻的数倍。

最重要的一点是在大电流采样及过流保护,短路保护这类需要通过冲击电流的地方,合金电阻的性能的优越性凸显无疑: 陶瓷贴片电阻往往在短时间就烧掉,而大毅合金电阻可以通过相当强度的冲击电流,这样在整体电路中起到了保护其他器件的作用,同时保证了整体产品的品质。 再对比一些插件的铜丝电阻与大毅合金电阻的优劣。 对比同样以金属为主材的铜丝电阻,大毅合金电阻最直观的优势在于: 产品性能稳定,功率大,可通过电流大,材质性能稳定不易氧化,SMT自动贴装快捷,可靠性高,不会因焊接位置的细微变化而影响接入阻值(插件铜丝电阻焊接时,略微的焊点位置变化就可以导致阻值变化,是采样出来的数据产生较大误差)。 相关信息可以参照以下表格: 阻值精度温度系数氧化性能插件铜丝电阻难做到阻值精确较低贴片陶瓷电阻可做到高精度高大毅合金电阻可做到高精度很低不易氧化、阻值稳定表层易氧化,长期不易氧化、阻值稳使用阻值变化定不适用过冲击电流可承受一定强度额定功率较大小大(如1/2W,1W,2W,3W,4W)安装方式插件、多手工,易SMT自动贴装,封产生阻值误差装齐全SMT自动贴装,封装齐全(如0805,1206,2010,2512,2725,2728)众所周知,电阻通电使用时都会发出热量,那么采样大电流时,电阻消耗的电能比较大,发热也相对大,这是考验合金电阻性能的重要一环。 合金电阻两端焊盘位置与电阻体本身的联接如果设计不合理,容易在高温下出现端极移位,甚至脱落的情况。 大毅合金电阻具有国际专利的“端铜电铸”、“端银电镀”工艺保证了产品高温下性能依旧稳定,安全可靠!多年来,台湾大毅专注于电流检测电阻的研发制造,新产品频出,大毅的合金电阻产品不断升级,制造技术始终领先于在业内。

大电流检测采样电阻选型考虑

大电流检测采样电阻选型考虑 廖智歆 深圳市捷比信科技有限公司在电动工具,太阳能产品,电池保护板,各类电源的设计上,电流采样是恒久的话题了。不管是为了做电路上一般性的电流控制、调整,还是过流保护,短路保护,第一步考虑的问题都是先检测出电流大小。 现行使用较多的采样方法有两种,一种是用电流互感器,另一种是用电流采样电阻。电流互感器在某些大电流检测时表现不错,但由于价格昂贵,往往适合用量小,且对成本没什么要求的地方。所以各类电源、电动工具、电池保护板、灯具、驱动电机或产品的电源部分等地方主流的都是用经济、高精高效、实用第二种方式,也就是本文介绍的台湾大毅合金电阻,用作电流采样。 用电阻做采样,一般就是将电阻放置在需要采样电流的位置,通过测量电阻两端的电压值来反馈,进而确定电路中的电流大小。那么采样电阻的阻值一般要求比较小,这样才能让放进去的电阻不影响原电路中电流大小,以保证采样精准。大毅产品主要的阻值范围在0.0005 mΩ~200mΩ,阻值足够小,根据设计要求的采样电压可以相应选择。

先来看看大毅合金电阻的性能在使用中的优势。相对于传统的陶瓷贴片电阻(如厚膜贴片电阻,薄膜贴片电阻),大毅合金电阻各方面性能优势巨大,表现在:公差好很多,温度系数TCR更低,可以到±50PPM/℃,甚至更低;功率更高,同样封装情况下额定功率可以超越陶瓷电阻的数倍。最重要的一点是在大电流采样及过流保护,短路保护这类需要通过冲击电流的地方,合金电阻的性能的优越性凸显无疑:陶瓷贴片电阻往往在短时间就烧掉,而大毅合金电阻可以通过相当强度的冲击电流,这样在整体电路中起到了保护其他器件的作用,同时保证了整体产品的品质。 再对比一些插件的铜丝电阻与大毅合金电阻的优劣。对比同样以金属为主材的铜丝电阻,大毅合金电阻最直观的优势在于:产品性能稳定,功率大,可通过电流大,材质性能稳定不易氧化,SMT自动贴装快捷,可靠性高,不会因焊接位置的细微变化而影响接入阻值(插件铜丝电阻焊接时,略微的焊点位置变化就可以导致阻值变化,是采样出来的数据产生较大误差)。相关信息可以参照以下表格:

HCPL7840电流检测

文件编号:INVT0_013_0011_CBB_01 HCPL-7840电流检测 拟制:时间:2010-05-22 批准:时间:2010-05-22 文件评优级别:□A优秀□B良好□C一般

1芯片介绍 HCPL-7840是美国AGILENT公司推出的用于检测电机电流的线性光藕。光藕的初级接收一组待测的模拟电压信号,次级输出一对差动的电压信号。输入与输出之间在一定范围内是一种线性的当量关系,HCPL-7840增益偏差为5%,线性度为1%。 HCPL-7840包含有一个A/D转换器,同时还匹配有一个D/A转换器,工作原理如图1所示, 输入直流信号经过调制器送至编码器量化、编码,在时钟信号控制下,以数码串的形式传送到发光二极管,驱动发光二极管发光。由于电流强度不同,发光强度也不同,在解调端有一个光电管会检测出这一变化,将接收到的光信号转换成电信号,然后送到解码器和D/A转换器还原成模拟信号,经滤波后输出。干扰信号因电流微弱不足以驱动发光二极管发光,因而在解调端没有对应的电信号输出,从而被抑制掉。所以在输出端得到的只是放大了的有效的直流信号。 图1 功能框图: 图2 主要性能参数介绍: parameter symbol MIN TYP MAX UNIT 供电电压V DD1, V DD2 4.5 5.5 V G 7.60 8.00 8.40 V/V 增益 (Vout/Vin) V IN+, V IN--200 +200 mV 输入电压(线 性范围) 输入失调电压Vos -3.0 0.3 3.0 mV 输入阻抗R IN500 k? 输出阻抗R OUT15 ? 延时时间T PD50 3.47 5.6 us 典型应用介绍:

FOC 电流采样方案比较

最近有时间把TI ST还有Microchip三家关于PMSM控制中使用电阻采样相的电路看了一下,发现各家都有自己的特点,就做个总结吧。 1.TI C2000系列双电阻采样法 原理说明 在U相和V相的下桥分别串联一个功率电阻,通过一个运放电路连接至A/D。采样时机放在PWM的下溢中断进行,U V两相电阻上的电流即为电机U V相的线电流。 关键点 (1)采样时机: 必须在的时候进行采样。

在软件设计的时候,采用下溢中断(处于第7段和第1段零矢量区域中),将电流采样的任务安排在一个PWM周期的开始处,在比较匹配到来之前的期间,U、V两相的上桥臂都是关断的,也就是说下桥臂是导通的,这样就可以在每个PWM周期顺利采样一次两个相电流值。 (2)采样方式 因为电机绕组线圈呈感性,线圈上的相电流不能突变,因此从矢量U0 转换到零矢量后,其对应的工作状态转换如图所示,其中二极管能起到续流作用,此时,下桥臂采样电阻上流过的是相电流,因此在每个PWM周期前期通过下桥臂的采样电阻检测相电流是可行的。 开关状态为000时电流的流通路径

(3)采样电流电路 从上图可以看出,流经各相采样电阻的电流是正负的,故采样电阻上端的电压是一个带正负信号的正弦波形(下端为地),后级运放电路作用是将整体电压抬高,并且进行比例增益。 2.STM32的方案:三电阻采样法 (1)电流处理:

采样电阻上端采集到的电压是一个带正负的正弦波形,所以其后端一定要接一个运放电路,一方面是滤波,更重要的则是把采集到的信号缩放到AD能采集的电压范围。这个电路可以采用同相比例放大+偏移。 (2)AD触发: 在STM32的高级定时器中,除了产生三相PWM波的CH1,CH2,CH3之外还有一个CH4,这个通道只能产生一路PWM波,它可以用来触发AD,可以比较容易的和前面几个PWM波同步,而且配置好周期能非常灵活的取采样点。(3)相采样选择: 每次需要采集两个电流,采集哪两个电流由SVPWM当前扇区决定。每次只有在下桥臂打开的时候才能进行采样。 (4)干扰Tnoise和Trise: Tnoise是每次开关管打开或者关闭时,对当前采集的相电压的影响时间。Trise 是每次开关管打开的时候该相电流会有一个跳变,需要一段时间来稳定。在这两个时间里面不能采集电流。 (5)SVPWM: SVPWM是FOC算法的最后一步,根据前面运算得到的数据,修改PWM波形输出,从而修正电机的运行。 [R1]此处与TI方案不同,ST方案根据扇区号来确定当前需要采样的电流相,而TI根据二极管续流可以持续获得稳定的U/V相电流反馈,TI的方法更好 [R2]TI的方案是在PWM 关闭的时候采样的,也就没有了干扰的问题 下面这张表格是是运用ST库的时候三电阻和单电阻在效率等方面的比较:

教你计算TL431多路取样电阻

教你计算TL431多路取样电阻 电源有三路电压输出,分别是A路12V3.5A,B路5V2A,C路3.3V10A 需要对三路输出电压进行采样. 从图我们可以得知,R1取样A路电压,R2取样B路电压,R3取样C路电压. 计算步骤: 1.计算总取样电流Iq值. 总取样电流Iq=2.5/R4=2.5V/10K=0.25mA 这里设总取样电流为0.25mA,所以R4取10K 2.计算R1值. A路取样电流是Ia=Iq*[IoA/(IoA+IoB+IoC)] Ia=0.25mA*[3.5A/(3.5A+2A+10A)] Ia=0.056mA R1=(VoA-2.5V)/Ia=(12V-2.5V)/0.056mA R1=170K(可用150K与20K电阻串联) 3.计算R2值. B路取样电流是Ib=Iq*[IoB/(IoA+IoB+IoC)] Ib=0.25mA*[2A/(3.5A+2A+10A)] Ib=0.032mA R2=(VoB-2.5V)/Ib=(5V-2.5V)/0.032mA R2=78K(可用56K与22K电阻串联)

4.计算R3值. C路取样电流是Ic=Iq*[IoC/(IoA+IoB+IoC)] Ic=0.25mA*[10A/(3.5A+2A+10A)] Ic=0.16mA R3=(VoC-2.5)/Ic=(3.3V-2.5V)/0.16mA R3=5K 5.验算. IR1电流=(12V-2.5V)/(150K+20K)=0.0558mA IR2电流=(5V-2.5V)/(56K+22K)=0.032mA IR3电流=(3.3v-2.5v)/5k=0.16mA 实际取样总电流=0.0558mA+0.032mA+0.16mA =0.2478mA 约等于理论计算值的2.5mA,说明理论计算OK!下一步就是调试环节了,再根据实际情况作相应的更改.

采样电阻

采样电阻[浏览次数:116次] 采样电阻(Sampling resistor,Current sensing resistor)是一个阻值较小的电阻,串联在电路中用于把电流转换为电压信号进行测量。用以检测电路的电流,在实际的电路中是与负载电阻串联的。采样电阻又称为电流检测电阻,电流感测电阻,取样电阻,电流感应电阻。采样电阻一般使用的都是精密电阻,阻值低,精密度高,一般在阻值精密度在±1%以内,更高要求的用途时会采用0.01%精度的电阻。 目录 ?采样电阻的相关参数 ?采样电阻的作用 ?采样电阻的连接 ?采样电阻的选取 采样电阻的相关参数 ?1、高精度焊脚型采样电阻:1-50毫欧 功率:1W-5W 温漂:±40PPM 精度:1%/5% 2、压脚型采样电阻:阻值:0.1-500毫欧 功率:1瓦-5瓦 温漂:±40PPM

精度:1%/5% 3、跳线型采样电阻:阻值:0-100毫欧 功率1-5W 温漂:±40PPM 精度10% 4、大功率高精度分流电阻:0.5-5毫欧 功率:8瓦-12瓦 温漂:±40PPM 精度:1%/5% 5、大功率仿贴片电阻:阻值:1-10毫欧 功率:5W-8W 温漂:±40PPM 精度:3% 6、零阻值电阻:电流10-50A 可做成贴片或插件,尺寸形状可以定做。采样电阻的作用 ?采样电阻常用在反馈电路里用以检测电路的电流,在实际的电路中是与负载电阻串联的。以稳压电源电路为例,为使输出的电压保持恒定状态,要从输出电压取一部分电压做参考(常用取样电阻的形式),如果输出高了,输入 端就自动降低电压,使输出减少;若输出低了,则输入端就自动升高电压,试输出升高。一般使用在电源产品,或者电子,数码,机电产品的电源部分,功能强大。

测量交流电流 电压前端采样电路

测量型电流互感器使用方法: 典型应用电路如图所示: 用法一: 推荐用户按电路图一所示, 输入额定电流为5A ,次级(副边)会产生一个2.5mA 的电流。通过运算放大器,用户可以调节反馈电阻R 值在输出端得到所要求的电压输出。而电容C 及电阻r 是用来补偿相移的。如用户使用软件补偿或不需要补偿相移的场合,电容C 及电阻r 可以不接。图中运算放大器为OP07系列。运算放大器的电源电压通常取±15V 或±12V 。图中反馈电阻R 要求精度优于1%,温度系数优于50ppm 。 电路参数的确定: 1.反馈电阻R 的值,反馈电阻R= V0/Ii ,如果要求输出电压很精确,则R 可取略小于V0另串联一个可调电阻进行微调,以达到所要求的精度。 2.补偿电容C 及补偿电阻r 的值:C 的经验值一般为0.01----0.033μF, 如果C 选0.033,则 r=95×(22R/ФC-1)1/2 如果C 选0.022,则 r=143×(15R/ФC-1)1/2 其中,R 为反馈电阻的值,以K ?为单位:Фc 为每只互感器上标的未补偿前的相移值,以分为单位。计算出来的补偿电阻r 的值是以K ?为单位的。 用法二: 如电路图二所示,并电阻直接输出电压。 优点:采样电路简单,由于不使用运放,不需要外接直流电源,避免了运放的温飘等不稳定因素,大大提高了可靠性。 缺点:带载能力弱,由于负载大相位差变大,动态范围减小。 应用实例 用 GCT–201B 设计一个电路,其额定输入电流为5 A ,输出电压为5V 。(GCT–201B 上标的Фc 为15′),参数确定如下: 1. 反馈电阻R=VO/Ii=5V/ 2.5mA =2K ? 2. 补偿电容C 及补偿电阻r 的值: 如果C 选0.033μF,则 r=95×(22R/ФC-1)1/2 =95×(22 ×2/15-1)1/2 =132K ?。 如果C1选0.022μF ,则 r=143×(15R/ФC-1)1/2 =143×(15 ×2/15-1)1/2 =143K 测量型电压互感器使用方法: 典型应用电路如图所示 图一 图二 用法一: 推荐用户按电路图一所示 :输入电压经限流电阻R ′,使流过GPT–202B 电压互感器初级(原边)的额定电流为2mA (或某个用户自定的理想值),副边会产生一个相同的电流。通过运算放大器,用户可以调节反馈电阻R 的值在输出端得到所要求的电压输出。电容C 及电阻r 是用来补偿相移的。如用户使用软件补偿或不需要补偿相移的场合,电容C 及电阻r 可以不接。图中运算放大器为OP07 系列,运算放

BUCK变换器电流取样电阻三种位置的选择

BUCK 变换器电流取样电阻三种位置的选择 adlsong 摘要摘要::本文介绍了电流模式Buck 变换器的电流取样电阻放置的三种位置:输入端,输出端及续流管,详细的说明了这三种位置各自的优点及缺点,同时还阐述了由此而产生的峰值电流模式和谷点电流模式的工作原理以及它们各自的工作特性。文中同时给出了使用高端主开关管导通电阻、低端同步开关管导通电阻以及电感DCR 作为电流取样电阻时,设计应该注意的问题。 关键词关键词::Buck 变换器 峰值电流模式 谷点电流模式 Abstract: In current mode, current sense resistor can be placed on three kinds of position: input loop, output loop and catch current loop. Their advantages and disadvantages are introduces in detail. The principles and features of peak current mode and valley current mode are also presented. The cautions and tips for taking Rdson of top Mosfet and bottom Mosfet and DCR of the inductor as the current sense resistor are also given in the end. Key Words: Buck Converter, Peak Current Mode Valley Current Mode 相对于电压模式的Buck 变换器,尽管电流模式的Buck 变换器需要精密的电流检测电阻并且这会影响到系统的效率和成本,但电流模式的Buck 变换器仍然获得更为广泛的应用,这是因为其具有以下的优点:①反馈内在cycle-by-cycle 峰值限流;②电感电流真正的软起动特性;③精确的电流检测环;④输出电压与输入电压无关,一阶的系统容易设计反馈环,系统的稳定余量大稳定性好,对于所有陶冶电容容易补偿;⑤易实现多相位/多变换器的并联操作得到更大输出电流;⑥允许大的输入电压纹波从而减小输入滤波电容。 对于电流模式的Buck 变换器,电流的取样电阻有三种不同的放置方式:①放置在输入回路即与高端主开关管相串联;②放置在输出回路即与电感相串联;③放置在续流回路即与续流的二极管或同步开关管相串联。有时候为了提高效率,可以取消外加的取样电阻,用高端主开关管的导通电阻、电感DCR 或续流同步开关管的导通电阻作电流取样电阻。本文将详细的阐述这些问题并比较它们各自的优缺点,从而使电源工程师有针对性的选取不同的架构来满足实际的应用要求。 1电流取样电阻在输入端的Buck 变换器 电流取样电阻在输入端的Buck 变换器如图1所示。在电流模式的Buck 变换器拓朴结构中,反馈有二个环路:一个电压外环,另一个是电流的内环。[1] 电压外环包括电压误差放大器,反馈电阻分压器和反馈补偿环节。电压误差放大器的同相端接到一个参考电压Vref ,反馈电阻分压器连接到电压误差放大器反相端VFB ,反馈环节连接到VFB 和电压误差放大器的输出端VC 。若电压型放大器是跨导型放大器,则反馈环节连接到电压误差放大器的输出端VITH 和地。目前,在高频DCDC 的应用中,跨导型放大器应用更多。本文就以跨导型放大器进行

开关电源的电流采样电阻能否短接学习资料

开关电源的电流采样电阻能否短接学习资料 变频器开关电源维修之开关电源的电流采样电阻能否短接 变频器开关电源的故障检修中,有时碰到开关管源(射)极所串接电流采样电阻的断路现象,见图一中 R37(1.5Ω2W)。检查开关管K2225、变压器B1、U1振荡芯片、D13、D14等关键元件均无损坏,故障可能只是R37开路而已,换用同型号优质元件,也许故障就能排除。 开关管源极串接此电阻的目的,是利用流入开关变压器初线绕组的工作电流,在R37上产生压降,此电压信号发映开关管工作的电流的大小,输入U1的3脚,用作限流及过电流动作保护。当1脚电压幅度(因过电流达600m A以上)升到1V以上时,开关电源会作出停振动作,以保护开关管及负载电路的安全。因而该电阻被称为电流采样电阻。 该电阻的取值范围从0.几Ω~1.5Ω,按道理说,变频器的功率越大,开关电源输出的电流越大,显然该电阻的阻值会越小。但是也有相当多的例外(请参见图一、图二),例如 5.5k W的变频器,该电阻取值为1.5Ω,但 1.5k W的变频器,该电阻取值是 1.1Ω,反而更小,小变频器反而需要输出更大的工作电流吗?当然不是。这是什么原因呢?

将上面的问号暂且按下不表,听我讲述一个故障实例:检修一台 1.5k W德力西变频器的开关电源,查电流采样电阻(1.5Ω2W)已呈断路状态,检测其它元件未见异常。维修者手有头暂无功率电阻更换,为了应急修复,便将此电阻用短路线连接,然后上电开机,只听得“啪啦”一声响,电路冒烟。 停电检修,发现开关管K2225炸裂,开关管栅级电阻断路,振荡芯片损坏,初级绕组4只限流电阻烧毁,故障扩大! 维修者惶惑了:以前也这么干过呀,在二次负载电路无故障情况下,将此电阻短接,应急修复,是能正常运行的。但本台变频器,限流电阻为何不能短接呢? 以前有网友问过,将该电阻短接会怎么样?有无损坏开关管的风险?可不可以短接此电阻将开关电源应急修复? 答案是不一的,有人回答正常情况下不会损坏开关管,有人说,短接不得,上电即会损坏开关管。哪个答案才是正确的呢?两种答案其实都有道理又都不能说是完全正确!

相关文档
相关文档 最新文档