文档库 最新最全的文档下载
当前位置:文档库 › 导数及其应用综合训练(二)

导数及其应用综合训练(二)

导数及其应用综合训练(二)
导数及其应用综合训练(二)

导数及其应用综合训练(二)

班级: 姓名: .

一、选择题:(每小题5分,共12小题,满分60分)

(1)若物体的运动规律是()s f t =,则物体在时刻0t 的瞬时速度可以表示为( B ) ①000

()()

lim

t f t t f t t

?→+?-?;②000

()()

lim

t f t f t t t

?→-+??;③0()f t ';④()f t '.

(A )①② (B )①③ (C )②③ (D )②④

(2)下列等式成立的是( C )

(A )(3)3'=

(B )3

2

(2)5x x '=

(C )3

2(2)6x x -=-

(D )5

5

(2)10x x '=

(3)下列函数在0x =处没有切线的是( C )

(A )2

3cos y x x =+

(B )sin y x x = (C )12y x

x =

+ (D )1cos y x

=

(4

)设函数3

2

sin ()tan 3

2

f x x x θθ

=

+

+,其中5[0]12

πθ∈,

,则导数(1)f '的取值范围

是( D ) (A )[22]-,

(B

(C

)2]

(D

)2]

(5)函数()sin cos f x x x =+在点(0(0))f ,处的切线方程为( A )

(A )10x y -+=

(B )10x y --=

(C )10x y +-=

(D )10x y +==

(6)设函数()f x 的图象如图所示,则导函数()f x '的图象可能为( C )

(A ) (B ) (C ) (D )

(7)设()()f x g x ,在[]a b ,可导,且()()f x g x ''>,则当a x b <<时,有(

C

(A )()()f x g x >

(B )()()

f x

g x <

(C )()()(

)()f x g a g x f a +>+

(D )()(

)()()f x g b g x f b +>+

(8)已知函数32()(0)f x ax bx cx d a

=+++≠为单调递增函数,则下列式中成立的是( B )

(A )2030a b ac >+,≥

(B )2030a b ac >-,≤ (C )2030a b ac <+,≥

(D )2030a b ac <-,≤

(9)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,

不可能正确的是( D )

(A ) (B ) (C ) (D )

(10)已知函数()ln f x x x =,若对所有1x ≥都有()1f x a x -≥,则实数a 的取值范围是( A )

(A )(1]-∞,

(B )()-∞+∞,

(C )[1)+∞,

(D )不能确定

(11)函数()f x 定义域为R ,(1)2f -=,对任意x ∈R ,()2f x '>,则()24f x x >+的解集为

( B )

(A )(11)-, (B )(1)-+∞, (C )(1)-∞-, (D )()-∞+∞,

(12)函数2()(1)n f x ax x =-在区间[01],上的图象如图所示,则n 可能是( A )

(A )1

(B )2

(C )3

(D )4

二、填空题:(每小题5分,共4小题,满分20分)

(13)直线x a =与函数33y x x =-的图象有相异的三个交点,则a 的取值范围是 . 答案:(22)-,

(14)对任意x ,有3()4(1)3f x x f '==,,则()f x = . 答案:4()2f x x =+

(15)已知2

(1)a x x =+ ,,(1)b x t =- ,,t 为常数,若函数()f x a b =? 在区间(11)-,上是增函

数,则t 的取值范围是 . 答案:5t ≥

(16)内接于半径为R 的球且体积最大的圆柱体的高为 .

3

三、解答题:(每小题10分,共2题,满分20分) (17)设函数22()ln 0f x a x x ax a =-+>,. (Ⅰ)求()f x 的单调区间;

(Ⅱ)求实数a ,使21()e f x e -≤≤对[1]x e ∈,恒成立. 解:(Ⅰ)因为2

2

()ln f x a x x ax =-+,其中0x >,所以2

()(2)

()2a

x a x a f x x a x

x

-+'=

-+=

由于0a >,所以()f x 的增区间为(0)a ,,减区间为()a +∞,. (Ⅱ)由题意得(1)11f a e =--≥,即a e ≥,

由(Ⅰ)知()f x 在[1]e ,内单调递增,要使21()e f x e -≤≤对[1]x e ∈,恒成立,

只要222

(1)11()f a e f e a e ae e

=--??=-+?≥≤,解得a e =.

(18)设2

()1x

e

f x ax

=+,其中a 为正实数.

(Ⅰ)当43

a =

时,求()f x 的极值点;

(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 解:(Ⅰ)2

2

2

12()(1)

x

ax ax f x e ax +-'=+,当43

a =

时,令()0f x '=,则24830x x -+=,

解得12312

2

x x ==

,.

当x 变化时,()f x '与()f x 的变化情况如下表:

所以132

x =

是极小值点,212

x =

是极大值点.

(Ⅱ)若()f x 为R 上的单调函数,则()f x '在R 上不变号,

又0a >,知2210ax ax -+≥在R 上恒成立,因此2444(1)0a a a a ?=-=-≤, 由此并结合0a >,知01a <≤.

(19)已知函数2

1()(21)2ln ()

2

f x ax a x x a =

-++∈R .

(Ⅰ)求()f x 的单调区间;

(Ⅱ)设2()2g x x x =-,若对任意1(02]x ∈,,均存在2x (02]∈,,使得12()()f x g x <,求a 的

取值范围.

解:(Ⅰ)因为2(1)(2)

()(21)(0)

ax x f x ax a x x x

--'=-++

=

>.

①当0a ≤时,010x ax >-<,,在区间(02),上()0f x '>,在区间(2)+∞,上()0f x '<,

故函数()f x 的单调递增区间是(02),,单调递减区间是(2)+∞,; ②当102

a <<

时,12a

>,在区间1(02)()a

+∞,,,上,()0f x '>,在区间1

(2)a

,上,()0f x '<.

故函数()f x 的单调递增区间是1

902)()a

+∞,,,,单调减区间是1

(2)a

,.

③当12a =时,2

(2)()02x f x x

-'=≥,函数()f x 的单调递增区间是(0)+∞,. ④当12

a >

时,1

02a <

<,在区间1(0)(2)a +∞,,,上()0f x '>,在区间1

(2)a

,上,()0f x '<,故函数()f x 的单调递增区间是1

(0)(2)a

+∞,,,,单调递减区间为1

(2)a

,.

(Ⅱ)若对任意1(02]x ∈,,均存在2(02]x ∈,,使得12()()f x f x <,等价于在区间(02],上,

max max

()()f x g x <.由题意知,max ()0g x =,由(Ⅰ)知,

①当12

a ≤

时,()f x 在区间(02],上单调递增,故m a x ()(2)222ln f x f a x ==--+,所以

222l n 20

a --+<,解得ln 21a >-,故1ln 212

a -<≤.

②当12

a >

时,()f x 在区间1(0)a

上单调递增,在区间1(

2)a

,上单调递减,故

m

a x

11

()()22ln 2f x f a

a a

==---.

由12

a >

可知11ln ln

ln

12a e

>>>-,2ln 22ln 222ln 0a a a >--<--<,,.

故1

22ln 0

2a a

--

-<,所以max ()0f x <

综上所述,ln 21a >-,故a 的取值范围是(ln 21)-+∞,. (20)已知函数32

1

()2()32

a f x x x x a =-+

-∈R .

(Ⅰ)当3a =时,求函数()f x 的单调区间;

(Ⅱ)若对于任意[1)x ∈+∞,都有()2(1)f x a '<-成立,求实数a 的取值范围; (Ⅲ)若过点1

(0)3-,可作函数()y f x =图象的三条不同切线,求实数a 的取值范围.

解:(Ⅰ)当3a =时,函数32

13()23

2

f x x x x

=-+

-,得2()32(1)(2)f x x x x x '=-+-=---.

所以当12x <<时,()0f x '>,函数()f x 单调递增; 当1x <或2x >时,()0f x '<,函数()f x 单调递减.

所以函数()f x 的单调递增区间为(12),,单调递减区间为(1)-∞,和(2)+∞,.

(Ⅱ)由32

1()23

2

a f x x x x

=-+

-,得2()2f x x ax '=-+-.

因为对于任意[1)x ∈+∞,都有()2(1)f x a '<-成立. 所以问题转化为对于任意[1)x ∈+∞,都有max ()2(1)f x a '<- 因为2

2

()()224

a a

f x x '=--+

-,其图象开口向下,对称轴为2

a x =

①当12

a

≤,即2a ≤时,

导数的综合应用教学设计(正式版)

导数的综合应用 一、教材分析 我们在复习过程中,发现学生对于导数能够运用,但在具体运用过程中,问题比较多的是如何运用导数去解决问题的手段或解决问题的途径不够宽,或解法不是很灵活。因此,我通过本堂课进一步巩固这部分内容,利于学生进一步地掌握导数知识的运用:确定单调性、求极值、求最值、求切线的斜率从而解决恒成立与不等式问题应用。二、学情分析 根据教材结构与内容分析,结合高考考纲要求,立足学生的认知水平,制定如下教学目标和重、难点。 三、教学目标 知识与技能: 通过高考中涉及到导数的常见题型,在学生掌握求曲线斜率,判断函数单调性,及如何求极值,最值的基础上,总结出两种常见题型。 过程与方法: 通过动手计算培养学生观察、分析、比较和归纳能力。 通过问题的探究体会数形结合,分离变量,构造函数的数学思想。 情感、态度与价值观: 通过常见题型的常见解决方法,是学生认识到解决有关导数的综合问题并不复杂,从而激发学生的学习兴趣。 四、教学重点、难点 教学重点:利用导数判断函数单调性,极值,最值。 教学难点:以导数为工具处理恒成立问题,及证明不等式。 教学过程 本节课教学过程主要分为:知识回顾,典例示范,知识小结,考点测评,高考赏析五个板块 【知识回顾】(重在对知识的进一步理解和掌握。有利于构建知识网络,回归教材而高于教材) 1.导数定义,判断函数单调性,求极值,最值的方法。 【注】由学生自己来归纳,目的是加强学生的印象。

2.课前热身: (1)已知直线 ax-by-2=0 与曲线 在点(1,1)处的切线互相垂直,则 = , (2)函数 , 在 上的最大值和最小值分别为 【注】(1)学生阅读并回顾知识要点,巩固基础。 (2)导数的几何意义,考察函数的单调区间、极值、最值等性质。这是导数运用过程中最常用的。 (3)注意极值不一定是最值,要考虑函数区间的开闭及单调性。 【典例示范】 例一:已知函数 (1)求f(x)的最小值。 (2)若对所有x 1都有 ,求实数a 的取值范围。 解析:需先求出定义域 【注】在求最值之前须讨论函数的定义域,利用分离变量的方法解决恒成立问题。这也是本节课的重点。 【注】当某区间只有一个极大(小)值时,该值就是最大(小)值 例二:已知向量 若函数在区间 上是增函数,求t 的取值范围。 解析: 由f(x)在(-1,1)上单调递增,可知 恒成立,即 移项有 令 只须求g(x)在 的最大值 . 3 y x =a b 32 23125y x x x =--+[]0,3()ln f x x x =≥()1f x ax ≥-'''min 10110,11()()()()()e e e x f e e f x f x f x f ><==- 且=lnx+1,令,则x>,则00,可知g(x)在1,+单调递增,所以g(x)(1)=1,得a 1g

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

(完整版)导数及其应用单元测试卷.docx

导数及应用 《导数及其应用》单元测试卷 一、 选择题 1.已知物体的运动方程是 s 1 t 4 4t 3 16t 2 ( t 表示时间, s 表示位移),则瞬时速度为 4 0 的时刻是:( ) A . 0 秒、 2 秒或 4 秒 B . 0 秒、 2 秒或 16 秒 C . 2 秒、 8 秒或 16 秒 D . 0 秒、 4 秒或 8 秒 2.下列求导运算正确的是( ) A . ( x 1 ) 1 1 B . (log 2 x) 1 x x 2 x ln 2 C . (3x ) 3x log 3 e D . x 2 cos x 2sin x 3.曲线 y x 3 2x 4 在点 (13), 处的切线的倾斜角为( ) A . 30° B . 45° C . 60° D . 120° 4.函数 y=2x 3-3x 2-12x+5 在 [0,3] 上的最大值与最小值分别是( ) A.5 , -15 B.5 , 4 C.-4 , -15 D.5 , -16 5.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶 路程 s 看作时间 t 的函数,其图像可能是( ) s s s s O tO tO t O t A . 1 B . C . D . 6.设函数 f (x) 2x 1(x 0), 则 f ( x) ( ) x A .有最大值 B .有最小值 C .是增函数 D .是减函数 7.如果函数 y=f ( x ) 的图像如右图,那么导函数 y=f ( x ) 的图像可能是 ( ) 8.设 f ( x) x ln x ,若 f '(x 0 ) 2 ,则 x 0 ( ) A . e 2 B . e C . ln 2 D . ln 2 2

高中数学导数的应用——极值与最值专项训练题(全)

高中数学专题训练 导数的应用——极值与最值一、选择题 1.函数y=ax3+bx2取得极大值和极小值时的x的值分别为0和1 3,则() A.a-2b=0B.2a-b=0 C.2a+b=0 D.a+2b=0 答案 D 解析y′=3ax2+2bx,据题意, 0、1 3是方程3ax 2+2bx=0的两根 ∴-2b 3a= 1 3,∴a+2b=0. 2.当函数y=x·2x取极小值时,x=() A. 1 ln2B.- 1 ln2 C.-ln2 D.ln2 答案 B 解析由y=x·2x得y′=2x+x·2x·ln2 令y′=0得2x(1+x·ln2)=0 ∵2x>0,∴x=- 1 ln2 3.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则() A.0<b<1 B.b<1 C.b>0 D.b<1 2 答案 A 解析f(x)在(0,1)内有极小值,则f′(x)=3x2-3b在(0,1)上先负后正,∴f′(0)=-3b<0, ∴b>0,f′(1)=3-3b>0,∴b<1 综上,b的范围为0<b<1 4.连续函数f(x)的导函数为f′(x),若(x+1)·f′(x)>0,则下列结论中正确的是() A.x=-1一定是函数f(x)的极大值点 B.x=-1一定是函数f(x)的极小值点 C.x=-1不是函数f(x)的极值点 D.x=-1不一定是函数f(x)的极值点 答案 B 解析x>-1时,f′(x)>0 x<-1时,f′(x)<0 ∴连续函数f(x)在(-∞,-1)单减,在(-1,+∞)单增,∴x=-1为极小值点.

5.函数y =x 33+x 2-3x -4在[0,2]上的最小值是( ) A .-173 B .-103 C .-4 D .-643 答案 A 解析 y ′=x 2+2x -3. 令y ′=x 2+2x -3=0,x =-3或x =1为极值点. 当x ∈[0,1]时,y ′<0.当x ∈[1,2]时,y ′>0,所以当x =1时,函数取得极小值,也为最小值. ∴当x =1时,y min =-173. 6.函数f (x )的导函数f ′(x )的图象,如右图所示,则( ) A .x =1是最小值点 B .x =0是极小值点 C .x =2是极小值点 D .函数f (x )在(1,2)上单增 答案 C 解析 由导数图象可知,x =0,x =2为两极值点,x =0为极大值点,x =2为极小值点,选C. 7.已知函数f (x )=12x 3-x 2-72x ,则f (-a 2)与f (-1)的大小关系为( ) A .f (-a 2)≤f (-1) B .f (-a 2)

导数的综合应用题型及解法修订稿

导数的综合应用题型及 解法 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

导数的综合应用题型及解法 题型一:利用导数研究函数的极值、最值。 1.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ; 题型二:利用导数几何意义求切线方程 2.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 题型三:利用导数研究函数的单调性,极值、最值 3.已知函数 ))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 4.已知三次函数 32()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-. (1) 求函数()y f x =的表达式; (2) 求函数()y f x =的单调区间和极值; 5.设函数()()()f x x x a x b =--. (1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的值; (2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点. 题型四:利用导数研究函数的图象 6.如右图:是f (x )的导函数, )(/x f 的图象如右图所示,则f (x )的图象只可能是( D ) (A ) (B ) (C ) (D ) 7.函数的图像为14313+-=x x y ( A ) x y o 4 -2 4 -2 - -x y o 4 -2 4 -2 --x y y 4 -2 4 -2 --6 6 6 6 y x -4 -2 o 4 2 2 4

导数的综合应用

导数的综合应用 ★★★高考在考什么 【考题回放】 1.(06江西卷)对于R 上可导的任意函数f (x ),若满足(x -1) f ' (x ) ≥0,则必有( C ) A . f (0)+f (2)<2f (1) B. f (0)+f (2) ≤2f (1) C. f (0)+f (2) ≥2f (1) D. f (0)+f (2) >2f (1) 解:依题意,当x ≥1时,f ' (x )≥0,函数f (x )在(1,+∞)上是增函数;当x <1时,f ' (x )≤0,f (x )在(-∞, 1)上是减函数,故f (x )当x =1时取得最小值,即有f (0)≥f (1),f (2)≥f (1),故选C 2.(06全国II )过点(-1,0)作抛物线y=x 2+x +1的切线,则其中一条切线为 (A )2x+y +2=0 (B )3x-y +3=0 (C )x+y+1=0 (D )x-y+1=0 解:y '=2x +1,设切点坐标为(x 0,y 0),则切线的斜率为2x 0+1,且y 0=x 02+x 0+1 于是切线方程为y -(x 02+x 0+1)=(2x 0+1)(x-x 0),因为点(-1,0)在切线上,可解得 x 0=0或-4,代入可验正D 正确。选D 3.(06四川卷)曲线y =4x-x 3在点(-1,-3)处的切线方程是D (A )y=7x+4 (B )y=7x+2 (C )y=x-4 (D )y=x-2 解:曲线y =4x-x 3,导数y '=4-3x 2,在点(-1,-3)处的切线的斜率为k=1,所以切线方程是y=x-2,选D. 4.(06天津卷)函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,则函数f (x )在开区间(a,b )内有极小值点( ) A .1个 B .2个 C .3个 D . 4个 解析:函数f (x )的定义域为开区间(a,b ),导函数f ' (x )在(a,b )内的图象如图所示,函数f (x )在开区间(a,b )内有极小值的点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个,选A. 5.(浙江卷)f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是 (A)-2 (B)0 (C)2 (D)4 解:f ' (x )=3x 2-6x =3x (x -2),令f ' (x )=0可得x =0或2(2舍去),当-1≤x <0时,f ' (x )>0,当0

《导数及其应用》强化训练试题

《导数及其应用》强化训练试题 一、选择题 1.已知2)(x x f =,,则=')3(f = ( C ) A 0 B x 2 C 6 D 9 2.满足()()1 0f x dx f a =?,其中的函数()21f x x =+,则a 的值是( B ) A 112-或 B 12 C 13 D 113 -或 3.曲线()ln 32y x =-在点(1,0)处的切线方程是( C ) A 74y x =+ B 72y x =+ C 33y x =- D 2y x =- 4.函数f (x )=3x 3-x 的极大值、极小值分别是( D ) A 1,-1 B 132,612 - C 1,-17 D 29,29- 5.()2402cos 1x dx π -=? ( A ) A 12 B 1 C 12 - D -1 6. 若函数32()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是 ( C ) A. 1(,)3+∞ B. 1(,)3-∞ C. 1[,)3+∞ D. 1(,]3 -∞ 7.函数x e x x f -?=)(的一个单调递增区间是( A ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 8.已知函数()y xf x '=的图象如图1所示,则函数y=f (x)的图象可能为 ( C ) 二、填空 9.某物体做直线运动,其运动规律是()2v t t =- ( t 的单位是秒,s 的单位是米),则它在[]1,4 上的路程为 3/2 . 10. 若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程是__4x-y-3=0__

导数综合应用复习题经典

导数综合应用复习题经典 RUSER redacted on the night of December 17,2020

导数综合应用复习题 一、知识回顾: 1.导数与函数单调性的关系 设函数()f x 在某个区间内可导,则在此区间内: (1)0)(>'x f ?)(x f ↗,)(x f ↗?()0f x '≥; (2)0)(≠'x f 时,0)(>'x f ?)(x f ↗ (单调递减也类似的结论) 2.单调区间的求解过程:已知)(x f y = (1)分析)(x f y =的定义域; (2)求导数)(x f y '='; (3)解不等式0)(>'x f ,解集在定义域内的部分为增区间 (4)解不等式0)(<'x f ,解集在定义域内的部分为减区间 3.函数极值的求解步骤: (1)分析)(x f y =的定义域; (2)求导数)(x f y '='并解方程()0f x '=; (3)判断出函数的单调性; (4)在定义域内导数为零且由增变减的地方取极大值; 在定义域内导数为零且由减变增的地方取极小值。 4.函数在区间内的最值的求解步骤: 利用单调性或者在求得极值的基础上再考虑端点值比较即可。 二、例题解析: 例1、已知函数321()13 f x x ax ax =+++ (1)若在R 上单调,求a 的取值范围。 (2)问是否存在a 值,使得()f x 在[]1,1-上单调递减, 若存在,请求a 的取值范围。 解:先求导得2()2f x x ax a '=++ (1 )()f x 在R 上单调且()f x '是开口向上的二次函数 ∴()0f x '≥恒成立,即0?≤ ∴2 440a a -≤,解得01a ≤≤ (2)要使得()f x 在[]1,1-上单调递减 且()f x '是开口向上的二次函数 ∴()0f x '≤对[]1,1x ∈-恒成立, 即()() 11201120f a a f a a '-=-+≤???'=++≤?? 解得a ∈? ∴不存在a 值,使得()f x 在[]1,1-上单调递减。 例2、已知函数321()313 f x x x x =+-+, 2()2 g x x x a =-++ (1)讨论方程()f x k =(k 为常数)的实根的个数。 (2)若对[]0,2x ∈,恒有()f x a ≥成立,求a 的取值范围。 (3)若对[]0,2x ∈,恒有()()f x g x ≥成立,求a 的取值范围。 (4)若对[]10,2x ∈,[]20,2x ∈,恒有()12()f x g x ≥成立,

高二数学导数及其应用综合检测综合测试题

导数及其应用综合检测 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2010·全国Ⅱ文,7)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则() A.a=1,b=1B.a=-1,b=1 C.a=1,b=-1 D.a=-1,b=-1 2.一物体的运动方程为s=2t sin t+t,则它的速度方程为() A.v=2sin t+2t cos t+1 B.v=2sin t+2t cos t C.v=2sin t D.v=2sin t+2cos t+1 3.曲线y=x2+3x在点A(2,10)处的切线的斜率是() A.4 B.5 C.6 D.7 4.函数y=x|x(x-3)|+1() A.极大值为f(2)=5,极小值为f(0)=1 B.极大值为f(2)=5,极小值为f(3)=1 C.极大值为f(2)=5,极小值为f(0)=f(3)=1 D.极大值为f(2)=5,极小值为f(3)=1,f(-1)=-3 5.(2009·安徽理,9)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是() A.y=2x-1 B.y=x C.y=3x-2 D.y=-2x+3 6.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a等于() A.2 B.3 C.4 D.5 7.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)

+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是( ) A .(-3,0)∪(3,+∞) B .(-3,0)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-∞,-3)∪(0,3) 8.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( ) A .①② B .③④ C .①③ D .①④ 9.(2010·湖南理,5)??2 4 1x d x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2 10.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在x ∈(-∞, +∞)是增函数,则m 的取值范围是( ) A .m <2或m >4 B .-4f (b )g (b ) B .f (x )g (a )>f (a )g (x ) C .f (x )g (b )>f (b )g (x ) D .f (x )g (x )>f (a )g (x )

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

(完整版)《导数及其应用》单元测试卷

《导数及其应用》单元测试 一、填空题(本大题共14题,每小题5分,共计70 分) 1、函数()cos sin f x x x x =+的导数()f x '= ; 2、曲线2 4x y =在点(2,1)P 处的切线斜率k =_________ ___; 3、函数13)(2 3+-=x x x f 的单调减区间为_________ __ _____; 4、设()ln f x x x =,若0'()2f x =,则0x =__________ ______; 5、函数3 2 ()32f x x x =-+的极大值是___________; 6、曲线3 2 ()242f x x x x =--+在点(1,3)-处的切线方程是________________; 7、函数93)(2 3 -++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =_______ __; 8、设曲线2 ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ____________; 9、已知曲线3lnx 4x y 2-=的一条切线的斜率为2 1 ,则切点的横坐标为_____________; 10、曲线3 x y =在点(1,1)处的切线与x 轴、直线2=x 所围成的三角形的面积为 ; 11、已知函数3 ()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m , 则M m -=___________; 12、设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = ; 13、已知函数)(x f x y '=的图像如右图所示(其中)(x f '是函数))(的导函数x f , 下面四个图象中)(x f y =的图象大致是______ ______; ① ② 14、将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形, 记2 (S =梯形的周长) 梯形的面积 ,则S 的最小值是___ ____。

导数及其应用专题训练

导数及其应用专题训练 (时间:100分钟满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.若函数y=e x+mx有极值,则实数m的取值范围是() A.m>0 B.m<0 C.m>1 D.m<1 2.函数f(x)=x2+x-ln x的零点的个数是() A.0 B.1 C.2 D.3 3.函数f(x)=-的图象大致为() 4.已知函数f(x)=a x+x2-x ln a,对任意的x1,x2∈[0,1],不等式|f(x1)-f(x2)|≤a-2恒 成立,则a的取值范围为() A.[e2,+∞) B.[e,+∞) C.[2,e] D.[e,e2] 5.已知定义在R上的函数f(x),其导函数为f'(x),若f'(x)-f(x)<-3,f(0)=4,则不等式f(x)>e x+3的解集是() A.(-∞,1) B.(1,+∞) C.(0,+∞) D.(-∞,0) 6.已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处 的切线方程是() A.y=-2x+3 B.y=x C.y=3x-2 D.y=2x-1 7.若正项递增等比数列{a n}满足1+(a2-a4)+λ(a3-a5)=0(λ∈R),则a6+λa7的最小值为() A.-2 B.-4 C.2 D.4 8.已知函数f(x)为R内的奇函数,且当x≥0时,f(x)=-e x+1-m cos x,记a=-2f(- 2),b=-f(-1),c=3f(3),则a,b,c之间的大小关系是() A.b

导数的综合应用题型及解法(可编辑修改word版)

导数的综合应用题型及解法 题型一:利用导数研究函数的极值、最值。 x 2 处有极大值,则常数c= 6 ; 1.已知函数y f (x ) x(x c)2 个 题型二:利用导数几何意义求切线方程 2.求下列直线的方程: (1)曲线y x 3 x 2 1在P(-1,1)处的切线;(2)曲线y x2 过点P(3,5)的切线; 题型三:利用导数研究函数的单调性,极值、最值 f (x) =x3+ax 2+bx +c, 过曲线y = f (x)上的点P(1, f (1)) 的切线方程为 3.已知函数 y=3x+1 f (x)在x =-2 处有极值,求f (x) 的表达式; (Ⅰ)若函数 y =f (x) 在[-3,1]上的最大值; (Ⅱ)在(Ⅰ)的条件下,求函数 y =f (x) 在区间[-2,1]上单调递增,求实数 b 的取值范围(Ⅲ)若函数 4.已知三次函数f (x) =x3+ax2+bx +c 在x =1 和x =-1 时取极值,且f (-2) =-4 . (1)求函数y =f (x) 的表达式; (2)求函数y =f (x) 的单调区间和极值; 5.设函数f (x) =x(x -a)(x -b) . f(x)的图象与直线5x -y - 8 = 0 相切,切点横坐标为2,且f(x)在x = 1 处取极值,(1)若 a, b 的值; 求实数 f (x) 总有两个不同的极值 (2)当b=1 时,试证明:不论 a 取何实数,函数 点.题型四:利用导数研究函数的图象 f / ( x) 的图象如右图所示,则 f(x)的图象只可能是( 6.如右图:是 f(x)的导函数, D )

3 (A ) (B ) (C ) (D ) y 1 x 3 4x 1个个个个 7. 函数 3 ( A ) 6 4 2 -4 -2 y o 2 4 -2 -4 6 4 2 x -4 -2 y o 2 4 -2 -4 x -4 6 y 6 y 4 4 2 2 y 2 4 x o x -2 -2 -2 2 4 -4 -4 8.方程 2x 3 6x 2 7 0个 (0,2)个个个个个个 ( B ) A 、0 B 、1 C 、2 D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围 f (x ) = - 1 x 3 + 2ax 2 - 3a 2 x + b ,0 < a < 1. 9. 设函数 3 (1)求函数 f (x ) 的单调区间、极值. (2)若当 x ∈[a + 1, a + 2] 时,恒有| f ' (x ) |≤ a ,试确定 a 的取值范围. 2 10. 已知函数 f (x )=x3+ax2+bx +c 在 x =- 3 与 x =1 时都取得极值(1)求 a 、b 的值与函数 f (x )的单调区间 (2)若对 x ∈〔-1,2〕,不等式 f (x ) 0,函数f (x ) = x 3 - ax 在[1,+∞) 上是单调函数. (1)求实数 a 的取值范围; (2)设 x 0 ≥1, f (x ) ≥1,且 f ( f (x 0 )) = x 0 ,求证: f (x 0 ) = x 0 .

导数及其应用单元测试(带答案)

第三章导数及其应用单元测试 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后 的括号内(本大题共12个小题,每小题5分,共60分)。 1.函数y=x+2cosx在[0,]上取得最大值时,x的值为()A.0 B.C.D. 2.函数的单调递减区间是() A.B.C.D. 3.若函数的图象的顶点在第四象限,则函数的图象是 () 4.点P在曲线 上移动,设 点P处切线倾斜角为α, 则α的取值范围是 ()A.[0,] B.0,∪[,π C.[,πD.(, 5.已知(m为常数)在上有最大值3,那么此函数在 上的最小值为() A.B.C.D. 6.函数的单调递增区间是()A. B.(0,3) C.(1,4) D. 7.已知函数时,则()

A.B. C.D. 8.设函数的导函数,则数列的前n项和是 ()A.B.C.D. 9.设f(x)=x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围为()A.[-,+∞] B.(-∞,-3) C.(-∞,-3)∪[-,+∞] D.[-,] 10.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)<0,设a=f(0),b= f(),c= f(3),则() A .a<b<c B.c<a<b C.c<b<a D.b<c<a 11.曲线在点处的切线与坐标轴围成的三角形面积为() A.B.C.D. 12.如图所示的是函数的大致图象,则等于()A.B. C.D.

第Ⅱ卷 二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。 13.设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________. 14.已知曲线交于点P,过P点的两条切线与x轴分别交于A,B两点,则△ABP的面积为; 15.函数在定义域内可导,其图象如图,记的导函数为, 则不等式的解集为_____________ 16.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。 17.(12分)已知函数f(x)=x3-2ax2+3x(x∈R). (1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程; (2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.

高二数学选修2-2导数及其应用测试题(含答案)

高二数学选修2-2导数及其应用测试题 一、 选择题(本大题共12小题,每小题5分,共60分) 1.设x x y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin ) 1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ) . A . 54 B .52 C .51 D .5 3 3.已知2)3(',2)3(-==f f ,则3 ) (32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在 》 4.曲线3 x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 5.已知函数d cx bx ax x f +++=2 3)(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ?的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22 131)(2 3, 当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则 1 2 --a b 的取值范围是( ). A .)1,4 1( B .)1,2 1( C .)4 1,21(- D .)2 1,21(- 7.函数)cos (sin 21)(x x e x f x += 在区间]2 ,0[π 的值域为( ) . A .]21,21[2π e B .)2 1 ,21(2π e C .],1[2π e D .),1(2π e 8.07622 3 =+-x x 在区间)2,0(内根的个数为 ( ) ] A .0 B .1 C .2 D .3

《导数及其应用》单元测试题详细答案

导数单元测试题 11.29 一、填空题 1.函数()2 2)(x x f π=的导数是_______ 2.函数x e x x f -?=)(的一个单调递增区间是________ 3.若函数b bx x x f 33)(3 +-=在()1,0内有极小值,则实数b 的范围是_______ 4.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为______ 5.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为_________ 6.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是_______ 7.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有 ()0f x ≥,则 (1) '(0) f f 的最小值为________ 8.设2 :()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的______________条件 9. 函数)(x f 的图像如图所示,下列数值排序正确的是( ) (A ))2()3()3()2(0/ / f f f f -<<< y (B ) )2()2()3()3(0/ / f f f f <-<< (C ))2()3()2()3(0/ / f f f f -<<< (D ))3()2()2()3(0/ / f f f f <<-< O 1 2 3 4 x 10.函数()ln f x x x =的单调递增区间是____.

导数及其应用 专项训练

导数及其应用 专项训练 一、选择、填空题 1、若2 1(1)ln (21),0, ()2ln , x a a x a x x a f x x x x x a ?--+++?≤. 是(0,)+∞上的减函数,则实数a 的取值范 围是( ) A .[1,e] B .[e,)+∞ C .3 2 (0,]e D .32 [1,e ] 2、设'()f x 是函数()f x 的导函数,且'()()()f x f x x R >∈,2 (2)f e =(e 为自然对数的底数),则不等式2 (2ln )f x x <的解集为( ) A .)e B . C. (0,)e D .(1,)e 3、若直线1y x =+与函数()ln f x ax x =-的图像相切,则a 的值为 . 4、已知函数f (x )=(e x ﹣a )(x +a 2)(a ∈R ),则满足f (x )≥0恒成立的a 的取值个数为( ) A .0 B .1 C .2 D .3 5、函数1221 ()(1)2 x f x e ax a x a -=-+-+在(一∞,十∞)上单调递增,则实数a 的范围是( ) A. {1} B. (-1,1) C. (0. 1) D. {-1,1} 6、设过曲线f(x)= -e x -x(e 为自然对数的底数)上任意一点处的切线为l 1,总存在曲线g(x)=a x+2cosx 上一点处的切线l 2,使得l 1⊥l 2,则实数a 的取值范围为 7、曲线()2 a f x x x =+ 在点()()1,1f 处的切线与直线20x y +-=垂直,则实数a = . 8、已知函数1ln )(2++=x a x x f ,若1x ?,[)+∞∈,32x ,)(21x x ≠,[]2,1∈?a , m x x x f x f <--1 221) ()(, 则实数m 的最小值为( ) A .3 20- B .2 9 - C .419- D .3 19 - 9、曲线x y = 在点)2,4(处的切线的斜率为 10、函数13)(23-+=x ax x f 存在唯一的零点0x ,且0x 0<,则实数a 的取值范围是 . 11、曲线()1x y ax e =+在点()01, 处的切线的斜率为2-,则a =________. 12、已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是 _______________。

相关文档
相关文档 最新文档