文档库 最新最全的文档下载
当前位置:文档库 › SPS系统总装车间运行方式分析

SPS系统总装车间运行方式分析

SPS系统总装车间运行方式分析
SPS系统总装车间运行方式分析

总装车间SPS运行方式分析

随着丰田生产方式在汽车行业的引入,总装车间物流的SPS(Set Parts System)配货方式也在中国得到了极大关注,无论是丰田合资、大众合资还是通用合资都在大力推广应用。SPS配货方式就是按每车装配辆份配送货物的方式。本文将重点分析SPS配货方式的优势、适用条件以及如何合理有效地应用。

SPS运行方式

现以总装车间为例,说明SPS运行方式。

图1是年生产纲领单班5000辆整车的总装车间平面布置图。整车装配在一环形线上完成一次内饰、底盘装配和二次内饰装配,全线有26个装配工位(图1中蓝线所示区域)。SPS 区域分三块(图1中粉色线所示区域),即仪表板分装零件配货区、底盘零件配货区和一次内饰及二次内饰零件配货区。

图1 总装车间平面布置

总装车间厂房内仅为中小零件的配货区,大件零部件配货、零部件的拆箱、开捆及大件零部件的分装均在另一厂房内,即物流仓库(见图2)。

图2 物流仓库平面布置

1.配货顺序

总装车间的物流系统在信息控制系统指导下,有条不紊地从仓库货架取出所需零件,按SPS 配货方式送到指定工位,配货顺序如下:

(1)中央控制室(CCR)根据市场分析及订单情况安排生产计划,并将生产计划的车辆顺序信息向总装车间情报中心传递。

(2)车辆顺序信息传到总装车间情报中心,由情报信息员根据实际工位查找相应信息指示卡。

(3)情报信息员将信息指示卡投递到SPS供应管理板处。

(4)物流配货人员从SPS供给管理板处获取信息选取配货指示票,配货指示票上标有某个车型在某个工程装配零件的种类和数量。

(5)物流人员按照配货指示票到SPS区配货,放在相应的台车上,物流人员将部品放到运输台车上。

(6)配完后放在供给待发区,物流人员将零件供给到生产线的起始位置。

(7)物流人员将空台车返回到零件供给待发区,通过SPS方式配货完成。

2. 物料配送的四个步骤

在图3的SPS物料及信息流程图中我们可以看到,所有的物料都是经过四个步骤完成运送的:接收物料需求信息(图3中①);按需求信息进行配货(图3中②);将配货送到装配线的接收端(图3中③);随装配线完成装配工序(图3中④)。

图3 SPS物料及信息流程图

SPS运行方式的优势

1.上线点减少

一辆份零件被分成有限的几部份,分别在几个上线点与整车随行。上线点的减少意味着在线旁的物流线路变得简单、清晰了。简单的物流线路意味着交叉点的减少、冲突点的降低。

2.线旁物料面积减少

由于整车所需装配的零件均按辆份与车身随行,线旁的物料面积就不需要了。以往由于生产纲领提高所造成的线旁物料面积的矛盾也就不存在了。

3.通道面积可能削减

如果能够整线实现SPS配货方式,SPS配货的上线点均设在线的端部,那么在整线中部工位没有物料需求,通道也就可以削减或取消了。

4.防错功能

装配线上操作工人的工作内容由原来的挑捡零件和装配零件两道工序变为只有装配零件,而且由于所装配零件有明显差异,操作工人不会出现错装;由于每个随行的料架均是按辆份配送的,所以如果装配后料架上有剩余零件,则为漏装,操作工人可及时发现和纠正错误。

5.减轻操作工人的劳动强度

操作工人不需要去线边的料架去取零件。由于料架是随行的,操作工人可以就近取件,减少了操作工人频繁走动所增加的劳动强度。

6.提高了劳动生产率

由于操作工人减少了取件及挑捡零件的用时,减少了每个装配零件所需的工时,使得整线提高节拍成为可能。

SPS运行方式的局限

1.节省面积问题

无庸置疑,在SPS配货方式中,最大限度地节省了装配线旁的物料面积,但是它增加了配货面积,这部分面积是采用传统送货方式时所不需要的。从整个车间角度上看,总面积没有节省反倒是增加了。

以前面所提厂项为例,16?000m2的总面积中,装配车间生产面积为4?880 m2,物流配货面积为7?186 m2,通道面积为2?926 m2,其他辅助面积为1?008 m2。从上面的数据可以看出物流配货面积约是装配生产面积的1.47倍(不包括通道面积)。

在另两个丰田厂项中,一个厂总装车间装配生产面积约为13?600 m2,而物流面积达到24?600 m2,装配与物流面积之比约为1 : 1.8;另一个厂总装车间装配生产面积约为41?000 m2,而物流面积达61?200 m2,装配与物流面积之比约为1 : 1.49。

而我们以往采用送货制生产方式时,设计的装配生产面积与物流面积之比是按1 : (0.6~0.8)考虑的。

物流面积是非生产面积,是不创造价值的面积。物流面积的增加大大地增加了新厂建设投资和生产厂的场地占用成本,实际上最终增加了产品的成本。这与丰田的精益思想是相悖的。

2.防错功能问题

这里的防错功能包括两个方面,一方面是防装错,即防止差异较小的零件装错车;另一方面是防漏装。在同一条生产线上生产的车型,既使是多品种,也都是一个系列的车型,也就是说,在同一条生产线上生产的车型中的大部分零件及总成件都是一样的。为了少量差异零件的防错装而把所有零件都放在料车上,从成本和操作难度上综合考虑,是否必要,值得我们探究。

3.配送零件质量保证问题

由于配送零件是按辆份送到每个车旁的,也就是说没有备份,当装配过程中出现质量问题(如零件不合格、损坏或遗失)时,由于没有备份零件,没有线旁的物料供给,那么这辆车只能随其他车一起下线,再到返修区进行装配了。这样大大就增加了返修区的工作量,增加了返

修面积。

因此,SPS运行方式对入库零件质量要求非常高,要求配送的零件合格率为100%,并且保证在运送过程中,无质量事故。这对于同种零件成批送货相对容易保证,而对于按辆份配送的方式,由于要将结构各异的零件都放在同一配送小车上,保证起来会有一定的困难。

4.提高生产效率问题

这个问题应该从两个方面讨论:

一个方面是零件搬运问题。SPS运行方式造成了零件的“二次搬运”,将零件取出送到配送区,再从配送区取出零件放到随行料架上,比传统的送货方式增加了一次零件配送,是属于丰田生产方式所说的“7种浪费”之一,可见其是影响生产效率的。

另一个方面是人在装配过程中的取件用时问题。SPS运行方式一直强调操作工人从随行料架上取件比线旁取件所走的距离短。事实上,笔者在实行SPS运行方式的总装车间看到的是随行料架放在两工位之间,操作工人到随行料架取件至少要走出1m远,与到线边料架相比并不近。因此,通过随行料架取件和到线旁料架取件对工人装配效率的影响区别是微乎其微的。

5.SPS运行方式适用的零件问题

SPS运行方式是将整车零部件按辆份放在随行料架上,但我们很难想象大型总成件,如保险杠、座椅和轮胎等也放在随行料架上,这些零件会使随行料架变得很大;另外还有一些有分装内容的总成件,如仪表板、车门、动力总成和风挡玻璃等也不会采用随行料架送到装配工位的。由此可见,SPS运行方式适用的是中小型的零件,如成套锁、门把手和内护板等件。

SPS的适用条件

SPS运行方式最大的优势体现在不同种类车型的差异件的取用和判断上,最大限度地减少了操作工人的判断失误。

SPS运行方式并不适用于大批量的整车生产方式。SPS运行方式更适用的是批量小、品种多且差异件多的整车试制线,或一些零件比较小,而零件在运送过程中不易受到损伤的总成件分装。

电力系统运行方式及潮流分析实验报告

电力系统运行方式及潮 流分析实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

电力系统第一次实验报告——电力系统运行方式及潮流分析实验

实验1 电力系统运行方式及潮流分析实验 一、实验目的 1、掌握电力系统主接线电路的建立方法 2、掌握辐射形网络的潮流计算方法; 3、比较计算机潮流计算与手算潮流的差异; 4、掌握不同运行方式下潮流分布的特点。 二、实验内容 1、辐射形网络的潮流计算; 2、不同运行方式下潮流分布的比较分析 三、实验方法和步骤 1.辐射形网络主接线系统的建立 输入参数(系统图如下): G1:300+j180MVA(平衡节点) 变压器B1:Sn=360MVA,变比=18/121,Uk%=%,Pk=230KW,P0=150KW,I0/In=1%; 变压器B2、B3:Sn=15MVA,变比=110/11 KV,Uk%=%,Pk=128KW, P0=,I0/In=%; 负荷F1:20+j15MVA;负荷F2:28+j10MVA; 线路L1、L2:长度:80km,电阻:Ω/km,电抗:Ω/km,电纳:×10-6S/km。 辐射形网络主接线图 (1)在DDRTS中绘出辐射形网络主接线图如下所示: (2)设置各项设备参数: G1:300+j180MVA(平衡节点) 变压器B1:Sn=360MVA,变比=18/121,Uk%=%,Pk=230KW,P0=150KW,I0/In=1%;

变压器B2、B3:Sn=15MVA,变比=110/11 KV,Uk%=%,Pk=128KW, P0=,I0/In=%; 负荷F1:20+j15MVA;负荷F2:28+j10MVA; 线路L1、L2:长度:80km,电阻:Ω/km,电抗:Ω/km,电纳:×10-6S/km。2.辐射形网络的潮流计算 (1)调节发电机输出电压,使母线A的电压为115KV,运行DDRTS进行系统潮流计算,在监控图页上观察计算结果 项目DDRTS潮流计算结果 变压器B2输入功率+ 变压器B2输出功率+ 变压器B3输入功率+ 变压器B3输出功率+ 线路L1输入功率+ 线路L1输出功率+ 线路L2输入功率+ 线路L2输出功率+ (2)手算潮流: (3)计算比较误差分析 通过比较可以看出,手算结果与计算机仿真结果相差不大。产生误差原因:手算时是已知首端电压、末端功率的潮流计算,计算过程中要将输电线路对地电容吸收的功率以及变压器励磁回路吸收的功率归算到运算负荷中,并且在每一轮的潮流计算中都用上一轮的电压或功率的值(第一轮电压用额定电压)。 3.不同运行方式下潮流比较分析 (1)实验网络结构图如上。由线路上的断路器切换以下实验运行方式: ①双回线运行(L1、L2均投入运行) ②单回线运行(L1投入运行,L2退出)将断路器断开 对上述两种运行方式分别运行潮流计算功能,将潮流计算结果填入下表:

竖炉车间设计方案

10㎡竖炉工程方案简介 1. 概论 竖炉是一种按逆流原则工作的热交换设备。10m2竖炉年生产酸性球团矿50万吨。竖炉工序解决了烧结对精细矿粉生产指标差的问题。 2.工艺流程 原料球盘辊筛竖炉成品(高炉) 竖炉工序生产主要分为生球成型和焙烧固结两部分。工艺简单,投资少,见效快。球团质量可满足高炉生产需要。 3.设计特点 竖炉工艺系统主要包括竖炉本体、原料供应、造球、烟气除尘、皮带机运输和环境除尘、供配电和仪表检测设施。工程设计特点: (1)前期建设兼顾今后发展的合理布局,尽量使工艺布置做到合理紧凑、物料顺畅,使球团生产与炼铁衔接合理。 (2)在满足生产工艺要求、保证产品质量的前提下,对设备选型在技术上力求实用可靠,便于操作维修。在生产工艺上采用成熟的新 技术,最大限度的做到节能降耗,同时做到低投资,早见效。 (3)在设计中对竖炉生产过程中产生的“三废”给予充分的重视,可使“三废”排放量减少到最低限度,从而达到减少污染,保护环 境,节约能源的目的。 (4)为提高球团产量、质量增加了辊筛工序,强化了混合料的造球效果,可以提高生球的强度。 4. 方案简介 竖炉上料系统:原料由圆盘给料机(或振动给料机)给料,经烘干机烘干后,再经皮带机输送至造球机室造球,通过辊筛工序后进入竖炉焙烧。本设计取消润磨工序、成品球团板式输送、风冷系统。上料系统全部采用皮带机输送,成品卸料系统采用料车卷扬系统。上料通廊采用砼结构,降低了基建投资。 竖炉本体结构简单,燃烧室、煤气烧嘴(燃料高炉煤气)、炉内设有导风墙。生球由上而下均匀连续下降,经干燥、预热进入焙烧区进行固相反应而固结。成

品球团经齿辊卸料器由竖炉下部排出,料车运至料仓自然冷却。 竖炉除尘采用静电除尘器,除尘效果达98%。 5.技术指标 6.原料消耗

总装流水线优秀设计

“装配流水线”方案 1、装配生产组织概况 XXX产品属于公司是比较典型的小批量多品种订货组装产品。取暖器的零部件生产加工,分为外购标准件、外协件、自制件等,XXXX生产任务主要依据客户订单要求进行备货组装。因此XXX的装配生产组织管理存在的问题比较突出。主要表现在以下几个方面。 a、生产小组包干制,取暖器装配车间完成产品全部装配工序。小组内生产作业随意性大,作业地点不固定,车间现场秩序混乱。 b、工序作业缺乏标准化,同道工序的作业方法、作业时间相差悬殊,产品质量、生产进度控制困难。并且不能建立有效地工时考核标准,生产能力存在较大的不确定性。 c、缺乏基本的市场预测机制,按订单生产。临时订单的插单生产,经常引起整体生产过程的混乱,不能按时交货的情况经常发生。 鉴于“生产小组包干制”的诸多弊端,技术开发部将对取暖器装配生产车间生产运作流程进行重新设计。 2、生产节拍、产能 2.1、装配流水线的生产节拍(DR80-130*18D为例): a、根据工时定额,节拍r=35.217分(2113秒/人), (根据公式:r=F/N < r—流水线的节拍(分/台),F—每日有效工作时 间(分),N—每日产品产量(台) >) b、根据实际生产情况,系数K(我们可除去工人休息的时间等。工作时间 K取0.95,)则F为: F=FOK=7.5×0.95 ×60=427.5(分) (F=F0K (F0—每人每天理论工作时间(分),K—时间利用系数。) 2.2、预估装配生产流水线可实现的产能为: N=F/r= 427.5÷35.217 =12.139台/天/人(按每天工作7.5小时计算,0.5小时休息) N1=F1/r=427.5*23÷35.217 =279.197 台/月/人(按每月工作23天计算)

电网运行方式

电网运行方式 变电站运行方式 1)变电站运行方式是标明变电站通过主要电力设备运行连接方式。变电站运行方式的特点是: 保证对重要用户的可靠供电,对于重要用户应采用双回路供电,就是2个独立的电源同时对用户供电。 便于事故处理,考虑部分供电设备在发生故障时能通过紧急的倒闸操作,恢复对用户的供电,对于变电站有多台变压器的,应考虑到当其中一台变压器发生故障或者失去电源时,其他的变压器能担负起失电用户的负荷转供任务。 要考虑运行的经济性,在编制各种运行方式时,尽量使负荷分配合理,减少由于线路潮流引起的电能损耗。对于双回路供电的变电站,应将双回线同时投入运行,以减少电流密度。 断路器的开断容量应大于最大运行方式时短路容量,如果断路器短路容量低于系统计算点短路容量,则当被保护区发生短路故障时,断路器由于容量过小,不能正常断开,回进一步使事故扩大,在成断路器爆炸的可能。 变电站满足防雷、继电保护及消弧线圈运行要求。 2)变电站一次主结线图 变电站一次主结线图是为了方便运行人员熟悉变电站设备接线

方式,同时在进行倒闸操作时,可按照主结线图进行模拟操作,以防止误操作事故发生,最主要的是,一次主结线图能明确反映出各电气设备实时状态。一般变电站主接线类型有如下几种: ?有母线的主接线:有母线的变电站接线可分单母线和双母线二类, 一般单母线接线又分成单母有分段、单母无分段、单母分段加旁路。双母线接线的变电站可分成单开关双母线、双开关双母线、二分之三开关双母线及带旁路母线的双母线。 供电可靠性最好的是双母线带旁路母线接线形式。 ?无母线的主要接线有:单元接线、扩大单元接线、桥型接线和多 角接线等。 通常变电站常用接线方式有:单母线或单母分段、双母线加分段、双母线带旁路。 3)各种接线图例 ?单母线接线

厂区设计方案总平面布置图

两座450m3高炉工艺布置设计的体会 摘要对厂区内高炉、烧结、铸铁机及炼钢等工艺布置规划设计进行多方案比较,认为采用皮带上料,导轨运输铁水罐, 关键词高炉工艺布置设计 随着炮声从耳边想过,巷道一点一点开拓,不知不觉中,一年的时间转瞬即逝。或许一年的时光对于整个历史长河来说,只不过是沧海一粟,不值一提;对于人的整个生命来说也只不过是短暂的几十分之一,不应该太过留恋。但是,这一年对于我这个刚刚走入社会踏上工作岗位的学生来说可以用"意义非凡"四字来概括。在这段时间里我深刻体会到了做为一个技术员的艰辛和快乐,要成为一个好的技术员的痛苦和压力。在这异国他乡,我把自己的青春和激情倾注于工作中,把汗水洒在每一个不起眼的工作场面上。转身回顾这段时间,有过多少艰辛苦闷,有过多少寂寞孤独;也曾彷徨,也曾迷惘。而今再回首,如摩洛哥的天空,风轻云淡。这时正如张小娴所说,人生过渡时百般艰难,有一天蓦然回首已飞越千山。在工作当中,各位师傅孜孜不倦的指导,把几十年的工作经验倾囊相授,各位领导亲切的关怀,使我有过多少感动和欣慰。这将成为我一生最宝贵的财富和最温馨的回忆。 以下是我这段时间的工作体会,总的来说,收获不小,感触良多。 首先我非常感激我的前辈们无私的毫不保留的传授给我知识和经验。来到东茂矿业有限公司的这段日子里,在段工的的协助下绘

制东茂矿业有限公司的总平面布置图。面对自己从没有接触过的高炉工程,我无从下手,不知道该干嘛,自己该干嘛。我清楚的记得是段工给我讲述了一遍,让我初步明白了平面布置图是怎么一回事,是如何摆放布置的。就像小的时候拼积木一样,把它们一块一块拼在总平面图上。也让我对钢铁企业有了一个全新的认识,对高炉炼铁的工艺流程及它的结构布置有了初步的认识,这使得我在今后的布置图上有了不小的帮助。但毕竟是第一次真正做设计,我还是有很多不明白的地方。在工作中慢慢的积累下,遇到困难在领导指导帮助下,让我了解每一块的作用,使我受益匪浅,也算是我工作中的一笔财富。 在后来的日子里,我把时间都专注在布置总平面图上,一次次的移动复制,一次次的修改,我都记不起修改过多少次了!正是这一次次的修改,让我明白:“事无巨细,必尽全力”,不论大事小事,每多做一件事必然会学到一些知识,必然会积累经验。我们要保持良好的心态,摆正学习者的位置,提高自身的各方面能力,向别人讨教。一些老师傅的经验丰富,分析问题往往一针见血,常常能用简单、通俗的语言或几个手势就能让我明白,这些非常值得我学习和领会,他们的丰富经验就是一笔宝贵的财富,也就是我学习的源泉,通过这段时间的工作学习,我各个方面能力得到了不小的提高,这也是我最欣慰的地方。 作为刚刚从事设计工作,没有经验,有很多的问题我都不懂。所以我就抱着不懂就要问的心态,虚心向每一位前辈请教,而大家

电力系统运行方式分析和计算

电力系统运行方式分析和计算 设计报告 专业:电气工程及其自动化 班级:11级电气1班 学号: 2 2 姓名:杨玉豪潘鸣 华南理工大学电力学院 2015-01-05

0、课程设计题目A3:电力系统运行方式分析和计算 姓名: 指导教师: 一、 一个220kV 分网结构和参数如下: #1 500kV 变电站G 220kV 变电站 火电厂 #2 #3 #4#5 #6 11km 11km 30km 20km 9km 16km 25km 500kV 站(#1)的220kV 母线视为无穷大母线,电压恒定在230kV 。 图中,各变电站参数如下表: 编号 类型 220kV 最大负荷,MV A #1 500kV 站 平衡节点 #2 220kV 站 230+j40 #3 220kV 站 210+j25 #4 220kV 站 300+j85 #5 220kV 站 410+j110 #6 220kV 站 220+j30 各变电站负荷曲线基本一致。日负荷曲线主要参数为: 日负荷率:0.85,日最小负荷系数:0.64

各线路长度如图所示。所有线路型号均为LGJ-2*300,基本电气参数为: 正序参数:r = 0.054Ω/km, x = 0.308Ω/km, C = 0.0116 μF/km; 零序参数:r0 = 0.204Ω/km, x0 = 0.968Ω/km, C0 = 0.0078 μF/km; 40oC长期运行允许的最大电流:1190A。 燃煤发电厂G有三台机组,均采用单元接线。电厂220kV侧采用双母接线。发电机组主要参数如下表(在PowerWorld中选择GENTRA模型): 机组台数 单台 容量 (M W) 额定电 压 (EV ) 功 率 因 数 升 压 变 容 量 MV A Xd Xd’Xq Td0’TJ= 2H a i,2 t/(MW2? h) a i,1 t/(MW ?h) a i,0 t/h Pmax (MW) Pmin (MW) 1 300 10.5 0.85 350 1.8 0.18 1.2 8 7 0.00004 0.298 10.22 300 120 1 300 10.5 0.85 350 1.8 0.18 1.2 8 7 0.00003 0.305 10.32 300 120 1 250 10.5 0.85 300 2.1 0.2 1.5 7 6 0.00003 0.321 9.38 250 100 升压变参数均为Vs%=10.5%,变比10.5kV/242kV。不计内阻和空载损耗。 稳定仿真中发电机采用无阻尼绕组的凸极机模型。不考虑调速器和原动机模型。不考虑 电力系统稳定器模型。励磁系统模型为: 该模型在PowerWorld中为BPA_EG模型,主要参数如下: KA=40 TA=0.1 TA1=0.1 KF=0.05 TF=0.7 VRmax=3.7 VRmin=0.0 发电厂按PV方式运行,高压母线电压定值为1.05V N。考虑两种有功出力安排方式: ?满发方式:开机三台,所有发电机保留10%的功率裕度; ?轻载方式:仅开250MW机组,且保留10%的功率裕度; ?发电厂厂用电均按出力的7%考虑。 二、设计的主要内容:

电力系统分析试题答案(全)

2、停电有可能导致人员伤亡或主要生产设备损坏的用户的用电设备属于( )。 A 、一级负荷; B 、二级负荷; C 、三级负荷; D 、特级负荷。 4、衡量电能质量的技术指标是( )。 A 、电压偏移、频率偏移、网损率; B 、电压偏移、频率偏移、电压畸变率; C 、厂用电率、燃料消耗率、网损率; D 、厂用电率、网损率、电压畸变率 5、用于电能远距离输送的线路称为( )。 A 、配电线路; B 、直配线路; C 、输电线路; D 、输配电线路。 7、衡量电力系统运行经济性的主要指标是( )。 A 、燃料消耗率、厂用电率、网损率; B 、燃料消耗率、建设投资、网损率; C 、网损率、建设投资、电压畸变率; D 、网损率、占地面积、建设投资。 8、关于联合电力系统,下述说法中错误的是( )。 A 、联合电力系统可以更好地合理利用能源; B 、在满足负荷要求的情况下,联合电力系统的装机容量可以减少; C 、联合电力系统可以提高供电可靠性和电能质量; D 、联合电力系统不利于装设效率较高的大容量机组。 9、我国目前电力系统的最高电压等级是( )。 A 、交流500kv ,直流kv 500±; B 、交流750kv ,直流kv 500±; C 、交流500kv ,直流kv 800±;; D 、交流1000kv ,直流kv 800±。 10、用于连接220kv 和110kv 两个电压等级的降压变压器,其两侧绕组的额定电压应为( )。 A 、220kv 、110kv ; B 、220kv 、115kv ; C 、242Kv 、121Kv ; D 、220kv 、121kv 。 11、对于一级负荷比例比较大的电力用户,应采用的电力系统接线方式为( )。 A 、单电源双回路放射式; B 、双电源供电方式; C 、单回路放射式接线; D 、单回路放射式或单电源双回路放射式。 12、关于单电源环形供电网络,下述说法中正确的是( )。 A 、供电可靠性差、正常运行方式下电压质量好; B 、供电可靠性高、正常运行及线路检修(开环运行)情况下都有好的电压质量; C 、供电可靠性高、正常运行情况下具有较好的电压质量,但在线路检修时可能出现电压质量较差的情况; D 、供电可靠性高,但电压质量较差。 13、关于各种电压等级在输配电网络中的应用,下述说法中错误的是( )。 A 、交流500kv 通常用于区域电力系统的输电网络; B 、交流220kv 通常用于地方电力系统的输电网络; C 、交流35kv 及以下电压等级通常用于配电网络; D 、除10kv 电压等级用于配电网络外,10kv 以上的电压等级都只能用于输电网络。 14、110kv 及以上电力系统应采用的中性点运行方式为( )。 A 、直接接地; B 、不接地; C 、经消弧线圈接地; D 、不接地或经消弧线圈接地。 16、110kv 及以上电力系统中,架空输电线路全线架设避雷线的目的是( )。

加强电网运行方式管理的策略分析

加强电网运行方式管理的策略分析 发表时间:2018-06-04T10:52:24.773Z 来源:《电力设备》2018年第2期作者:黄寻李清华 [导读] 摘要:随着经济社会的发展,人们对电力需求不断增加,国家大力建设电力工程。 (国网辽宁省本溪供电公司辽宁 117000) 摘要:随着经济社会的发展,人们对电力需求不断增加,国家大力建设电力工程。然而随着电网的规模不断扩大,电网的智能化水平也随之不断提高,这对电网运行管理提出了新的挑战。传统的电网运行管理模式已经不适应当下电网的发展需求。因此,电力企业必须满足当下电网运行要求,对电网进行综合管理,从而更好地适应当下电网的运行要求。本文根据笔者工作实践,对电网运行方式管理的策略进行了分析和探讨。 关键词:电网;运行;方式;管理;策略 1 电网运行方式综合管理的必要性 电网运行环境比较复杂,在运行过程中,容易受到自身设计缺陷、自然因素以及人为因素的影响,从而导致电力故障的发生。因此,为了确保电网安全运行,必须加强电网运行的管理。为了满足人们对电力的需求,近年来国家大力建设电网工程,中国电网规模位居世界第一。随着电网规模不断扩大,覆盖面积越来越广,电网运行管理要求不断提高。由于中国电网运行比较恶劣,大部分电网直接裸露在户外,很容易受到雷击、雨雪和大风的侵袭,电力设备出现绝缘体破裂或者接触点松动,从而直接威胁到电网的安全运行。所以,必须加强对电网运行方式的综合管理,才能确保电网在一个比较安全的环境下运行。随着电力体制改革,电网直接面向市场化,电力企业之间的竞争也越来越激烈,电力企业如何在激烈的电力市场抢占一席之地是很多电力企业所要思考的问题。电力企业需要通过降低电网运行成本,才能够提高自身的竞争力。随着智能电网的发展,很多智能变电站开始实现无人值守和少人值守,这一定程度上降低了电力企业的人力成本。然而智能变电站建设过程中,需要使用大量的智能设备,这些智能设备造价比较高,所以电力企业一次性投入成本比较大[2]。如何平衡变电站投入与后期运营成本之间的关系,需要电力企业严谨的计算并进行对比分析,才能制定一套符合企业实际情况的建设运营管理方案。 2 电网运行方式综合管理存在的问题 为了给居民提供更加优质的电能,国家近年来加大对城乡电网工程的改造,极大地提高了电网运行水平。然而由于电力系统大量应用智能设备,智能设备采集大量的电力运行数据,并对这些数据进行处理,这进一步增加了电网运行管理的复杂性,因此促使电力企业形成了综合性比较强的电网运行管理模式。电网运行管理涉及到电力系统的日常管理、变电设备的检修工作和电力工人的管理等内容,所以在制定电网运行管理方案的时候需要综合考虑到各个因素,然而这些因素有些是不可控的。比如电力系统运行过程中,突然主变压器出现漏油现象,发生变压器起火等故障,那么电网运行管理人员需要立即找到判断该故障发生的原因,并立即安排就近技术人员进行维修。变电站检修过程中,运维管理人员要综合分析变电检修环境,上一次检修过程中存在的问题,综合各个方面的因素,为变电检修工作提供参考和决策。电网运维管理涉及的内容比较多,需要运维管理人员综合各个要素作出综合判断。 2.2电网运行管理计算数据比较复杂 电网运行管理过程中,需要涉及到较多种类的资料。比如变电站规划设计资料、电力设备参数、各个区域居民用电情况、变电检修计划和检修内容等等内容,这些内容能够给电网运行提供参考。所以电网运行管理人员必须对这些资料数据十分清楚,并能够很好地运用这些数据,通过精确的计算,找到一套适合电网运行综合管理的方法,从而提高电网运行效率。 3提高电网运行方式综合管理的途径 3.1建立健全电网运行方式管理制度 电网运行方式综合管理的主体是人,因此加强对综合管理工作人员的管理。首先,要建认一套适合电网运行方式管理的制度,科学的管理制度是实现电网运行的关键。针对当前电网运行特点,明确每一个岗位的工作职责和工作内容,确保电网运行每一个环节处于可控状态。其次,做好电网运行不良方式的事故演习,从而提高综合管理人员应对事故的反应能力,并在事故演习中找到管理存在的问题,从而提出相应的解决方案。最后,电力还要制定相应的奖惩制度,提高管理人员的工作积极性。做到哪一个环节出问题,都能找到相关的负责人,从而避免工作中出现相互推楼的现象。 3.2提高电网运行方式综合管理人员素质 为了确保电网运行的安全性和可靠性,必须提高运行方式综合管理人员的管理水平。首先,电力企业应该定期举行相关技术培训,让管理人员了解相关的电力知识,比如变压器、电流互感器和继电器等相关电力设备的结构和特点,从而对这些电气设备有一定的了解,为电力运行管理打下良好的基础。其次,电力企业应该投人部分资金,组织电网运维管理骨干到国内外知名的企业或者机构进行进修学习,提高他们的管理水平。电力企业需严格按照《“变电运维一体化”模式实施方案及推进计划》,加强综合型人才的培养。 3.3加强继电保护管理 继电保护装置是电力系统中重要的组成部分,它是电力系统运行的保护伞,直接关系到电网运行的安全性和稳定性。如果继电保护装置失效,可能造成严重的电力事故。因此,必须加强电力保护装置的管理。日常管理工作中,电网运行管理人员要加强继电保护装置的管理和维护,及时检查继电保护装置直流系统、分支保险、接触点是否存在问题,继电保护装置绝缘性能是否下降,发生跳闸事故以后继电保护装置的信号灯是否开启等等进行全面检查,才能确保电力故障发生以后,继电保护装置不会出现拒动、误动等现象,确保电网安全运行。其次,管理人员还要根据继电保护装置的性能制定检修计划,及时对有问题的保护装置进行更换和维修,将一些先进的科学技术和设备应用在继电保护系统中。比如将可视化技术应用在继电保护装置中,继电保护装置的分析系统中以时间为线索,并根据分析系统文件中的故障录播文件再现事故发生继电保护装置各个元件动作逻辑顺序,从而将故障发生全过程展现在管理人员面前,这样就减少了电力系统故障排查的时间,能够将电力故障时间和范围缩小,确保电网运行的安全性。 3.4建立电网运行管理数据库,实现数据共享 随着电网覆盖面积不断扩大,电力系统采集的电网运行数据越来越多,这一定程度上增加了电网数据计算、管理难度。而各地供电公司各自为阵没有建认统一的数据库,因此无法实现数据共享。在信息时代,信息共享已经成为一种趋势。电网公司建认统一的数据库,各级电网公司将变电运行的数据上传到数据库,不仅有利于电网公司及时了解电网整体运行状态,而且还能为电网公司的发展和决策提供参

基于PowerWorld的电力系统运行方式分析和计算

基于PowerWorld的电力系统运行方式分析和计算 李应宏 华南理工大学电力学院08电气2班 1 PowerWorld Simulator介绍 PowerWorld Simulator(仿真器)是一个电力系统仿真软件包,其设计界面友好,并有高度的交互性。该仿真软件能够进行专业的工程分析。而且由于其可交互性和可绘图性,它也可以用于向非专业用户解释电力系统的运行操作。 该仿真器是一个集成的产品,其核心是一个全面、强大的潮流计算程序。它能够有效地计算高达10,0000个节点的电力网络,因此当它作为一个独立的潮流分析软件包时,性非常实用。与其它商业潮流计算软件包不同,该软件可以让用户通过生动详细的全景图来观察电力系统。此外,系统模型可以通过使用仿真软件的图形编辑工具很容易地进行修改,用户只需轻轻点击几下鼠标就可以在检修期间切换线路、增加新的线路或发电机、确定新的交易容量。仿真器广泛地使用了图形和动画功能,大大地增强了用户对系统特性、问题和约束的理解,以便于用户对系统进行维护。它基本的工具包括经济调度、区域功率经济分配分析、功率传输分配因子计算算(PTDF)、短路分析以及事故分析等功能的工具。 2电力系统网络结构及参数 2.1 220kV分网结构和参数 图1 220kV分网结构和参数 500kV站(#1)的220kV母线视为无穷大母线,电压恒定在230kV。

日负荷率:0.85,日最小负荷系数:0.64 各线路长度如图所示。所有线路型号均为LGJ-2*300,基本电气参数为:正序参数:r = 0.054Ω/km, x = 0.308Ω/km, C = 0.0116 μF/km; 零序参数:r0 = 0.204Ω/km, x0 = 0.968Ω/km, C0 = 0.0078 μF/km; 40oC长期运行允许的最大电流:1190A。 燃煤发电厂G有三台机组,均采用单元接线。电厂220kV侧采用双母接线。发电机组主要参数如下表(在PowerWorld中选择GENTRA模型): 稳定计算中平衡节点用一台大发电机代替,选定GENPWTwoAxis模型,把其中的H值设得非常大(如300.000),其他都用默认参数。 稳定仿真中发电机采用无阻尼绕组的凸极机模型。不考虑调速器和原动机模型。不考虑电力系统稳定器模型。励磁系统模型为: 图2 励磁系统模型 该模型在PowerWorld中为BPA_EG模型,主要参数如下:

装配实习车间装配线设计

装配实习车间装配线设计方案 一、设计原则 1.按照实习教学规律和管理要求原则,拆解与装配工序内容安排合理,便于学生全面系统掌握装配工艺流程; 2.部件装配线型简单、布局合理、安全规范,便于管理,互不干扰;整机装配线型多机兼容、柔性装配,多个机型实现共线装配; 3.有利于模拟企业生产环境,培养学生“三按生产”的岗位意识、质量意识和责任意识; 4.以路面机械、铲运机械、起重机械整机为基础,形成通过调整工装车实现多机型流水线的共用,满足实习教学要求。 5.减少物流量,减少物流交叉,物流有序,优化物转环境。 二、部件装配线设计方案 本方案以工程机械典型零部件的装配工艺为主要教学内容,以企业生产现场管理模式,结合现代实习教学手段的设计思路,本方案达到的主要目标是使学生掌握工程机械零部件工作原理、结构组成和装配工艺流程。考虑到部件实习教学装配线既能模拟企业生产装配线情景,又要满足装配实习教学管理的需要,部件装配实习车间设为三条装配线,一个其它零部件常规装配练习区,每条线均设计成直线型双轨道,装配线的输送为推(拉)式步进输送工装车,拟采用轮式人力驱动。这种设计的其特点是:车间整体布局为矩阵式结构,物件转运流畅合理互不干涉,空间利用率高,还可预留一个备用区(即:其它零部件常规装配综合练习区或技能鉴定用区或考试考核专用区);装配线体结构简单、操作方便、安全可靠、便于管理。根据不同的部件特点,装配线设定不同的装配工艺内容,装配线分三类部件装配,分别为,一号线:发动机装配线;

二号线:变速箱装配线;三号线:驱动桥装配线;四号区:其它部件常规装配练习区(也可作为综合训练区或考试鉴定用区),各线应配有装配工艺工装器具、装配工艺技术文件(含装配作业指导书、工位标志牌等)和必要的装配吊装设备及辅助设施。(附:部件装配线布局图) (一)、发动机装配线(一号线) 1、发动机装配线设备配置设计(设7个工位) 2、发动机装配线工位及工艺设计 3、教学时数及师生配比计算 该装配线实习课题:约需14课日(分两个时段进行),指导教师:一名。 学生实习时数分配:该实习区,在一个时段内(7个课日)可同时满足约0.5个班,约24名学生进行拆解练习,若每班人数设定为48名,可分两个时段分别进行,每班学生可分成约12个小组,每组约4人。按工位数计算,共需约6套拆解装配工具设备。 第一时间段,拆解练习,具体程序是:由第一批次6个小组(甲组)进行,每组学生按照拆解工艺流程,依次从第一工位到第七工位按照拆解作业指导书进行拆解练习,根据每个工位的复杂程度,每组每工位平均用时5小时,一个练习程序七个工位,共计35小时,考虑到工件的修整和准备时数等因素,即:第一批次小组(甲组)共需用时约为:7个课日即可完成该部件的拆解练习。全部拆解课题结束后,由组长组织该组学生认真分析拆解方法、工艺要点,填写拆解工艺过程卡。这样在该实习练习时段,每半个班6个小组约需实习42小时,这样学生可以完全掌握拆解工艺方法。 第二时间段,装配练习:第一批次的6个小组(甲组)拆解课题结束后,每组再从第七工位到第一工位按照装配作业指导书进行装配练习,共计约需

电力系统三个实验

实验一:一机—无穷大系统稳态运行方式实验 一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。 二、原理与说明 电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。实验用一次系统接线图如图2所示。 图2 一次系统接线图 本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 三、实验项目和方法 1.单回路稳态对称运行实验 在本章实验中,原动机采用手动模拟方式开机,励磁采用手动励磁方式,然后启机、建压、并网后调整发电机电压和原动机功率,使输电系统处于不同的运行状态(输送功率的大小,线路首、末端电压的差别等),观察记录线路首、末端的测量表计值及线路开关站的电压值,计算、分析、比较运行状态不同时,运行参数变化的特点及数值范围,为电压损耗、电压降落、沿线电压变化、两端无功功率的方向(根据沿线电压大小比较判断)等。 2.双回路对称运行与单回路对称运行比较实验 按实验1的方法进行实验2的操作,只是将原来的单回线路改成双回路运行。将实验1的结果与实验2进行比较和分析。 表3-1 注:U Z —中间开关站电压; ?U —输电线路的电压损耗; △U —输电线路的电压降落

除尘系统设计方案

前言 XXXX炼铁厂对1#、5#高炉出铁场及矿槽除尘系统改造,使出铁场及矿槽系统生产过程中产生的粉尘得到有效控制,做到达标排放,我所受XXXX炼铁厂委托进行方案设计,结合1#、5#高炉炉前工况、作业制度、现场布置情况特编制两套方案供公司领导参考。方案一、1#、5#高炉出铁场共用一套除尘系统,1#、5#高炉矿槽共用一套除尘系统;方案二、1#高炉出铁场及1#高炉矿槽共用一套除尘系统,5#高炉出铁场及5#高炉矿槽共用一套除尘系统。 本方案在编制过程中受到XXXX各部门的大力支持,在此表示衷心的感谢! 编制人员: xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx

原始资料 1.电源:电源频率:50Hz; 2.风象资料 环境温度:最低 -12℃, 最高40.1℃; 相对湿度:≤70%; 大气压:冬季764 mmHg,夏季747 mmHg; 风:冬季主导风向西南,平均风速 2m/s; 夏季主导风向西北,平均风速 3m/s; 3.高炉资料 1)出铁场烟尘(气)气特性(参考6#高炉数据) 0.3% 0.2% 0.18% 5~10μ10~20μ20~50μ 19% 33% 22% 真比重 2)1#、5#高炉主要工艺参数 1#、5#高炉主要工艺参数

2 高炉利用系数 3 出铁时间 3)矿槽系统粉尘特性(参考6#高炉数据) 4) 1#、5#高炉槽下矿仓分配情况:1#高炉共11个仓,其中4个烧 结矿仓,4个球团矿仓,2个焦丁仓,1个块矿仓;5#高炉共11个仓,其中4个烧结矿仓,4个球团矿仓,2个焦丁仓。正常生产时,1#、5#高炉均有4个仓同时下料。 5) 1#高炉槽下成品皮带宽为1000mm,5#高炉槽下成品皮带宽为 800mm,速度均为1.6m/s;振动筛:均为1200×1200;1#、5#高炉槽下返矿皮带宽为500mm,速度为1.2 m/s。 6) 5#高炉槽上共有2条皮带(带卸料小车)。 设计依据 1. XXXX提供的原始资料。 2.《冶金工业环境保护设计规定》(YB9066—95);

年产200万吨炼铁高炉车间设计

年产200万吨炼铁高炉车间设计

年产200万吨炼铁高炉车间设计 摘要 人类获得生铁重要手段是通过高炉炼铁,高炉炼铁是钢铁冶金中的基础环节,同时也是最重要的环节。本设计任务是设计一个年生产能力达200万吨炼铁高炉车间。 本次设计的高炉1100m3。高炉炉型为五段式,高炉炉衬设计依据各个部分的工作条件的不同以及炉衬破损的机理,选择相应的耐火材料。热风炉采用的传统改进型内燃式热风炉,燃烧室为复合型断面,热风炉数量为3座,关于热风炉的设计部分还包括热风炉的各种设备以及相应的技术参数。上料系统采用的是可不间断上料,原料破损率低的皮带运输上料,炉顶装料设备是并罐式无钟炉顶。煤气处理系统的功能是降低高炉煤气粉尘含量,一般分为三个阶段--粗除尘、半精细除尘、精细除尘。煤粉喷吹系统采用了单管路串罐式直接喷吹工艺,这种工艺大大提高了喷吹效率,改善冶炼条件。本设计中还包括了其他一些环节的设计,例如渣铁处理系统。在设计的同时,广泛参考借鉴前辈的研究数据和国内外同级别炉容的高炉的实际生产经验,从理论和实践并举的角度出发,努力使本设计的高炉在技术操作上实现自动化和机械化,并把对环境的损害降到最低。 关键词:高炉,冶金计算,热风炉,鼓风机,煤气处理,渣铁处理

目录 前言 (1) 第一章高炉炼铁概况 (2) §1.1 高炉炼铁的发展概况 (2) §1.2 高炉及其附属设备 (2) §1.3 高炉炼铁设计的基本原则 (2) 第二章高炉炼铁综合计算 (4) §2.1 原始资料 (4) §2.2 配料计算 (5) §2.3 物料平衡计算 (8) §2.4 热平衡计算 (12) 第三章高炉炼铁车间设计 (17) §3.1 高炉座数及容积设计 (17) 第四章高炉本体设计 (18) §4.1 炉型设计 (18) §4.2 炉衬设计 (20) §4.3 高炉冷却设备 (21) §4.4 高炉冷却系统 (23) §4.5 高炉送风管路 (23) §4.6 高炉钢结构 (23) §4.7 高炉基础 (24) 第五章附属设备系统 (25) §5.1 供料系统 (25) §5.2 炉顶装料系统 (26) §5.3 送风系统 (27) §5.4 煤气处理系统 (30) §5.5 煤粉喷吹系统 (33) §5.6 渣铁处理系统 (34) 第六章高炉炼铁车间平面布置 (37)

装配流水线控制系统的设计

长沙学院专业综合设计说明书

长沙学院课程设计鉴定表

目录 1.系统功能与要求 2.系统元器件选型 3.系统端口配置 4.硬件电路设计 5.程序设计 6.调试与结论

装配流水线控制系统的设计 1.系统功能与要求 1 设计任务 通过毕业设计了解PLC控制的企业装配流水线基本原理以及工作流程,设计PLC控制实现的模拟装配流水线系统,控制多工位装入、多工位装配、单工位入库等操作。 ⑴以自动化实验中心综合实训室的网络型可编程序控制器实训平台为研究对象,了解控制对象结构组成,熟悉控制对象实际工作流程,确定受控对象与PLC间关系,估计程序步数; ⑵运行框图、硬件接线图绘制; ⑶画出PLC控制的梯形图; ⑷编制出语句表; ⑸输入指令并修改更正程序; ⑹调试运行并反复设计验证; ⑺整理设计思路、总结设计成果。 1.2 装配流水线的基本介绍 1.2.1 装配流水线的起源 20世纪初,美国人亨利.福特首先采用了流水线生产方法,在他的工厂内,专业化地将分工分的非常细,仅仅一个生产单元的工序竟然达到了7882种,为了提高工人的劳动效率,福特反复试验,确定了一条装配线上所需要的工人,以及每道工序之间的距离。这样里来,每个汽车底盘的装配时间就从12小时28分缩短到1小时33分。大量生产的主要生产组织方式为流水生产,其基础是由设备、工作地和传送装置构成的设施系统,即流水生产线。最典型的流水生产线是汽车转配生产线。流水生产线是为特定的产品和预定的生产大纲所设计的;生产作业计划的主要决策问题在流水生产线的设计阶段中就已经做出规定。 1.2.2 装配流水线的概述 在大量生产中,为了提高生产效率、保证产品质量、改善劳动条件,不仅要求机床能自动的对工件进行加工,而且要求工件的装卸、工件的工序间的输送、工序间加工精度的检测、废品的剔除等都能自动的进行。因此,把设备按工件的加工工序顺序依次排列,用自动输送装置将他们联成一个整体,并用控制系统将各个部分的动作协调起来,使其按照规定的动作自动的进行工作,这种自动化的加工系统就称为自动化生产流水线。 流水线是人和机器的有效组合,最充分体现设备的灵活性,它将输送系统、随行夹具和在线专机、检测设备有机的组合,以满足多品种产品的输送要求。输送线的传输方式有同步传输的/(强制式)也可以是非同步传输/(柔性式),根据配置的选择,可以实现装配和输送的要求。输送线在企业的批量生产中不可或缺。 流水线是劳动者为了方便生产将生产对象人为的通过外界设备将其按照一定的线路顺序通过各个操作点,以及用一定的速度来重复连续的完成生产过程。装配流水线把劳动对象和专业化生产专业的有效的结合在一起的一种生产方式。它具有以下特征: ⑴工作地点的专业化程度非常高;

基于Matlab计算程序的电力系统运行分析

课程设计 课程名称:电力系统分析 设计题目:基于Matlab计算程序的电力系统运行分析学院:电力工程学院 专业:电气工程自动化 年级: 学生姓名: 指导教师: 日期: 教务处制

目录 前言 (1) 第一章参数计算 (2) 一、目标电网接线图 (2) 二、电网模型的建立 (3) 第二章潮流计算 (6) 一.系统参数的设置 (6) 二.程序的调试 (7) 三、对运行结果的分析 (13) 第三章短路故障的分析计算 (15) 一、三相短路 (15) 二、不对称短路 (16) 三、由上面表对运行结果的分析及在短路中的一些问题 (21) 心得体会 (26) 参考文献 (27)

前言 电力系统潮流计算是电力系统分析中的一种最基本的计算,是对复杂电力系统正常和故障条件下稳态运行状态的计算。潮流计算的目标是求取电力系统在给定运行状态的计算。即节点电压和功率分布,用以检查系统各元件是否过负荷.各点电压是否满足要求,功率的分布和分配是否合理以及功率损耗等。对现有电力系统的运行和扩建,对新的电力系统进行规划设计以及对电力系统进行静态和暂态稳定分析都是以潮流计算为基础。潮流计算结果可用如电力系统稳态研究,安全估计或最优潮流等对潮流计算的模型和方法有直接影响。 在电力系统中可能发生的各种故障中,危害最大且发生概率较高的首推短路故障。产生短路故障的主要原因是电力设备绝缘损坏。短路故障分为三相短路、两相短路、单相接地短路及两相接地短路。其中三相短路时三相电流仍然对称,其余三类短路统成为不对称短路。短路故障大多数发生在架空输电线路。电力系统设计与运行时,要采取适当的措施降低短路故障的发生概率。短路计算可以为设备的选择提供原始数据。

装配线平衡设计

(此文档为word格式,下载后您可任意编辑修改!) 1 引言 1.1 选题背景 随着社会经济的快速发展,科技的日益进步,市场竞争也变得越来越激烈,怎样提升企业的竞争力成为管理者重点关注的问题。 制造业是企业所有与制造有关的生产组织的总称。中国作为21世纪世界最大的生产工厂,越来越多的国际企业选择来中国建厂,不光带来了先进的生产技术,也引入了更为先进的管理理念。因此,在竞争日益激烈的当今社会,只有不断寻求新的突破和运营低成本化,才能使企业长盛不衰。而生产线作为制造型企业最基本的生产单位,其生产水平的高低往往决定着公司生产能力的大小。做好企业生产线的改进建设,也就成为制造业企业的重中之重。而作为改善企业生产状况、提高企业生产效率、提升企业竞争力的最佳工具——工业工程,也必将成为企业摆脱困境,走向辉煌的必经之路。 石家庄格力小家电有限公司作为一个新兴的小家电生产企业,虽然是格力电器旗下的一个全新品牌,却并未占据特别高的市场份额,在急速发展的市场经济背景下,企业若想如计划般的成为有很强竞争力的独立品牌,必须进行改革,因此,企业迫切需要引入工业工程等先进生产管理理论及方法,来助其提高市场竞争力。 基于以上背景,本课题利用工业工程的知识对石家庄格力小家电有限公司总装厂的电风扇装配生产线进行改善,以提高生产效率,提高企业竞争力。1.2 课题研究的内容和意义 装配线平衡就是在一定的生产工艺的约束下,按流水线的各个生产节拍将所有装配工序进行有效的组合、合理的调整,从而使各个工位的负荷量充足且均衡,各工位的空闲时间最少。石家庄格力小家电公司的装配线由二十几个工位组成,采用直线型布局,流水线的最大好处就是有着很高的连续性和协调性。由于每个工位的工作不同,因此节拍也不相同,使得物料在流水线上分布不均匀,又由于瓶颈环节的存在,以致其他环节便会出现等待的浪费,从而影响整条生产线的效率,因此,进行装配线的平衡改善是非常有必要的。

电力系统运行方式

1、电力系统的运行方式分为( )方式。 (A)(A)正常运行和故障运行 (B)最大运行和最小运行 (C)正常运行、特殊运行 (D)最大运行、最小运行、正常运行 答: D 2、输电线路通常要装设( )。 (A)主保护 (B)后备保护 (C)主保护和后备保护 (D)近后备和辅助保护 答: C 3、DL-11/10 电磁型电流继电器,当继电器线圈串联时,其最大的电流整定值为( )。 (A) 2.5 (B) 5 (C)7.5 (D)10 答: B 4、中性点直接接地系统,最常见的短路故障是( )。 (A)金属性两相短路 (B)三相短路 (C)两相接地短路 (D)单相接地短路 答: D 5、保护用的电流互感器二次所接的负荷阻抗越大,为满足误差的要求,则允许的( )。 (A)一次电流倍数越大(B)一次电流倍数越小(C)一次电流倍数不变(D )一次电流倍数等于1 答: B 6、在相同的条件下,在输电线路的同一点发生三相或两相短路时,保护安装处母线相间的残压( )。 (A)相同 (B)不同 (C)两相短路残压高于三相短路 (D)三相短路残压高于两相短路 答:A 7、一般( )保护是依靠动作值来保证选择性。 (A)瞬时电流速断 (B)限时电流速断 (C)定时限过电流 (D )过负荷保护 答: A 8、低电压继电器与过电压继电器的返回系数相比,( )。 (A)两者相同 (B)过电压继电器返回系数小于低电压继电器 (C)大小相等 (D)低电压继电器返回系数小于过电压继电器 答:B 9、电磁型过电流继电器返回系数不等于1的原因是( )。 (A)存在摩擦力矩(B)存在剩余力矩(C)存在弹簧反作用力矩(D)存在摩擦力矩和剩余力矩 答:D 10、输电线路相间短路的电流保护,则应装设( )保护。 (A)三段式电流 (B)二段式电流 (C)四段式电流 (D)阶段式电流 答: D 11、若为线路—变压器组,则要求线路的速断保护应能保护线路( )。 (A)%100(B)%20~%10(C)%75(D)%50 答: A 12、流入保护继电器的电流与电流互感器的二次电流的比值,称为( )。 (A)接线系数 (B)灵敏系数 (C)可靠系数 (D)分支系数 答:A 13、对电流互感器进行10%误差校验的目的是满足( )时,互感器具有规定的精确性。 (A)系统发生短路故障 (B)系统正常运行 (C)系统发生短路或正常运行 (D)系统发生接地短路故障 答:A 14、在不接入调相电阻的情况下,电抗变换器二次输出电压比一次输入电流( )°。 (A)滞后90 (B)超前90 (C)约0 (D)超前约90 答: D 15、当加入电抗变换器的电流不变,一次绕组匝数减少,二次输出电压( )。 (A)增加 (B)不变 (C)减少 (D)相位改变 答: C 16、相间短路保护功率方向继电器采用90°接线的目的是( )。 (A)消除三相短路时方向元件的动作死区 (B)消除出口两相短路时方向元件的动作死区

相关文档
相关文档 最新文档