文档库 最新最全的文档下载
当前位置:文档库 › 高效液相色谱法检测水产品中的孔雀石绿和结晶紫

高效液相色谱法检测水产品中的孔雀石绿和结晶紫

高效液相色谱法检测水产品中的孔雀石绿和结晶紫
高效液相色谱法检测水产品中的孔雀石绿和结晶紫

第29卷 第1期 广东海洋大学学报 V ol.29 No.1

2009年2月 Journal of Guangdong Ocean University Feb. 2009

收稿日期:2008-10-10

基金项目:广东省重大科技兴海项目(B200701A06)

第一作者:吴仕辉(1980-),女,硕士,研究实习员,从事水产品质量安全研究。E-mail :wshxjw@https://www.wendangku.net/doc/0515759315.html,

高效液相色谱法检测水产品中的孔雀石绿和结晶紫

吴仕辉,朱新平,郑光明,陈昆慈,戴晓欣,潘德博

(中国水产科学研究院珠江水产研究所,广东 广州,510380)

摘 要:样品中的孔雀石绿、结晶紫经试剂盒提取,浓缩后用经固相萃取柱净化、硼氢化钾还原、反向色谱柱分离,使用荧光检测器检测,孔雀石绿、结晶紫的加标回收率在76.1 %~92.5 %之间,相对标准偏差1.9 %~5.8 %,检出限均为0.5 μg/kg 。结果表明:该方法检测孔雀石绿(MG )、结晶紫(GV )处理简单,灵敏度高,节省时间,可用于大量样品的快速分析。

关键词:水产品;孔雀石绿;结晶紫;检测;高效液相色谱法(HPLC )

中图分类号:S948 文献标志码:A 文章编号:1673-9159(2009)01-0054-04

Determination of Malachite Green and Gentian Violet Residues in Fishery Products by High Performance Liquid Chromatography(HPLC)

with Fluorescence Detector

WU Shi-hui, ZHU Xin-ping, ZHENG Guang-ming, CHEN Kun-ci, DAI Xiao-xin, PAN De-bo (Pearl River Fishery Research Institute , Chinese Academic of Fishery Science , Guangzhou , 510380 Chin a )

Abstract: M alachite green and gentian violet residues in fishery products were determined by high performance liquid chromatography method coupled with fl uorescence detector. Samples were extracted by pre-treatment kit for extraction of MG, LMG, GV, LGV and purified by solid-phase extraction cartridges. After concentrated, samples were deoxidized by potassium borohydride. The MG and GV were detected with FLD detector after C18 column separation. The recoveries for fortified fish tissue were 76.1 %~92.5 %, The relative standard deviation(RSD) values for repeatability were 1.9 %~5.8 %.The detection limit for MG and CV was 0.5 μg/kg, respectively.

Key words: fisher product ;malachite green ;gentian violet ; detection ; HPLC

孔雀石绿、结晶紫属于三苯甲烷类染料,这两种化合物对鱼类的水霉病、寄生虫病等有很好的疗效,长期以来许多国家曾将其作为水产养殖业的杀菌剂。它们在鱼体内可分别代谢为无色孔雀石绿和无色结晶紫,由于其母体化合物和代谢物均具有潜在的致癌、致畸、致突变等副作用,20世纪90年代以来许多国家都将其列为水产养殖的禁用药物。但是由于其抗菌效果好、价格便宜,不少业户仍在违规使用,因此孔雀石绿残留监控就显得格外重要。

目前孔雀石绿、结晶紫及其代谢物的检测方法

主要有高效液相色谱法[1-3]和液质联用法[4-5]。我国于2006年发布有关的水产行业标准(SN/T1768- 2006)[6]及国家标准(GB/T20361-2006)[7]。行业标准SN/T1768-2006前处理简单,但是满足不了检测限0.5 μg/kg 的要求。其他方法的前处理均需多次萃取,多次离心,操作烦琐,前处理时间长,有机溶剂用量大,实际检测工作中存在困难。本文综合各个方法标准中快速和灵敏的优点,建立了同时检测孔雀石绿及代谢物无色孔雀石绿总量,结晶紫以及代谢物无色结晶紫总量的液相色谱方法。

1材料与方法

1.1实验样品

加州鲈,采自广东省广州市芳村好又多超市加州鲈活样品,取其肌肉,各自用均质机混均,每个样品各400 g,于-20 ℃冰箱保存备用。

1.2 试剂和溶液

孔雀石绿标准品:纯度97.2 %;结晶紫标准品:纯度93.9 %;孔雀石绿、结晶紫快速检测前处理试剂盒,由中国检验检疫科学研究院北京陆桥商检新技术公司生产。酸性氧化铝固相萃取柱(500 mg,3 mL),PRS固相萃取柱(500 mg,3 mL),乙腈为色谱纯,无水乙酸铵、冰乙酸、对-甲苯磺酸、乙酸钠、硼氢化钾均为分析纯,实验用水为去离子水。

孔雀石绿标准储备液:100 μg/mL孔雀石绿乙腈溶液;

结晶紫标准储备液:100 μg/mL结晶紫乙腈溶液;

孔雀石绿、结晶紫混合标准中间溶液:10 μg/mL;

乙酸钠缓冲液:0.06 mol/L乙酸钠+0.005 mol/L 对甲苯磺酸,pH4.5;

乙酸铵缓冲溶液:0.125 mol/L,pH 4.5;

硼氢化钾溶液:0.07 mol/L,现配现用;

洗脱液:乙酸乙酯∶甲醇∶氨水体积比10∶9∶1。

1.3 仪器与色谱条件

仪器:Agilent1200型高效液相色谱仪、均质机、离心机、振荡器、旋转蒸发器、固相萃取装置、氮吹仪。

色谱条件:色谱柱,Eclipse-C18 250 mm×4.6 mm,粒度5 μm;流动相,乙腈+乙酸铵缓冲液(pH 4.5)=80+20;流速 1.5 mL/min;柱温35 ℃;激发波长265 nm, 发射波长360 nm;进样量20 μL。1.4 样品预处理

提取:准确称取5.00 g已搅碎的样品于50 mL 离心管中,加入孔雀石绿、结晶紫快速检测前处理试剂盒中提取剂1(20mL,由有机化学试剂组成的混合液体试剂)和提取剂2(由无机化学组成的混合粉末试剂),8 000 r/min的速度均质30 s,振荡2 min,4500 r/min离心5 min,取上清液10.0 mL于鸡心瓶中,45 ℃水浴旋转蒸发至近干,用2.5 mL 乙腈溶解残渣。

净化: 将PRS柱安装在固相萃取装置上,上端串联酸性氧化铝柱,用5 mL乙腈活化,转移提取液到柱上,再用2.5 mL乙腈洗涤瓶一次,过柱,重复操作一次,去掉酸性氧化铝柱,用5 mL乙腈清洗PRS柱,氮吹PRS柱至近干,在不抽真空的情况下,加入5 mL洗脱液洗脱,收集全部洗脱液,氮气吹至近干,加0.4 mL硼氢化钾溶液,还原,静置20 min,用乙腈定溶至1.0 mL,经聚四氟乙烯膜过滤后上机分析。

1.5 样品测定

在临用前准确吸取一定量的混合标准中间溶液,加入0.4 mL硼氢化钾溶液,用乙腈准确稀释至2.0mL,配制适当浓度的混合标准工作液。在上述色谱条件下,分别测定孔雀石绿、结晶紫混合标准工作溶液及样品提取溶液中的孔雀石绿、结晶紫,外标法定量。

1.6准确度和精密度实验

以本底无孔雀石绿、隐性孔雀石绿、结晶紫、隐性结晶紫的加州鲈为样品,平行称取3份样品,按5 μg/kg、10 μg/kg、20 μg/kg三个加标浓度进行加标,按上述步骤进行前处理和色谱测定,分别测定各次的峰面积,计算样品中孔雀石绿、结晶紫的含量,计算回收率。

另取6个平行样品,采用添加法分别添加等量孔雀石绿、结晶紫混合标准溶液,按上述步骤进行前处理和色谱测定,分别测定各次的峰面积,计算样品中孔雀石绿、结晶紫的含量,计算相对标准偏差。

1.7 计算

以标准工作液峰面积和浓度作工作曲线,根据样品提取液的峰面积,从工作曲线计算样品提取液中孔雀石绿、结晶紫的残留量,按式⑴计算样品中孔雀石绿、结晶紫残留量。计算结果需扣除空白值。

m

V

C

X

2

×

×

=⑴式中:X—试样中的孔雀石绿、结晶紫的残留量,μg/kg;C—样品提取液中孔雀石绿、结晶紫的残留量,ng/mL;V—最终定容体积,mL;m—样品质量,g。

2结果

2.1孔雀石绿、结晶紫标准色谱图

本实验选定色谱条件下孔雀石绿、结晶紫的保留时间分别为为7.9 min、8.5 min左右,图1为标准溶液浓度为30 ng/ mL的标准色谱图。

2.2 标准曲线

以HPLC测得的峰面积y为纵坐标,相应的浓度x为横坐标绘制标准曲线,其线性关系和相关系

广 东 海 洋 大 学 学 报 第29卷

56

数见表1。结果表明,孔雀石绿、结晶紫在1.0 ng/mL ~500 ng/mL 范围内线性良好,可以满足定量分析的需要。

表1 线性回归方程、相关系数、线性范围

Tab.1 Regression equation 、coefficient and linear range

2.3 回收率、精密度和灵敏度

加州鲈空白肌肉组织样品中分别添加3个浓度水平的孔雀石绿、结晶紫标准溶液,进行回收率测定,回收率测定结果见表2,加标样品图谱见图2。由表2可以看出,孔雀石绿、结晶紫加标浓度在5 μg/kg ~20 μg/kg 内,回收率为76.1 %~92.5 %。

六个平行样品测定结果的相对标准偏差(RSD )

分别为:孔雀石绿,5.6%;结晶紫,4.5%,重现性能满足要求。以信噪比S/N=3计算,样品中孔雀石绿、结晶紫的检出限均为0.5 μg/kg 。

表2 样品加标回收率及RSD (n =3) Tab.2 Recoveries of spiked samples and RSDs 化合物 样品含量/(μg·kg -1)加标浓度 /(μg·kg -1)

平均回收率/% RSD

/%

5 92.5 5.5

孔雀石绿(MG)0 10 84.1 4.3

20 86.2 3.8

0 5 76.1 5.8结晶紫(GV) 10 80.7 2.3

20 88.3 1.9

化合物

线性回归方程

相关系数 线性范围

孔雀石绿MG y =0.7146x -3.5602 0.9998 1.0~500结晶紫GV

y =0.9834x -3.7908 0.9996 1.0~

500

t /min

响应值/L U

6 5.5 5 4.5 4

1 2

3 4 5

6 7

8 9

3讨论

3.1净化条件的选择

样品经孔雀石绿快速前处理试剂盒提取后,如果不进一步净化,直接上机用荧光检测器检测,干扰严重。目前文献资料中多采用氧化铝柱(酸性、中性或碱性)与PRS小柱串联来对样品进行净化[1,2,5,7]。考虑孔雀石绿前处理试剂盒同时有提取和净化的作用,我们分别采用正己烷,酸性氧化铝柱与PRS小柱串联,对样品进行了净化,实验中发现,用正己烷脱脂效果差,干扰严重,用酸性氧化铝和PRS小柱串联净化效果好,所以实验中采用酸性氧化铝柱与PRS小柱串联进行净化,过0.45 μm膜后上机检测。与文献相比,本实验经过一次萃取后无需二氯甲烷反萃取,浓缩后直接用小柱进行净化,同样获得了较理想的实验结果。

3.2流动相的选择

实验中分别采用(1)乙腈+乙酸钠缓冲液(pH 4.5)=80+20;(2)乙腈+乙酸铵缓冲液(pH 4.5)=80+20为流动相进行检测,实验结果表明,用流动相(1)进行检测时基线噪音大,对检测结果有干扰,而用流动相(2)进行检测时基线噪音小,对检测基本无干扰。

4 小结

样品经孔雀石绿快速前处理试剂盒提取,固相萃取柱净化,硼氢化钾还原,高效液相色谱-荧光检测法进行检测,成功地进行了水产品中孔雀石绿、结晶紫残留量的检测。试验结果表明:该方法主要综合了各个方法标准中快速和灵敏这两个优点,并对前处理过程进行了优化,相对于SN/T1768-2006及文献[1,2]来说,检测限从2.0μg/kg提高到了0.5 μg/kg,而相对于GB/T20361-2006及其它文献来说,前处理大为简化,大大缩短了检测时间,减少了有机溶剂用量,灵敏度与国标[7]及液质联用方法[5]相当(均为0.5 μg/kg),是水产品中孔雀石绿及其代谢物隐色孔雀石绿残留总量、结晶紫及其代谢物隐色结晶紫残留总量快速而准确的检测方法。

参 考 文 献

[1] 任秀莲,魏琦峰,曲径,等. 反相高效液相色谱法测定水产品中孔

雀石绿、结晶紫及其代谢物[J]. 中国卫生检验杂志, 2006, l6(8):939-940.

[2] 林洪,付晓婷,邱绪建, 等. 液相色谱法测定鱼肌肉中孔雀石绿、

结晶紫及其代谢物[J].中国海洋大学学报, 2006, 36(6):909-912. [3] Kamila Mitrowska, Andrzej Posyniak, Jan Zmudzki. Determination of

malachite green and leucomalachite green in carp muscle by liquid chromatography with visible and fluorescence detection[J]. Journal of Chromatography A, 2005, 1089(1-2):187-192.

[4] Wu Xueli, Zhang Gong, Wu Yongning,et al. Simultaneous

determination of malachite green, gentian violet and their leuco-metabolites in aquatic products by high-performance liquid chromatography–linear ion trap mass spectrometry[J]. Journal of Chromatography A, 2007, 1172(2):121-126.

[5] 朱宽正, 王鹏, 林雁飞,等. 液相色谱一串联质谱法同时测定水产

品中孔雀石绿、结晶紫以及它们的隐色代谢物残留[J]. 色谱, 2007, 25(1):66-69.

[6] 贾东芬,张顺合,张维,等. SN/T1768-2006, 水产品中孔雀石绿和

结晶紫及其代谢产物的快速测定方法[S]. 北京:中国标准出版社,2006.

[7] 郑斌,赵红萍,冷凯良,等. GB/T20361-2006, 水产品中孔雀石绿

和结晶紫残留量的测定高效液相色谱荧光检测法[S]. 北京:中国

标准出版社,2006.

高效液相色谱法检测水产品中的孔雀石绿和结晶紫

第29卷 第1期 广东海洋大学学报 V ol.29 No.1 2009年2月 Journal of Guangdong Ocean University Feb. 2009 收稿日期:2008-10-10 基金项目:广东省重大科技兴海项目(B200701A06) 第一作者:吴仕辉(1980-),女,硕士,研究实习员,从事水产品质量安全研究。E-mail :wshxjw@https://www.wendangku.net/doc/0515759315.html, 高效液相色谱法检测水产品中的孔雀石绿和结晶紫 吴仕辉,朱新平,郑光明,陈昆慈,戴晓欣,潘德博 (中国水产科学研究院珠江水产研究所,广东 广州,510380) 摘 要:样品中的孔雀石绿、结晶紫经试剂盒提取,浓缩后用经固相萃取柱净化、硼氢化钾还原、反向色谱柱分离,使用荧光检测器检测,孔雀石绿、结晶紫的加标回收率在76.1 %~92.5 %之间,相对标准偏差1.9 %~5.8 %,检出限均为0.5 μg/kg 。结果表明:该方法检测孔雀石绿(MG )、结晶紫(GV )处理简单,灵敏度高,节省时间,可用于大量样品的快速分析。 关键词:水产品;孔雀石绿;结晶紫;检测;高效液相色谱法(HPLC ) 中图分类号:S948 文献标志码:A 文章编号:1673-9159(2009)01-0054-04 Determination of Malachite Green and Gentian Violet Residues in Fishery Products by High Performance Liquid Chromatography(HPLC) with Fluorescence Detector WU Shi-hui, ZHU Xin-ping, ZHENG Guang-ming, CHEN Kun-ci, DAI Xiao-xin, PAN De-bo (Pearl River Fishery Research Institute , Chinese Academic of Fishery Science , Guangzhou , 510380 Chin a ) Abstract: M alachite green and gentian violet residues in fishery products were determined by high performance liquid chromatography method coupled with fl uorescence detector. Samples were extracted by pre-treatment kit for extraction of MG, LMG, GV, LGV and purified by solid-phase extraction cartridges. After concentrated, samples were deoxidized by potassium borohydride. The MG and GV were detected with FLD detector after C18 column separation. The recoveries for fortified fish tissue were 76.1 %~92.5 %, The relative standard deviation(RSD) values for repeatability were 1.9 %~5.8 %.The detection limit for MG and CV was 0.5 μg/kg, respectively. Key words: fisher product ;malachite green ;gentian violet ; detection ; HPLC 孔雀石绿、结晶紫属于三苯甲烷类染料,这两种化合物对鱼类的水霉病、寄生虫病等有很好的疗效,长期以来许多国家曾将其作为水产养殖业的杀菌剂。它们在鱼体内可分别代谢为无色孔雀石绿和无色结晶紫,由于其母体化合物和代谢物均具有潜在的致癌、致畸、致突变等副作用,20世纪90年代以来许多国家都将其列为水产养殖的禁用药物。但是由于其抗菌效果好、价格便宜,不少业户仍在违规使用,因此孔雀石绿残留监控就显得格外重要。 目前孔雀石绿、结晶紫及其代谢物的检测方法 主要有高效液相色谱法[1-3]和液质联用法[4-5]。我国于2006年发布有关的水产行业标准(SN/T1768- 2006)[6]及国家标准(GB/T20361-2006)[7]。行业标准SN/T1768-2006前处理简单,但是满足不了检测限0.5 μg/kg 的要求。其他方法的前处理均需多次萃取,多次离心,操作烦琐,前处理时间长,有机溶剂用量大,实际检测工作中存在困难。本文综合各个方法标准中快速和灵敏的优点,建立了同时检测孔雀石绿及代谢物无色孔雀石绿总量,结晶紫以及代谢物无色结晶紫总量的液相色谱方法。

高效液相色谱法在水质检测中的应用

高效液相色谱法在水质检测中的应用 摘要:液相色谱仪已广泛应用于水环境监测中,逐步成为常规检测方法,其适用于分子量大、挥发性低、热稳定性差的有机污染物的分离和分析,具有准确、快速等特点。 关键词:液相色谱仪;水环境监测;有机污染物 1、引言 高效液相色谱法 ( high performance liquid chro-matography,简称 HPLC),具有下列主要优点:固定相颗粒细且规则均匀,传质阻抗小,组分间分离效率高;利用高压泵输送流动相,大大缩短分析时间;使用高灵敏检测器,提高了检测灵敏度,在分析速度、分离效能、检测灵敏度和操作自动化方面,达到了和气相色谱法相媲美的程度,气相色谱法仅适于分析蒸汽压低、挥发性高、沸点低、热稳定性好的样品。在全部已知的有机化合物中仅有20%的样品符合这些条件,近80%的有机化合物属于挥发性低、易受热分解或者大分子化合物,适合于高效液相色谱分析,因此,HPLC 应用前景更为广阔。 在环境监测中,高翔液相色谱法已逐步上升为常用的监测方法,如检测多环芳烃类、酚类、多氯联苯、苯胺类、阴离子和非离子表面活性剂、有机农药除草剂等。随着经济的快速发展,人们在获取大量化学物质以满足经济、生产和生活需要的同时,也将一些典型的有毒有害的有机污染物带入环境,其中部分有机污染物已经直接或间接被证明具有致癌、致畸和致突变的作用,给人类健康和自然生态环境带来了严重、持久、潜在的危害。根据发达国家的经验和我国经济发展

伴随的污染现状,有毒有机污染物也必将成为我国环境监测的重要目标。 2、实验部分 2.1主要仪器 岛津公司生产的高效液相色谱仪(LC-20A),包括: (1)CBM-20A—系统控制器; (2)CTO-20A—色谱柱柱温箱; (3)LC-20A—溶液传输单元; (4)SPD-20A—紫外可见光检测器; (5)RF-20A—荧光检测器; (6)SIL-20A—自动进样器; (7)DGU-20A3R—在线脱气机 (8)数据处理:LC-LabSolutions工作站软件。 (9)色谱柱:Shim-pack column size serial NO.VP-ODS。 2.2液相色谱原理简介 液相色谱法是在高压条件下溶质在固定相和流动相之间进行的 一种连续多次交换的过程,它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同引起排阻作用的差别使不同溶质得以分离。 2.3建立实验方法 研究液相色谱测定苯系物的实验方法,结合查找的资料及实验验证,确定检测苯系物的实验方法如下: (1) 进样量:10微升;色谱柱:Shim-pack column size serial NO.VP-ODS 柱。

乳制品中三聚氰胺的高效液相色谱检测法

乳制品中三聚氰胺的高效液相色谱检测法 三聚氰胺(Melamine)是一种重要的三嗪类含氮杂环有机化工原料,主要用于生产三 聚氰胺-甲醛树脂,广泛用于木材加工、塑料、涂料、造纸、纺织、皮革等行业,为白色晶体。三鹿奶粉事件引发了对三聚氰胺检测的广泛关注,国家质量监督检验检疫总局和国家标 准化管理委员会相继发布了《原料乳与乳制品中三聚氰胺检测方法》(GB/T22388-2008)和《原料乳中三聚氰胺快速检测液相色谱法》(GB/T22400-2008)的国家标准。本文参考了 以上标准并进行配制条件优化,建立了液相色谱检测法,前处理简单,检测限、精密度、重 现性以及回收率均符合国家标准。 1 实验部分 1.1 仪器与试剂 LC1620高效液相色谱仪(含UV1620紫外-可见检测器1台,P1620高压恒流泵1台,上海 舜宇恒平科学仪器有限公司);AT-330色谱柱温箱(天津奥特赛恩斯仪器有限公司);FA2004 分析天平(上海舜宇恒平科学仪器有限公司);TGL-16G-A离心机(上海安亭科学仪器厂); 三聚氰胺标准品(>99%,上海安谱);辛烷磺酸钠(色谱纯,北京百灵威);磷酸(分析纯)、乙 腈(色谱纯,美国Tedia)、纯净水(杭州娃哈哈)。 1.2 标准品溶液配制 精密称取三聚氰胺标准品,溶于50%的甲醇水溶液,配制称1.422mg/ml的标准储备液,于4℃避光保存。根据实验需要,用流动相逐级稀释成适当浓度的标准工作液。 1.3 样品前处理 称取2g酸奶样品与50ml具塞离心管中,加入乙腈:水=50:50混合溶液15ml,充分混匀 后超声提取15min。取提取液250ul,加入0.1mol/l盐酸750ul,混匀,以12000r/min离心 5min,取上清液,0.22um滤膜过滤,作为HPLC测定溶液。 1.4 色谱条件: 色谱柱:Globalsil C18 5μm(ID4.6mm×250mm) 流动相:乙腈/缓冲盐=15/85(缓冲盐:10mM辛烷磺酸钠水溶液,含0.1%磷酸) 流速:1.0ml/min 波长:240nm 温度:40℃ 进样量:20μl 2 实验结果 2.1 精密度实验 取浓度为0.569μg/ml三聚氰胺标准工作液,按上述色谱条件,连续进样5次,以各成分峰 面积计算RSD(%),所得结果如表1所示:保留时间相对标准偏差(RSD)为0.23%,峰面 积RSD为0.57%。 表1 精密度实验 time(min)Peak High Peak Area NO. Retention 1 11.933 289 4216.8 2 11.990 290 4264.2 3 11.928 287 4246.0 4 11.927 287 4242.8 5 11.923 284 4218.6 RSD(%) 0.23 0.82 0.57

DB13T1358-2011养殖用水中孔雀石绿快速测定方法激光拉曼光谱法

ICS65.150 B 50 DB13 河北省地方标准 DB 13/T 1358—2011 养殖用水中孔雀石绿快速测定方法 激光拉曼光谱法The qualitative determination of malachite green in aquiculture water by surface-enhanced laser raman spectrometry 2011-01-28发布2011-02-28实施

前言 本标准由GB/T 1.1—2009给出的规则起草。 本标准由河北省质量技术监督局提出并归口。 本标准起草单位:河北省食品质量监督检验研究院、欧普图斯光学纳米科技有限公司、国家果类及农副加工产品质量监督检验中心 本标准主要起草人:李挥、张敬轩、张会军、张岩、刘春伟、贾茜、范斌、李强、庞坤

养殖用水中孔雀石绿快速测定方法 激光拉曼光谱法 1 范围 本标准规定了利用激光拉曼光谱法快速检测水产品养殖、销售用水或其他水体中微痕量孔雀石绿的定性定量检测方法。 本标准适用于水产品养殖、销售用水或其他水体中孔雀石绿的激光拉曼光谱法的现场快速筛查检测。 本方法在水中孔雀石绿的定量限为5.0μg/L。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 6682分析实验室用水规格和实验方法(GB/T 6682—2008,ISO 3696:1987,MOD)。 3 原理 试样经高速离心后直接测定。样品中的孔雀石绿分子与表面增强试剂混合后,分子吸附在表面增强纳米颗粒上,其拉曼散射信号可增强106倍以上,使用便携式激光拉曼检测仪通过自动判别其特征峰即可定性检测出孔雀石绿。通过对测定的拉曼谱图进行基线调整和归一化处理,应用外标法可进行定量分析。 4 试剂与材料 除另有规定,所有试剂均为分析纯,水为GB/T 6682规定的三级水。 4.1 孔雀石绿标准品:CAS 2437-29-8,纯度大于99%。 4.2 表面增强试剂:OTR201,银纳米溶胶,或相当者。 4.3 无机盐凝聚剂:1% 氯化钠水溶液。 4.4 无机盐离子促进剂:2% 溴化钾水溶液。 4.5 孔雀石绿标准溶液(1 000 μg/mL):准确称取0.1 000 g孔雀石绿标准品,用乙腈溶解后,定容到100 mL,4℃避光保存。 5 仪器与设备 5.1 激光拉曼光谱仪。 5.2 高速离心机:转速不低于14 000 r/min(转/分钟)。 6 分析步骤

孔雀石绿检测卡说明书——组织

孔雀石绿免疫胶体金快速检测卡使用说明本产品用于快速检测水产品组织样品中的孔雀石绿残留,整个检测过程只需要40分钟左右,适用于各类企业及检测机构,本产品检测限如下表所示 1、检测原理: 孔雀石绿快速检测卡应用了竞争抑制免疫层析的原理,样品中的孔雀石绿在流动的过程中与胶体金标记的 特异性单克隆抗体结合,抑制了抗体和NC膜检测线(T)上孔雀石绿-蛋白偶联物的结合。如果样品中孔雀石 绿含量大于1ppb,检测线(T)不显颜色或者检测线(T)比质控线(C)浅两个色差以上(含两个),结果为阳 性;反之,检测线(T)显红色,结果为阴性。 需自备设备: 均质器;电子天平;称量勺;离心机;氮(空)气吹干仪;微量移液器。 3、样品处理: 组织样(虾要去掉头和壳后彻底清洗干净,鱼要去鳞后洗净)应当避光冷藏保存。 1.取切碎的一定量的组织样本,用均质器均质; 2.称取2g均质于15ml离心管中; 3.用微量移液器加入1.5mlMG提取剂1,然后加入4ml MG提取剂2和1管MG提取剂3于15ml离心管中。 4.剧烈振荡3min后,加入一管MG提取剂4,剧烈振荡1分钟后,室温下4000r/min离心5min; 5.用微量移液器移取3ml上清于15ml离心管中,用微量移液器加入1ml正己烷,上下颠倒6次,室温4000r/min离心1min, 用微量移液器移取离心管刻度1ml到3ml之间的液体(大约2ml)到新的5ml离心管中,再加入MG氧化剂瓶内的下层黄色液体0.1ml,混合均匀1分钟后,65℃加热条件下,用空气吹干; 6.用微量移液器向吹干的离心管中加入300ulMG复溶液,用微量移液器冲洗溶解试管内壁上残留物;静置2分钟; 7.吸取待检样品溶液100微升于金标微孔中,用小滴管吹打完全溶解孔内红色物质,等待反应5分钟。 4、使用步骤: 1. 在进行测试前先完整阅读使用说明书,使用前将试剂板和待检样本溶液恢复至室温(20℃~25℃); 2. 从原包装袋中取出试剂板,水平放置于观察者正面,如下图右侧所示(打开后请立即使用); 3. 吸取待检样品溶液60~80微升于加样孔中(滴管滴3滴),加样后开始计时; 4. 结果应在8~10分钟读取,其他时间判读无效。

高效液相色谱法测定甲硝唑的含量

实验二高效液相色谱法测定甲硝唑的含 量 一、实验目的 1.熟悉高效液相色谱仪主要结构组成及功能。 2.了解反相色谱法的原理、优点和应用。 3.了解流动相的选择依据及配制方法。 4.掌握高效液相色谱法进行定性和定量分析的基本方法。 二、实验原理 高效液相色谱法是采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱进行分离测定的色谱方法。注入的供试品,由流动相带入柱内,各成分在柱内被分离,并依次进入检测器,由数据处理系统记录色谱信号。本实验以甲硝唑为测定对象,以反相HPLC来分离检测未知样中甲硝唑的含量。以甲硝唑标准系列溶液的色谱峰面积对其浓度进行线性回归,再根据样品中甲硝唑的峰面积,由线性方程计算其浓度。 三、实验内容 (一)实验仪器与材料 1.实验仪器:高效液相色谱仪、精密天平、50mL烧杯、玻璃棒、称量纸、10mL容量瓶、50mL 容量瓶、注射器、洗瓶。 2.实验材料:甲硝唑原料、蒸馏水、HCl(0.1mol/L)、乙腈、三氟乙酸、超纯水。 (二)实验内容 1、色谱操作条件的制定: 色谱柱:C18柱(250×4.6mm,5μm); 流动相:乙腈:0.02%三氟乙酸水溶液(20:80) 流速:1mL/min 检测波长:277nm 柱温:35℃ 进样量:20μL 2、标准溶液配制 精密称取在105℃条件下干燥至恒重的甲硝唑对照品10mg,置于50mL容量瓶中,用0.1mol/L的HCl溶液溶解并定容至刻度,即得浓度为0.2mg/mL的甲硝唑标准储备液,备用。 3、标准曲线的建立 (1)精密量取甲硝唑标准储备液分别为0.3mL、0.5 mL、0.7 mL、0.9 mL、1.1 mL置于10 mL的容量瓶中,然后用0.1mol/L的HCl溶液定容至刻度,得到浓度梯度为6μg/mL、10μg/mL、14μg/mL、18μg/mL和22μg/mL的标准溶液,分别过0.22μm的微孔滤膜过滤,滤

高效液相色谱法的标准操作规程

高效液相色谱法的标准操作规程 1 定义及概述: 1.1 高效液相色谱法是一种现代液体色谱法,其基本方法是将具不同极性的单一溶剂或不同比例的混合溶液作为流动相,用高压输液泵将流动相注入装有填充剂的色谱柱,注入的供试品被流动相带入柱内进行分离后,各成分先后进入检测器,用记录仪或数据处理装置记录色谱图或进行数据处理,得到测定结果。由于应用各种性质的微粒填料和加压的液体流动相,本法具有分离性能高、分析速度快的特点。 1.2 高效液相色谱法适用于能在特定填充剂的色谱柱上进行分离的药品的分析测定,特别是多组分药品的测定、杂质检查和大分子物质的测定。有的药品需要在色谱分离前或后经过衍生化反应,方能进行分离或检测。常用的色谱柱填充剂有:硅胶,用于正相色谱;化学键合固定相,根据键合的基团不同可用于反相或正相色谱,其中最常用的是十八烷基硅烷(又称ODS)键合硅胶,可用于反相色谱或离子交换色谱;凝胶或玻璃微球等填充剂是有一定孔径的大孔填料,用于排阻色谱。 1.3 高效液相色谱仪基本由泵、进样器、色谱柱、检测器和色谱数据处理组成。检测器最常用的为可变波长紫外检测器或紫外—可见检测器。色谱信息的收集和处理常用积分仪或数据工作站进行。梯度洗脱,可用两台泵或单台泵加比例阀进行程控实现。 2 高效液相色谱仪的使用要求: 2.1 按国家技术监督局国家计量检定规程汇编中“实验室液相色谱仪检定规程”的规定作定期检定,应符合规定。 2.2 仪器各部件应能正常工作,管路为无渗漏连结,流路中无堵塞或漏液,在设定的检测器灵敏度条件下,色谱基线噪音和漂移应能满足分析要求。 2.3 具体仪器在使用前应详细参阅各操作说明书。

高效液相色谱方法的验证

高效液相色谱方法的验证 ?方法验证的目的 ?方法验证的内容 ?方法验证的项目及测定方法

方法验证的目的 目的:证明采用的方法适合相应检测的要求。 方法验证是实验室针对特定方法的研究过程,通过设计方案,有步骤、系统地收集、处理实验数据,最终形成文件,以证明所用试验方法准确、灵敏、专属并重现。同一分析方法用于不同的检测项目会有不同的验证要求。

方法验证的内容 ?准确度 ?精密度 ?专属性 ?检测限 ?定量限 ?线性和范围 ?耐用性

准确度 定义:方法测定结果与真实值或参考值的接近程度。一般用回收率%表示。 1. 主成分含量测定 原料药:对照品或方法比对 2. 制剂、中药:标准加样回收 杂质定量 测定:加样回收(n 3 9) 杂质对照品 方法比对 回收率 C-A %=′ B 100% 杂质与主成分的相对含量 A:试验供试品中被测成分的量 (通常为含量测定量的50%) B: 试验供试品中加入的对照品的量 (通常为±20%) C:试验测定值

精密度 定义:在规定测试条件下,同一个均匀供试品,经多次取样测定所得结果之间的接近程度。一般用偏差,相对偏差和相对标准偏差 1. 重复性(n 9) 3 2. 中间精密度 3. 重复性 测定:HPLC方法的精密度测试,应从样品制备开始,设计3个浓度, 分别平行制备3份,以测定含量计算相对标准偏差;或同一样品平行制备6份供试品,分别进样,以峰面积计算相对标准偏差。 同一份供试品连续进样6次,计算得到的相对标准偏差只能表征进样精密度,不能作为方法精密度。

专属性 定义:在其它成分可能存在下,方法能正确测定出被测物的特性。 1. 鉴别反应 2. 含量测定 杂质测定 测定: 限量检查 空白制剂,模拟复方 加速破坏试样测试 DAD峰纯度检查

高效液相色谱

高效液相色谱 高效液相色谱仪 高效液相色谱法(High Performance Liquid Chromatography \ HPLC)又称“高压液相色谱”、“高速液相色谱”、“高分离度液相色谱”、“近代柱色谱”等。高效液相色谱是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。 目录 化学信息 基本信息 性状描述 物理说明 药理作用 危险说明 历史 特点 主要类型 结构组成 综述 高压输液泵 色谱柱 进样器 检测器 馏分收集器 数据获取和处理系统 分离原理 液—固色谱法 离子交换色谱法 离子对色谱法

离子色谱法 空间排阻色谱法 流程 使用方法 综述 色谱柱的理论板数分离度 拖尾因子 测定方法 综述 面积归一化法 主成分自身对照法内标法 外标法 设备选型 综述 相对分子质量 溶解度 化学结构 仪器设备 综述 高压泵 梯度洗提 进样装置 色谱柱 检测器 应用实例 化学信息 基本信息 性状描述 物理说明 药理作用 危险说明 历史 特点 主要类型 结构组成 综述 高压输液泵 色谱柱 进样器 检测器 馏分收集器 数据获取和处理系统

分离原理 液—固色谱法 离子交换色谱法 离子对色谱法 离子色谱法 空间排阻色谱法 流程 使用方法 综述 色谱柱的理论板数 分离度 拖尾因子 测定方法 综述 面积归一化法 主成分自身对照法 内标法 外标法 设备选型 综述 相对分子质量 溶解度 化学结构 仪器设备 综述 高压泵 梯度洗提 进样装置 色谱柱 检测器 应用实例 展开 化学信息 基本信息 中文名称:葛根素(HPLC),98% 中文别名:葛根黄酮,8-beta-D-葡萄吡喃糖-4',7-二羟基异黄酮 英文名称:Puerarin 英文别名:8-(β-D-Glucopyranosyl-7-hydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one 纯度:98% CAS号:3681-99-0 分子式:C21H20O9 分子量:416.38

高效液相色谱法测定手册

高效液相色谱法测定手册 一目的:制定高效液相色谱法,规范高效液相色谱法的测定操作。 二适用范围:适用于高效液相色谱法的测定。 三责任者:品控部。 四正文 1 简述 高效液相色谱法是一种现代液体色谱法,其基本方法是将具一定极性的单一溶剂或不同比例的混合溶液,作为流动相,用泵将流动相注入装有填充剂的色谱柱,注入的供试品被流动相带入柱内进行分离后,各成分先后进入检测器,用记录仪或数据处理装置记录色谱图或进行数据处理,得到测定结果。由于应用了各种特性的微粒填料和加压的液体流动相,本法具有分离性能高,分析速度快的特点。 高效液相色谱法适用于能在特定填充剂的色谱柱上进行分离的药品的分析测定,特别是多组分药品的测定、杂质检查和大分子物质的测定。有的药品需在色谱分离前或后经过衍生化反应方能进行分离或检测。常用的色谱柱填充剂有:硅胶,用于正相色谱;化学键合固定相,根据键合的基团不同可用于反相或正相色谱,其中最常用的是十八烷基硅烷(又称ODS)键合硅胶,可用于反相色谱或离子对色谱;离子交换填料,用于离子交换色谱;具一定孔径的大孔填料,用于排阻色谱。 高效液相色谱仪基本由泵,进样器,色谱柱,检测器和色谱数据处理系统组成。检测器最常用的为可变波长紫外可见光检测器,其他检测器有如示差折光检测器和蒸发光散射检测器等。色谱信息的收集和处理常用积分仪或数据工作站进行。梯度洗脱,可用两台泵或单台泵加比例阀进行程控实现。 2 高效液相色谱仪的使用要求 2.1 按国家技术监督局国家计量检定规程汇编中“实验室液相色谱仪检定规程(JJG705—90)”的规定作定期检定,应符合规定。 2.2 仪器各部件应能正常工作,管路为无死体积连结,流路中无堵塞或漏液,在设定的检测器灵敏度条件下,色谱基线噪音和漂移应能满足分析要求。 2.3 具体仪器在使用前应详细参阅各操作说明书。

高效液相色谱法测定有机化合物的含量

实验四高效液相色谱法测定有机化合物的含量 [目的要求] 1、了解仪器各部分的构造及功能。 2、掌握样品、流动相的处理,仪器维护等基本知识。 3、学会简单样品的分析操作过程。 [基本原理] 高效液相色谱仪液体作为流动相,并采用颗粒极细的高效固定相的主色谱分离技术,在基本理论方面与气相色谱没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质差别。与气相色谱相比,高效液相色谱对样品的适用性强,不受分析对象挥发性和热稳定性的限制,可以弥补气相色谱法的不足。 液相色谱根据固定向的性质可分为吸附色谱、键合相色谱、离子交换色谱和大小排阻色谱。其中反相键合相色谱应用最广,键合相色谱法是将类似于气相色谱中固定液的液体通过化学反应键合到硅胶表面,从而形成固定相。若采用极性键合相、非极性流动相,则称为正相色谱;采用非极性键合相,极性流动相,则称为反相色谱。这种分离的保留值大小,主要决定于组分分子与键合固定液分子间作用力的大小。 反相键合相色谱采用醇-水或腈-水体系作为流动相,纯水廉价易得,紫外吸收小,在纯水中添加各种物质可改变流动相选择性。使用最广泛的反相键合相是十八烷基键合相,即让十八烷基(C18H37―)键合到硅胶表面,这也就是我们通常所说的碳十八柱。 [仪器试剂] 高效液相色谱仪(包括储液器、高压泵、自动进样器、色谱柱、柱温箱、检测器、工作站)、过滤装置 待测样品(浓度约100 ppm)、甲醇、二次水 [实验步骤] 1、仪器使用前的准备工作 (1)样品与流动相的处理 配好的溶液需要用0.45 μm的一次性过滤膜过滤。纯有机相或含一定比便例有机相的就要用有机系的滤膜,水相或缓冲盐的就要用水系滤膜。 水、甲醇等过滤后即可使用;水放置一天以上需重新过滤或换新鲜的水。含稳定剂的流动相需经过特殊处理,或使用色谱纯的流动相。 (2)更换泵头里清洗瓶中的清洗液 流动相不同,清洗液也不同,如果流动相为甲醇-水体系,可以用50%的甲醇;如果流动相含有电解质,通常用95%去离子水甚至高纯水。 如果仪器经常使用建议每周更换两次,如果仪器很少使用则每次使用前必须更换。(3)更换托盘里洗针瓶中的洗液 洗液一般为:50%的甲醇。

高效液相色谱法测定饮料中的咖啡因(含问题分析)

实验二 高效液相色谱法测定饮料中的咖啡因 一、目的要求 1、学习高效液相色谱仪的操作。 2、了解高效液相色谱法测定咖啡因的基本原理。 3、掌握高效液相色谱法进行定性及定量分析的基本方法。 二、基本原理 咖啡因又称咖啡碱,是由茶叶或咖啡中提取而得的一种生物碱,它属黄嘌呤衍生物,化学名称为1,3,7-三甲基黄嘌呤。咖啡因能兴奋大脑皮层,使人精神兴奋。咖啡中含咖啡因约为1.2~1.8%,茶叶中约含2.0~4.7%。可乐饮料、APC 药片等中均含咖啡因。其分子式为C 8H 10O 2N 4,结构式为: N N CH 3 H 3C O O N N CH 3 定量测定咖啡因的传统分析方法是采用萃取分光光度法。用反相高效液相色谱法将饮料中的咖啡因与其它组分(如:单宁酸、咖啡酸、蔗糖等)分离后,将已配制的浓度不同的咖啡因标准溶液进入色谱系统。如流动相流速和泵的压力在整个实验过程中是恒定的,测定它们在色谱图上的保留时间t R 和峰面积A 后,可直接用t R 定性,用峰面积A 作为定量测定的参数,采用工作曲线法(即外标法)测定饮料中的咖啡因含量。 三、仪器和试剂 1、Agilent 1100高效液相色谱仪。 2、色谱柱:Kromasil C18,5μ 150×4.6mm 。 3、流动相:30%甲醇(色谱纯)+70%高纯水;流动相进入色谱系统前,用超声波发生器脱气10min 。 4、 咖啡因标准贮备溶液:将咖啡因在110℃下烘干1h 。准确称取0.1000g 咖啡因,用二次蒸馏水溶解,定量转移至100mL 容量瓶中,并稀释至刻度。标样浓度1000μg·mL -1。 5、测饮料试液:可乐,茶叶,速溶咖啡。

高效液相色谱测定法标准操作规程

标准操作规程 STANDARD OPERATION PROCEDURE 1 目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2 适用围:适用于高效液相色谱测定法检验操作全过程。 3 责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1. 对仪器的一般要求和色谱条件高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据 处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μ m。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1. 色谱柱反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合 物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分 离物质的性质来选择合适的色谱柱。温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2? 8 之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2 或大于8 的流动相。

(完整word版)高效液相色谱仪常用的检测器及其性能

高效液相色谱仪常用的检测器及其性能 (1)紫外吸收(UV)检测器 UV检测器是目前HPLC应用最广泛的检测器。它是依据光吸收原理,以适当的光路和电路,输出一个与试样组分浓度成正比的紫外一可见光吸收信号,其结构与一般光度计相似。其流通池是组分流过的光学通道,池体积一般为8μl,内径小于lmm,长度10mm左右。这种检测器灵敏度高,线性范围宽,对流速和温度变化不敏感,可用于梯度洗脱分离。紫外吸收检测要求被检测样品组分有紫外一可见光吸收,而使用的流动相无吸收,或在被测组分吸收波长处无吸收。一般选择在欲分析物有最大吸收的波长处进行检测,以获得最大灵敏度和抗干扰能力。在没有最大吸收时,可采用末端吸收。检测波长的选择除取决于待测物质的成分和分子结构外,还必须考虑流动相组成、共存组分干扰等因素。特别是各种溶剂都有一定的透过波长下限值,超过这个波长,溶剂的吸收会变得很强,以至于不能很好地测出待测物质的吸收强度。表1列出了HPLC中一些常用的溶剂透过波长的下限。 (2)光电二极管阵列(IJDA)检测器 PDA检测器又称为二极管阵列检测器(diode array UV detector,DAD),这种检测器以光电二极管阵列作为检测元件,可进行多通道并行检测,在一次色谱测量中,可同时获得时间、波长、吸光度三者的关系,通过计算机处理,在荧光屏上显示出三维图谱,也可作出任意波长的吸光度一时问曲线和任意时间的吸光度一波长曲线。DAD的光路与紫外检测器不同,光源发出的光聚焦后先通过检测池,通过检测池的透射光由全息光栅色散成多色光,不同波长的色散光按波长顺序聚焦在阵列元件上,每个元件对应一定的纳米数。当光照射到光电二极管时,光电二极管产生讯号。由于色散过程及透射光的检测是全波长范围的,可在瞬间检测流经检测池的全吸收光谱,得到三维色谱一光谱图。计算机化的数据处理,还可进行色谱峰光谱相似性比较、峰纯度检测及利用谱图库对掣定样品进行检索等,为定性、定量分析提供更丰富的信息。 ①多通道多波长检测可以同时得到多个波长的色谱图,每个成分均可在最佳波长下检测定量。 ②光谱相似性比较在HPLC中,两个物质出峰时间一致并不能完全说明为同一物质,通过色谱峰紫外光谱一致性比较,可提高测定的可靠性。 ③峰纯度检测对色谱峰峰顶、上、下3个点的光谱进行比较,完全吻合意味这是1个单组分峰,不吻合则表示为未分离峰。并可计算出纯度系数PI,PI值在0~1之问,越接近1,表示峰纯度越好,PI可由计算机自动计算。 ④光谱检索与比较二极管阵列检测器得到的光谱图可分类存储到光谱库中,当测定类似成分时,可调出相关谱图,进行检索和比较,也可通过比较光谱相似系数比较相似性。

高效液相色谱测定法标准操作规程

标准操作规程 1目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2适用围:适用于高效液相色谱测定法检验操作全过程。 3责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μm。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1.色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分

离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在 2?8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2或大于8 的流动相。 4.1.2.检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应。结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定围呈线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求;采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 4.1.3.流动相 反相色谱系统的流动相常用甲醇-水系统和乙腈-水系统,用紫外末端波长检测时,宜选用乙腈-水系统。流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。用十八烷基硅烷键合硅胶色谱柱时,流动相中有机溶剂一般不低于5%,否则易导致柱效下降、色谱系统不稳定。 正相色谱系统的流动相常用两种或两种以上的有机溶剂,如二氯甲烷和正己烷等。 品种正文项下规定的条件除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变,以达到系统适用性试验的要求。调整流动相组分比例时,当小比例组分的百分比例X小于等于33%时,允许改变围为0.7X?1.3X;当X大于33%时,允许改变围为X—10%?X+10% 。

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC 主要内容包括: 1.高效液相色谱法(HPLC)的概述 2. 高效液相色谱基础知识介绍(1——13楼) 3. 高压液相色谱HPLC发展概况、特点与分类 4. 液相色谱的适用性 5.应用 高效液相色谱法(HPLC)的概述 以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。 由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有5 0种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。 高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。 目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。C18(ODS)为最常使用的化学键合相。 根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相

的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。 在中药制剂分析中,大多采用反相键合相色谱法。 系统组成: (一)高压输液系统 由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。 1.贮液罐 由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。2.流动相 流动相常用甲醇-水或乙腈-水为底剂的溶剂系统。 流动相在使用前必须脱气,否则很易在系统的低压部分逸出气泡,气泡的出现不仅影响柱分离效率,还会影响检测器的灵敏度甚至不能正常工作。脱气的方法有加热回流法、抽真空脱气法、超声脱气法和在线真空脱气法等。 3.高压输液泵 是高效液相色谱仪的关键部件之一,用以完成流动相的输送任务。对泵的要求是:耐腐蚀、耐高压、无脉冲、输出流量范围宽、流速恒定,且泵体易于清洗和维修。高压输液泵可分为恒压泵和恒流泵两类,常使用恒流泵(其压力随系统阻力改变而流量不变)。 (二)进样系统 常用六通阀进样器进样,进样量由定量环确定。操作时先将进样器手柄置于采样位置(L OAD),此时进样口只与定量环接通,处于常压状态,用微量注射器(体积应大于定量环体积)注入样品溶液,样品停留在定量环中。然后转动手柄至进样位置(INJECT),使定量环接入输液管路,样品由高压流动相带入色谱柱中。 (三)色谱柱 由柱管和填充剂组成。柱管多用不锈钢制成。柱内填充剂有硅胶和化学键合固定相。在化学键合固定相中有十八烷基硅烷键合硅胶(又称ODS柱或C18柱)、辛烷基硅烷键合硅

孔雀石绿、亮绿检测方法-液质联用

超高效液相色谱-串联质谱法同时检测水产品中孔雀石绿 (隐)、结晶紫(隐)和亮绿 陈军(龙大食品检测中心) 摘要: 采用乙腈提取水产品组织中的目标物,液液分配到二氯甲烷层,10%氯化钠水溶液去除水溶性 杂质,无水硫酸钠脱水及过滤固体杂质。浓缩定容后,过中性氧化铝柱净化,采用UPLC/MS/MS 进行检测,方法简便、快捷、稳定、灵敏度高,定量下限为0.0005mg/kg,可满足水产品亮绿药物的检测的要求。 检测项目:亮绿(brilliant green ,BG )属于碱性三苯甲烷类染料,具有类似的结构,在水产养殖过程中, 常作为杀菌剂和抗寄生虫药,用于防治各种鱼病。由于三苯甲烷具有致突变、致畸和致癌作用, 欧美、中国和日本等宣布严禁在水产养殖中使用孔雀石绿和结晶紫,并规定孔雀石绿(含隐色 孔雀石绿)和结晶紫(含隐色结晶紫)不得检出。 【药代动力学】 。 适用范围:本方法适用于虾、鱼、蟹等水产样品以上五种药物残留量的检测。 实验部分: 一、试剂与材料 1.1试剂 1.1.1 乙腈(色谱纯) 1.1.2 超纯水 1.1.3 无水硫酸钠(分析纯) 1.1.4 氯化钠(分析纯) 1.1.5 异丙醇(分析纯) 1.1.6 甲酸(色谱纯) 1.1.7 冰乙酸(色谱纯) 1.1.8 乙酸铵(色谱纯) 1.1.9 甲醇(色谱纯) 1.2仪器材料 1.2.1 飞利浦食品加工机 U n R e g i s t e r e d

1.2.2 50ml 带盖离心管 1.2.2 离心机 1.2.3 250mL 分液漏斗 1.2.4 中性氧化铝小柱(LC-Alumina-N):100mg,3mL 1.2.5 旋涡混合仪 1.2.6 150mL 茄形瓶 1.2.7 氮吹仪 1.2.8 移液管 1.2.9 滤纸 1.2.10 UPLC/MS/MS 1.3 溶液 1.3.1 0.1甲酸乙腈:取0.5mL 甲酸加入到500mL 的乙腈中,摇匀。 1.3.2 5mmol/L 乙酸铵0.1%甲酸水溶液:称取0.19g 乙酸铵溶于500mL 水,然后向其中加入0.5mL 甲酸,摇匀。 1.3.3 定溶液:乙腈:5mmol/L 乙酸铵(PH4.5)=8:2,用冰乙酸调节pH=4.5. 二、实验方法 2.1 取500g以上的可食用部分组织充分绞碎混匀后,称取5.00g至50ml离心管中。 2.2 向离心管中加入15mL乙腈,充分振荡提取,旋涡混合3min,以5000r/min离心分离,重复提取 一次,合并两次上清液,并转入250ml分液漏斗中 2.3 向分液漏斗中加入20mL 10%氯化钠水溶液,20mL二氯甲烷,振荡3min(注意放气),静置分层后,去除下层水相;上层乙腈和二氯甲烷层过预先用乙腈淋洗的无水硫酸钠脱水净化,并收集到茄形瓶中,然后用20mL乙腈分数次洗涤硫酸钠,滤液一并转入茄形瓶中 2.4 向茄形瓶中加入10mL异丙醇, 40℃以下浓缩至干,用2ml定溶液溶解残渣, 2.5 残渣溶解液过中性氧化铝,前面3-5滴滤液弃去,随后的滤液全部收集过0.2um滤膜, UPLC-MS-MS分析 三、仪器条件 3.1 液相条件 使用含0.1%甲酸的5mmol/L 乙酸铵水溶液和含0.1%甲酸的乙腈做流动相, A : 5mmol/L 乙酸铵0.1%甲酸水溶液 B:0.1%甲酸乙腈 U n R e g i s t e r e d

相关文档
相关文档 最新文档