文档库 最新最全的文档下载
当前位置:文档库 › 集成运算放大电路实验报告

集成运算放大电路实验报告

集成运算放大电路实验报告
集成运算放大电路实验报告

输入与输出电压

2. 运算放大器基本放大电路的输出波形同相比例放大器输出波形

电子技术实验报告—实验单级放大电路

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

共射放大电路实验报告

实验报告 课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名: 一、实验目的 1、学习晶体管放大电路的设计方法, 2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。 3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。 4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。 5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。 二、实验任务与要求 1.设计一个阻容耦合单级放大电路 已知条件:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω 性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v i A V V R k >>Ω 2.设计要求 (1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量 自己编写调试步骤,自己设计数据记录表格 4.写出设计性实验报告 三、实验方案设计与实验参数计算 共射放大电路

(一).电路电阻求解过程(β=100) (没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计): (1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取2 5 BB CC V V =,即4V, (3)0.7 3.3BB E E V R k I -≈=Ω,恰为电阻标称值 (4)2 12 124:3:2 CC BB R V V V R R R R ==+∴= 取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k , R 1=33.75k ; 1121 10=0.1,60,40cc B B V V IR I mA R K R K IR -== =Ω=Ω由 综上:取标称值R1=51k ,R2=33k (5) 25T T e E C V V r I I =≈=Ω (6)从输入电阻角度考虑: , 取(获得4V 足够大的正负信号摆幅)得: 从电压增益的角度考虑: >15V/V,取得 : ; 为 (二).电路频率特性 (1) 电容与低频截止频率 取 ;

基本运算电路实验报告

实报告 课程名称:电路与模拟电子技术实验指导老师:成绩: 实验名称:基本运算电路设计实验类型:同组学生姓名: 一、实验目的和要求: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 二、实验设备: 双运算放大器LM358 三、实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。2.通用型集成运放的输入级电路,为啥均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信 息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠 加到交流电压上,使得交流电的零线偏移 (正负电压不对称),但是由于交流电可 以通过“隔直流”电容(又叫耦合电容) 输出,因此任何漂移的直流缓变分量都不 能通过,所以可以使输出的交流信号不受 失调电压的任何影响。 专业: 姓名: 日期: 地点:紫金港东

5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 四、实验步骤: 1.实现两个信号的反相加法运算 实验电路: R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差 输入信号v s1v s1输出电压v o ,1kHz 0 2.减法器(差分放大电路) 实验电路: R1=R2、R F=R3 输入信号v s1v s1输出电压v o ,1kHz 0 共模抑制比850 3.用积分电路转换方波为三角波 实验电路: 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若v S为常数,则v O与t 将近似成线性关系。 因此,当v S为方波信号并满足T p<<τ2时(T p为方波半个周期时间),则v O将转变

数电实验报告 实验二 组合逻辑电路的设计

实验二组合逻辑电路的设计 一、实验目的 1.掌握组合逻辑电路的设计方法及功能测试方法。 2.熟悉组合电路的特点。 二、实验仪器及材料 a) TDS-4数电实验箱、双踪示波器、数字万用表。 b) 参考元件:74LS86、74LS00。 三、预习要求及思考题 1.预习要求: 1)所用中规模集成组件的功能、外部引线排列及使用方法。 2) 组合逻辑电路的功能特点和结构特点. 3) 中规模集成组件一般分析及设计方法. 4)用multisim软件对实验进行仿真并分析实验是否成功。 2.思考题 在进行组合逻辑电路设计时,什么是最佳设计方案 四、实验原理 1.本实验所用到的集成电路的引脚功能图见附录 2.用集成电路进行组合逻辑电路设计的一般步骤是: 1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表; 2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式; 3)画出逻辑图; 4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。 五、实验内容 1.用四2输入异或门(74LS86)和四2输入与非门(74LS00)设计一个一位全加器。 1)列出真值表,如下表2-1。其中A i、B i、C i分别为一个加数、另一个加数、低位向本位的进位;S i、C i+1分别为本位和、本位向高位的进位。 A i B i C i S i C i+1 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1 0 10 1 1 1 00 1 1 1 1 1 1 2)由表2-1全加器真值表写出函数表达式。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

数电实验报告 实验二 利用MSI设计组合逻辑电路

数电实验报告 实验二 利用MSI设计组合逻辑电路 姓名: 学号: 班级: 院系: 指导老师: 2016年 目录 实验目的:错误!未定义书签。

实验器件与仪器:错误!未定义书签。 实验原理:错误!未定义书签。 实验内容:错误!未定义书签。 实验过程:错误!未定义书签。 实验总结:错误!未定义书签。 实验: 实验目的: 熟悉编码器、译码器、数据选择器等组合逻辑功能模块的功能与使用方法。 掌握用MSI设计的组合逻辑电路的方法。 实验器件与仪器: 数字电路实验箱、数字万用表、示波器。 虚拟器件:74LS00,74LS197,74LS138,74LS151 实验原理: 中规模的器件,如译码器、数据选择器等,它们本身是为实现某种逻辑功能而设计的,但由于它们的一些特点,我们也可以用它们来实现任意逻辑函数。 用译码器实现组合逻辑电路 译码器是将每个输入的二进制代码译成对应的输出高、低电平信号。如3线-8线译码器。当附加控制门Gs的输入为高电平(S = 1)的时

候,可由逻辑图写出。 从上式可看出。-同时又是S2、S1、S0这三个变量的全部最小项的译码输出。所以这种译码器也叫最小项译码器。如果将S2、S1、S0当作逻辑函数的输入变量,则可利用附加的门电路将这些最小项适当的组合起来,便可产生任何形式的三变量组合逻辑函数。 用逻辑选择器实现组合逻辑电路 数据选择器的功能是从一组输入数据中选出某一个信号输出。或称为多路开关。如双四选一数据选择器74LS153

Y1和Y2为两个独立的输出端,和为附加控制端用于控制电路工作状态和扩展功能。A1、A0为地址输入端。D10、D11、D12、D13或D20、D21、D22、D23为数据输入端。通过选定不同的地址代码即可从4个数据输入端选出要的一个,并送到输出端Y。输出逻辑式可写成 其简化真值表如下表所示。 S1A1A0Y1 1X X0 000D10 001D11 010D12 011D13 从上述可知,如果将A1A0作为两个输入变量,同时令D10、D11、D12、D13为第三个输入变量的适当状态(包括原变量、反变量、0和1),就可以在数据选择器的输出端产生任何形式的三变量组合逻辑电路。 实验内容: 数据分配器与数据选择器功能正好相反。它是将一路信号送到地址选择信号指定的输出。如输入为D,地址信号为A、B、C,可将D按地址分配到八路输出F0、F1、F2、F3、F4、F5、F6、F7。其真值表如下

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

电工电子实验报告实验4.6 运算放大器的线性应用

实验4.6 运算放大器的线性应用 一、实验目的 1.进一步理解运算放大器线性应用电路的结构和特点。 2.掌握电子电路设计的步骤,学会先用电子设计软件进行电路性能仿真和优化设计,再进行实际器件构成电路的连接与测试方法。 3.掌握运算放大器线性应用电路的设计及测试方法。 二、实验仪器与器件 1.双路稳压电源1台 2.示波器1台 3. 数字万用表1台 4. 集成运算放大器μA741 2块 5. 定值电阻若干 6.电容若干 7.DC信号源3块 8.电位器2只 三、实验原理及要求 运算放大器是高放大倍数的直流放大器。当其成闭环状态时,其输入输出在一定范围内为线性关系,称之为运算放大器的线性应用。运放线性应用时选择合理的电路结构和外接器件,可构成各种信号运算电路和具有各种特定功能的应用电路。选择适当个数的运算放大器和阻容元件构成电路实现以下功能: 1. U o=Ui 2.U O= 5U i1+U i2(R f=100k); 3.U O= 5U i2-U i1(R f=100k); 4.U O= - (0.1ui+1000∫u idt)(C f=0.1μF); 5.用运放构成一个输出电压连续可调的恒压源(要求用一个运放实现); 6.用运放构成一个恒流源(要求用一个运放实现); 7. 用运放构成一个RC正弦波振荡器(振荡频率为500Hz)。 四、实验电路图及实验数据 1. U o=Ui Ui(V)0.3 0 -0.3 计算Uo(V) 0.3 0 -0.3 测量Uo(V) 0.302 0.001 -0.301

2.U O= 5U i1+U i2(R f=100k)

3.U O = 5U i2-U i1 (R f=100k ); Ui1(V) 0.3 0.3 -0.3 Ui2(V) -0.1 0.1 0.1 计算Uo(V) 1.4 1.6 -1.4 测量Uo(V) 1.407 1.608 -1.396 Ui1(V) 0.3 0.3 -0.3 Ui2(V) -0.1 0.1 0.1 计算Uo(V) 1.6 1.4 -1.6 测量Uo(V) 1.735 1.533 -1.703

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

单管放大电路实验报告王剑晓

单管放大电路实验报告

电03 王剑晓 2010010929 单管放大电路报告 一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理

实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减 小;U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部 失真(截止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则:

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

组合逻辑电路的设计实验报告

广西大学实验报告纸 _______________________________________________________________________________ 实验内容___________________________________________指导老师 【实验名称】 组合逻辑电路的设计 【实验目的】 学习组合逻辑电路的设计与测试方法。 【设计任务】 用四-二输入与非门设计一个4人无弃权表决电路(多数赞成则提案通过)。要求:采用四-二输入与非门74LS00实现;使用的集成电路芯片种类尽可能的少。 【实验用仪器、仪表】 数字电路实验箱、万用表、74LS00。 【设计过程】 设输入为A、B、C、D,输出为L,根据要求列出真值表如下 真值表

根据真值表画卡若图如下 由卡若图得逻辑表达式 B D C

BD AC CD AB BD AC CD AB BD AC CD AB BD AC CD BD AC AB D BCD C ACD B ABD A ABC ACD BCD ABD ABC L ???=???=++=+++=?+?+?+?=+++=))(()()( 用四二输入与非门实现 A B C D L 实验逻辑电路图

Y 实验线路图

【实验步骤】 1.打开数字电路实验箱,按下总电源开关按钮。 2.观察实验箱,看本实验所用的芯片、电压接口、接地接口的位置。 3.检查芯片是否正常。芯片内的每个与非门都必须一个个地测试,以保证芯片 能正常工作。 4.检查所需导线是否正常。将单根导线一端接发光二极管,另一端接高电平。 若发光二极管亮,说明导线是正常的;若发光二极管不亮时,说明导线不导通。不导通的导线不应用于实验。 5.按实验线路图所示线路接线。 6.接好线后,按真值表的输入依次输入A、B、C、D四个信号,“1”代表输入高 电平,“0”代表输入低电平。输出端接发光二极管,若输出端发光二极管亮则说明输出高电平,对应记录输出结果为“1”;发光二极管不亮则说明输出低电平,对应记录输出结果为“0”。本实验有四个输入端则对应的组合情况有16种,将每种情况测得的实验结果记录在实验数据表格中。 测量结果见下表: 实验数据表格

武汉大学单级放大电路实验报告

武汉大学计算机学院教学实验报告 课程名称电路与电子技术成绩教师签名 实验名称单级放大电路(多人合作实验)实验序号06 实验日期2011-12-12 姓名学号专业年级-班 小题分: 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识;实验内容;必要的原理分析) 实验目的: 1.掌握放大器静态工作点的调试方法及其对放大器性能的影响。 2.学习测量放大器的静态工作点Q,Av,ri,ro的方法啊,了解共射极电路特性。 3.学习放大器的动态性能。 实验内容: 测量放大器的动态和静态工作状态结果填入相应表格当中,记录相应的β值,A值和等效的输入电阻ri与输出电阻r0。 二、实验环境及实验步骤 小题分: (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用电表 4.TRE-A3模拟电路实验箱 实验步骤: 1.?值测量 (1)按图2.1所示连接电路,将Rp的阻值调到最大值。 (2)连线完毕仔细检查,确定无误后再接通电源。改变Rp,记录Ic分别为0.8mA,1mA, 1.2mA时三极管V的?值。

Ib(mA)0.05 0.06 0.066 Ic(mA) 0.8 1 1.2 ? 16 16.67 18.18 ?=Ic/Ib代入各式即可 2.Q点测量 信号源频率f=500Hz时,逐渐加大ui幅度,观察uo不失真时的最大输入ui值和最大输出uo值,并测量Ib,Ic,和VCE填入表2.2 表2.2 实测法估算法误差 IB (uA)IC (mA) Vce (V) IB’ (uA) IC’ (mA) V’ce (V) IB-I’B IC-I’C Vce-V’ 47.2 1.4 4.86 47.2 1.56 3 0 0.16 1.86 估算法:Ib=V1/(R1+R2)=12/(51k+200K)=47.2uA Ic= ?Ib=1.56mA Vce=V1-R3*Ic=3V 3.Av值测量 (1)将信号发生器调到频率f=500Hz,幅值为5mA,接到放大器输入端ui,观察ui和uo 端的波形,用示波器进行测量,并将测得的ui,uo和实测计算的Av值及理论估算的Av’值填入表2.3 表2.3 实测法估算法误差 Ui(mV)Uo(V) Av=uo/ui Av’Av’-Av 5 -1.3 -260 -31 .7 -55.7 估算法:Vbe=V1-Ib(R1+R2) Vce=V1-Ic*R3 Av’=Vce/Vbe=-315.7 (2)保持Vi=5mV不变,放大器接入负载RL,在改变Rc的数值情况下测量,并将计算结果填表2.4 表2.4 给定参数实 实测计 估算 Rc RL Vi(mV) V o(V) Av Av 2k 5k 5 0.83 165 177.89 2k 2k2 5 0.60 119 129.7 5k1 5k1 5 1.30 260 315.76 5k1 2k2 5 0.90 180 190.3

基本运算电路实验报告

基本运算电路实验报告 实验报告 课程名称:电路与模拟电子技术实验 指导老师: 成绩: 实验名称: 基本运算电路设计 实验类型: 同组学生姓名: 实验目的: 1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。 2、了解集成运算放大器在实际应用中应考虑的一些问题。 实验要求: 1、实现两个信号的反向加法运算 2、用减法器实现两信号的减法运算 3、用积分电路将方波转化为三角波 4、实现同相比例运算(选做) 5、实现积分运算(选做) 双运算放大器LM358 三、 实验须知: 1.在理想条件下,集成运放参数有哪些特征? 答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。 2.通用型集成运放的输入级电路,为啥 均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制 (3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。 3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。 4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠加到交流电压上,使得交流电的零线偏移(正负电压不对称),但是由于交 流电可以通过“隔直流”电容(又叫耦合电容)输出,因此任何漂移的直流缓变分量都不能通过,所以可以使输出的交流信号不受失调电压的任何影响。 5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算? 答:反相加法运算电路,反相减法运算电路,积分运算电路。都为负反馈形式。 专业: 姓名: 日期: 地点:紫金港 东三--

组合逻辑电路-实验报告

电子通信与软件工程系2013-2014学年第2学期 《数字电路与逻辑设计实验》实验报告 --------------------------------------------------------------------------------------------------------------------- 班级:姓名:学号:成绩: 同组成员:姓名:学号: --------------------------------------------------------------------------------------------------------------------- 一、实验名称:组合逻辑电路(半加器全加器及逻辑运算) 二、实验目的:1、掌握组合逻辑电路的功能调试 2、验证半加器和全加器的逻辑功能。 3、学会二进制数的运算规律。 三、实验内容: 1.组合逻辑电路功能测试。 (1).用2片74LS00组成图所示逻辑电路。为便于接线和检查.在图中要注明芯片编号及各引脚对应的编号。 (2).图中A、B、C接电平开关,YI,Y2接发光管电平显示. (3)。按表4。1要求,改变A、B、C的状态填表并写出Y1,Y2逻辑表达式. (4).将运算结果与实验比较.

2.测试用异或门(74LS86)和与非门组成的半加器的逻辑功能.根据半加器的逻辑表达式可知.半加器Y是A、B的异或,而进位Z是A、B相与,故半加器可用一个集成异或门和二个与非门组成如图. (1).在学习机上用异或门和与门接成以上电路.接电平开关S.Y、Z接电平显示.(2).按表4.2要求改变A、B状态,填表. 3.测试全加器的逻辑功能。 (1).写出图4.3电路的逻辑表达式。 (2).根据逻辑表达式列真值表. (3).根据真值表画逻辑函数S i 、Ci的卡诺图. (4).填写表4.3各点状态 (5).按原理图选择与非门并接线进行测试,将测试结果记入表4.4,并与上表进行比较看逻辑功能是否一致.

电子专业技术实验报告—实验4单级放大电路

电子技术实验报告—实验4单级放大电路

————————————————————————————————作者:————————————————————————————————日期:

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (5) 二、实验仪器 (5) 三、实验原理 (5) (一)单级低频放大器的模型和性能 (5) (二)放大器参数及其测量方法 (7) 四、实验内容 (9) 1、搭接实验电路 (9) 2、静态工作点的测量和调试 (10) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (11) 4、放大器上限、下限频率的测量 (12) 5、电流串联负反馈放大器参数测量 (13) 五、思考题 (13) 六、实验总结 (13)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

组合逻辑电路实验报告

实验名称:组合逻辑电路 一、实验目的 1、掌握组合逻辑电路的分析、设计方法与测试方法; 2、了解组合逻辑电路的冒险现象及消除方法。 二、实验器材 需要与非门CC4011×3,异或门CC4030×1,或门CC4071×1。 CC4011引脚图CC4030引脚图 CC4071引脚图 三、实验内容及实验电路 1、分析、测试用与非门CC4011组成的半加器的逻辑功能。列出真值表并画出卡诺图判断是否可以简化。 图1由与非门组成的半加器电路

A B S C 2、分析、测试用异或门CC4030与与非门CC4011组成的半加器逻辑电路。 图2由异或门和与非门组成的半加器电路 A B S C 3、分析、测试全加器的逻辑电路。写出实验电路的逻辑表达式,根据实验结果列出真值表与全加器的逻辑功能对比,并画出i S和i C的卡诺图。 图3由与非门组成的全加器电路 A B1 i C i S i C

4、设计、测试用异或门、与非门和或门组成的全加器逻辑电路。 全加和:()1 -⊕⊕=i i i i C B A S 进位:()i i i i i i B A C B A C ?+?⊕=-1将全加器的逻辑表达式,变换成由两个异或门,四个与非门,一个或门组成;画出全加器电路图,按所画的原理图选择器件并在实验板上连线;进行功能测试并自拟表格填写测试结果。电路图:A B 1-i C i S i C 5、观察冒险现象。按图4接线,当1==C B 时,A 输入矩形波(MHz f 1=以上),用示波器观察输出波形,并用添加冗余项的方法消除冒险现象。 图4观察冒险现象实验电路

四、实验预习要求 1、复习组合逻辑电路的分析方法。 2、复习组合逻辑电路的设计方法。 3、复习用与非门和异或门等构成半加器和全加器的工作原理。 4、复习组合电路冒险现象的种类、产生原因和如何防止。 5、根据试验任务要求,设计好实验时必要的实验线路。 五、实验报告 1、整理实验数据、图表,并对实验结果进行分析讨论。 2、总结组合逻辑电路的分析与测试方法。 3、对冒险现象进行讨论。

实验一 单级交流放大电路 实验报告

实验一单级交流放大电路 一、实验目的 1.熟悉电子元器件和模拟电路实验箱, 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。 3.学习测量放大电路Q点,A V ,r i ,r o 的方法,了解共射极电路特性。 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、实验原理 1.三极管及单管放大电路工作原理。 以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理: 三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 2.放大电路静态和动态测量方法。 放大电路良好工作的基础是设置正确的静态工作点。因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。 放大电路的动态特性指对交流小信号的放大能力。因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。 四、实验内容及步骤 1.装接电路与简单测量 图1.1 工作点稳定的放大电路

(1)用万用表判断实验箱上三极管V 的极性和好坏,电解电容C 的极性和好坏。 测三极管B 、C 和B 、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。 三极管导通电压UBE=0.7V 、UBC=0.7V ,反向导通电压无穷大。 (2)按图1.1所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将RP 的阻值调到最大位置。 2.静态测量与调整 接线完毕仔细检查,确定无误后接通电源。改变R P ,记录I C 分别为0.5mA 、1mA 、1.5mA 时三极管V 的β值。 注意:I b 和I c 一般用间接测量法,即通过测V c 和V b ,R c 和R b 计算出I b 和I c 。此法虽不直观,但操作较简单,建议采用。以避免直接测量法中,若操作不当容易损坏器件和仪表的情况。 (2)按图1.1接线,调整R P 使V E =1.8V ,计算并填表1.1。 为稳定工作点,在电路中引入负反馈电阻Re ,用于稳定静态工作点,即当环境温度变化时,保持静态集电极电流ICQ 和管压降UCEQ 基本不变。 依靠于下列反馈关系: T ↑—β↑—ICQ ↑—UE ↑—UBE ↓—IBQ ↓—ICQ ↓,反过程也一样。其中Rb2的引入是为了稳定Ub 。但此类工作电路的放大倍数由于引入负反馈而减小了,而输入电阻ri 变大了,输出电阻ro 不变。 e be L c u R r R R A )1()(ββ++-= ,))1((21e be b b i R r R R r β++=,c o R r = 由以上公式可知,当β很大时,放大倍数约等于e L c R R R ,不受β值变化的 影响。 表1.1 注意:图1.1中b 为支路电流。 3.动态研究 (1)按图1.2所示电路接线。 (2)将信号发生器的输出信号调到f=1KHz ,幅值为500mV ,接至放大电路的A 点,经过R 1、R 2衰减(100倍),V i 点得到5mV 的小信号,观察V i 和V O 端波形,并比较相位。 图中所示电路中,R1、R2为分压衰减电路,除R1、R2以外的电路为放大电路。由于一般信号源在输出信号小到几毫伏时,会不可避免的受到电源纹波影响出现失真,而大信号时电源纹波几乎无影响,所以采取大信号加R1、R2衰减形式。此外,观察输出波形时要调节Rb1,使输出波形最大且不失真时开始测量。输入输出波形两者反相,相差180度。

相关文档
相关文档 最新文档