文档库 最新最全的文档下载
当前位置:文档库 › BET吸附-脱附曲线分析及含义

BET吸附-脱附曲线分析及含义

BET吸附-脱附曲线分析及含义
BET吸附-脱附曲线分析及含义

气体吸附等温线通常分为六种,其中五种(I-V)是由国际理论与应用化学会(IUPAC)所定义的。I型等温线表示在低的相对压力(平衡蒸汽压与饱和蒸汽压的比值)时,材料具有很强的吸附能力进而达到平衡。I型等温线通常被认为是在微孔或者单层吸附的标志,由于强的吸附作用。(这可能也有化学吸附的作用,涉及到在吸附质与吸附剂表面的化学键作用,这里我们不讨论化学吸附)值得注意的是,孔的大小是根据他们的直径(或宽度)来进行分类的:微孔(小于2nm),中孔(2-50nm),大孔(大于50nm)。鉴于大多数多孔固体是使用非极性气体(N2 Ar)进行吸附研究的,所以不太可能出现化学吸附作用。因此,对于I型等温线的经典解释是材料具有微孔。然而,I型等温线也有可能是具有孔径尺寸非常接近微孔的介孔材料。尤其是N2在77K或者Ar在77K和87K圆柱孔情况下,I型等温线将在较低的相对压力(大约0.1作用)下达到平衡对于材料是微孔,从最近的一些报道结果得出的。因此,当I型等温线没有在相对压力0.1处达到平衡,该材料有可能存在大量的中孔或者就是单独的中孔。然而,这种I型分布有可能在某种程度上介孔孔径分布范围变宽。这是因为分布高度均匀圆柱孔的材料可能展示出在相对压力低于0.1或者更小时,可以在吸附等温线被识别(因此,这些等温线可以被分类成IV型等温线,下面我们会讨论)。

尽管,接近饱和蒸汽压的多层可能会十分不连续,但大孔材料大多是通过随着相对压力增加时,吸附量逐渐地增加的方式进行多层吸附。这种不受限制的多层形成过产生了II型和III型等温线。在这种情况下,吸附-脱附曲线重合;也就是说,没有发生滞后现象。这主要取决于所测试的材料的性质,II型等温线是单层形成的明显特征,否则是在整个压力范围内都是凸起的III型等温线。后者的行为可以观察到在吸附分子与吸附剂表面和被吸附物作比

较时,吸附分子之间的作用是强相互作用。

在介孔材料多层吸附过程中,常常伴随有毛细管冷凝现象发生(IV和V型等温线)。因此,吸附过程最初是类似于大孔材料,但在较高压力下吸附量上升很陡,是由于毛细管冷凝的原因。在这里孔被填满后,吸附等温线达到平衡。毛细管凝聚与毛细管蒸发一般不在同一压力下发生,因此导致了滞后环的产生。

正如我们上面所提到的,在介孔材料的吸附过程中往往会伴随有吸附-脱附滞后现象。虽然对这种现象进行了大量的研究,但其原因仍不明确。这种滞后现象通常归因于热力动力学或者网状效应或者这两者的结合。热力动力学效应与吸附等温线的吸附或脱附亚稳定性有关,即相比于在气相货液相的介孔中,在相对高或低的压力下毛细管凝聚或者蒸发可能会到导致延迟的发生。另外,这种滞后现象也可能是由于网状效应导致,即如果较大的孔通过较小的孔进入到周围关键中,前者在相对压力下,不能耗尽。相当于由于后者仍在注入到冷凝的吸附质,导致它们的毛细管蒸发。所以较大的孔可能在相对于小孔连接处孔毛细管蒸发的压力下被耗尽(或在相对压力下吸附-脱附滞后的限制)。虽然滞后环往往和网状结构有关,但滞后环被大家认为是热力动力学和网状效应的结合。某种固体材料的吸附等温线可能也显示出低压滞后环(即使在相对低压下,滞后环也不挨着)。低压滞后显现可能源于在吸附过程中吸附剂的膨胀或者物理吸附中伴随着化学吸附过程。

根据IUPIC的分类,滞后环分为四类H1-4。H1所展示的是相对平行和接近垂直的等温线。这种类型的滞后环通常意味着这种材料是由聚合物(刚性粒子结合聚集)或者接近球状粒子均匀地分布。最近研究表明,H1滞后环也可以表征为一种带有圆柱孔的集合形状材料以及高孔径均匀分布。因此,在吸附等温线中H1滞后环表明介孔材料的大孔径分布均匀性与孔道连通性。

H2型滞后环的特征是有一个三角形形状的吸附等温线。这种等温线常常出现在测试许多无机氧化物介孔材料,主要归因于孔道连通性效应,这被认为是孔道有较窄的出口(类似于墨水瓶口),但后者的识别非常简单。的确,H2型滞后环在一些具有相对均匀渠道状介孔的材料中得到,当脱附曲线发生在接近相对压力低的吸附-脱附滞后。这种较低的限制是所

给出的材料在特定的温度(N2相对压力0.4,77K;Ar相对压力0.34和0.26,87K和77K)。应该注意的是,在某些特殊情况下,滞后现象将低于这个限制;也就是说,低压滞后现象。因此,在接近低压吸附-脱附的限制下,H2型滞后环不应该作为判定差的孔道连通性或墨水瓶孔状材料的依据。事实上,新材料具有均匀的笼状介孔(因此适合与墨水瓶孔固体材料的等温线模型)具有宽的滞后环,没有形成在吸附-脱附曲线中的巨大差异。这些滞后环似乎是H2和H1的中间类型,而不是H2,可以用以上方法解释。

H3型滞后环在相对压力接近于饱和蒸汽压时,没有达到平衡,表明所测材料由聚合物(松散的聚合物)片状颗粒形成的狭缝状孔。H4型滞后环的特征是几乎水平平行的吸附等温线,归因于具有窄的狭缝状孔的吸附-脱附。H4的滞后环可能只是有大孔的存在,并嵌入在小孔径当中。H3与H4型滞后环很类似,可以认为H3不由板状材料的狭缝孔所决定。

N吸脱附曲线说明

关于氮气等温吸脱附计算比表面积、孔径分布的若干说明 布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET 公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。 ◆六类吸附等温线类型

几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。那么吸附曲线在:

低压端偏Y轴则说明材料与氮有较强作用力(?型,??型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(???型,Ⅴ型)。 中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据; 高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。 ◆几个常数 ※液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm ※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL 例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL 例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)

BET吸附-脱附曲线分析及含义

气体吸附等温线通常分为六种,其中五种(I-V)是由国际理论与应用化学会(IUPAC)所定义的。I型等温线表示在低的相对压力(平衡蒸汽压与饱和蒸汽压的比值)时,材料具有很强的吸附能力进而达到平衡。I型等温线通常被认为是在微孔或者单层吸附的标志,由于强的吸附作用。(这可能也有化学吸附的作用,涉及到在吸附质与吸附剂表面的化学键作用,这里我们不讨论化学吸附)值得注意的是,孔的大小是根据他们的直径(或宽度)来进行分类的:微孔(小于2nm),中孔(2-50nm),大孔(大于50nm)。鉴于大多数多孔固体是使用非极性气体(N2 Ar)进行吸附研究的,所以不太可能出现化学吸附作用。因此,对于I型等温线的经典解释是材料具有微孔。然而,I型等温线也有可能是具有孔径尺寸非常接近微孔的介孔材料。尤其是N2在77K或者Ar在77K和87K圆柱孔情况下,I型等温线将在较低的相对压力(大约0.1作用)下达到平衡对于材料是微孔,从最近的一些报道结果得出的。因此,当I型等温线没有在相对压力0.1处达到平衡,该材料有可能存在大量的中孔或者就是单独的中孔。然而,这种I型分布有可能在某种程度上介孔孔径分布范围变宽。这是因为分布高度均匀圆柱孔的材料可能展示出在相对压力低于0.1或者更小时,可以在吸附等温线被识别(因此,这些等温线可以被分类成IV型等温线,下面我们会讨论)。 尽管,接近饱和蒸汽压的多层可能会十分不连续,但大孔材料大多是通过随着相对压力增加时,吸附量逐渐地增加的方式进行多层吸附。这种不受限制的多层形成过产生了II型和III型等温线。在这种情况下,吸附-脱附曲线重合;也就是说,没有发生滞后现象。这主要取决于所测试的材料的性质,II型等温线是单层形成的明显特征,否则是在整个压力范围内都是凸起的III型等温线。后者的行为可以观察到在吸附分子与吸附剂表面和被吸附物作比

N吸脱附曲线说明精编版

N吸脱附曲线说明文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

关于氮气等温吸脱附计算比表面积、孔径分布的若干说明我们拿到的数据,只有吸脱附曲线是真实的,积、孔径分布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorptionisotherm中 p/p0=~之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。 ◆六类吸附等温线类型 几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,吸附量为Y轴,再将X轴相对压力粗略地分为低压()、中压、高压()三段。那么吸附曲线在:低压端偏Y轴则说明材料与氮有较强作用力(型,型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈型;低压端偏X轴说明与材料作用力弱(型,Ⅴ型)。 中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据; 高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为左右时氮气吸附量的冷凝值。 ◆几个常数 ※液氮温度77K时液氮六方密堆积氮分子横截面积平方纳米,形成单分子层铺展时认为单分子层厚度为

最新氮气吸附脱附曲线

1 1. I 类吸附等温线都有哪些特点?哪种多孔材料表现为I 类吸附等温线?2 I型等温线弯向P/P0轴,其后的曲线呈水平或近水平状,吸附量接近一3 个极限值,是典型的Langmuir等温线。吸附量趋于饱和是由于受到吸附气体能4 进入的微孔体积的制约,而不是由于内部表面积。在P/P0非常低时吸附量急剧5 上升,这是因为在狭窄的微孔(分子尺寸的微孔)中,吸附剂-吸附物质的相互6 作用增强,从而导致在极低相对压力下的微孔填充。但当达到饱和压力时7 (P/P0>0.99),可能会出现吸附质凝聚,导致曲线上扬。? 8 微孔材料表现为I类吸附等温线。对于在77K的氮气和87?K的氩气吸9 附而言,I(a):? 是只具有狭窄微孔材料的吸附等温线,一般孔宽小于1?nm。 10 ?I(b):? 微孔的孔径分布范围比较宽,可能还具有较窄介孔。这类材料的一般孔11 宽小于2.5?nm。?具有相对较小外表面的微孔固体(例如,某些活性炭,沸石分12 子筛和某些多孔氧化物)具有可逆的I型等温线。其特点是吸附很快达到饱和。 13 ? 14

2. II 类吸附等温线都有哪些特点?哪种多孔材料表现为II 类吸附等温15 线? 16 无孔或大孔材料产生的气体吸附等温线呈现可逆的II 类等温线。其线17 形反映了不受限制的单层-多层吸附。如果膝形部分的曲线是尖锐的,应该能看18 到拐点B,它是中间几乎线性部分的起点——该点通常对应于单层吸附完成并结19 束;如果这部分曲线是更渐进的弯曲(即缺少鲜明的拐点B),表明单分子层的20 覆盖量和多层吸附的起始量叠加。当P/P0?=1 时,还没有形成平台,吸附还没21 有达到饱和,多层吸附的厚度似乎可以无限制地增加。? 22 3. III 类吸附等温线都有哪些特点?哪种多孔材料表现为III 类吸附等温23 线? 24 III型等温线也属于无孔或大孔固体材料。它不存在B点,因此没有可25 识别的单分子层形成;吸附材料-吸附气体之间的相互作用相对薄弱,吸附分子26 在表面上在最有引力的部位周边聚集。对比II型等温线,在饱和压力点(即,27 在P/P0=1处)的吸附量有限。? 28 4. IV 类吸附等温线都有哪些特点?哪种多孔材料表现为IV 类吸附等温29 线? 30 IV型等温线是来自介孔类吸附剂材料(例如,许多氧化物胶体,工业31 吸附剂和介孔分子筛)。介孔的吸附特性是由吸附剂-吸附物质的相互作用,以及32 在凝聚状态下分子之间的相互作用决定的。在介孔中,介孔壁上最初发生的单层33 -多层吸附与II型等温线的相应部分路径相同,但是随后在孔道中发生了凝聚。 34 孔凝聚是这样一种现象:一种气体在压力P小于其液体的饱和压力P0时,在一35 个孔道中冷凝成类似液相。一个典型的IV型等温线特征是形成最终吸附饱和的36 平台,但其平台长度是可长可短(有时短到只有拐点)。IVa型等温线的特点是37 在毛细管凝聚后伴随回滞环。当孔宽超过一定的临界宽度,开始发生回滞。孔宽38

氮气吸附脱附曲线复习过程

氮气吸附脱附曲线

1. I 类吸附等温线都有哪些特点?哪种多孔材料表现为I 类吸附等温线? I型等温线弯向P/P0轴,其后的曲线呈水平或近水平状,吸附量接近一个极限值,是典型的Langmuir等温线。吸附量趋于饱和是由于受到吸附气体能进入的微孔体积的制约,而不是由于内部表面积。在P/P0非常低时吸附量急剧上升,这是因为在狭窄的微孔(分子尺寸的微孔)中,吸附剂-吸附物质的相互作用增强,从而导致在极低相对压力下的微孔填充。但当达到饱和压力时 (P/P0>0.99),可能会出现吸附质凝聚,导致曲线上扬。? 微孔材料表现为I类吸附等温线。对于在77K的氮气和87?K的氩气吸附而言,I(a):? 是只具有狭窄微孔材料的吸附等温线,一般孔宽小于1?nm。?I(b):? 微孔的孔径分布范围比较宽,可能还具有较窄介孔。这类材料的一般孔宽小于2.5?nm。?具有相对较小外表面的微孔固体(例如,某些活性炭,沸石分子筛和某些多孔氧化物)具有可逆的I型等温线。其特点是吸附很快达到饱和。?

2. II 类吸附等温线都有哪些特点?哪种多孔材料表现为II 类吸附等温线? 无孔或大孔材料产生的气体吸附等温线呈现可逆的II 类等温线。其线形反映了不受限制的单层-多层吸附。如果膝形部分的曲线是尖锐的,应该能看到拐点B,它是中间几乎线性部分的起点——该点通常对应于单层吸附完成并结束;如果这部分曲线是更渐进的弯曲(即缺少鲜明的拐点B),表明单分子层的覆盖量和多层吸附的起始量叠加。当P/P0?=1 时,还没有形成平台,吸附还没有达到饱和,多层吸附的厚度似乎可以无限制地增加。? 3. III 类吸附等温线都有哪些特点?哪种多孔材料表现为III 类吸附等温线? III型等温线也属于无孔或大孔固体材料。它不存在B点,因此没有可识别的单分子层形成;吸附材料-吸附气体之间的相互作用相对薄弱,吸附分子在表面上在最有引力的部位周边聚集。对比II型等温线,在饱和压力点(即,在 P/P0=1处)的吸附量有限。? 4. IV 类吸附等温线都有哪些特点?哪种多孔材料表现为IV 类吸附等温线? IV型等温线是来自介孔类吸附剂材料(例如,许多氧化物胶体,工业吸附剂和介孔分子筛)。介孔的吸附特性是由吸附剂-吸附物质的相互作用,以及在凝聚状态下分子之间的相互作用决定的。在介孔中,介孔壁上最初发生的单层-多层吸附与II型等温线的相应部分路径相同,但是随后在孔道中发生了凝聚。孔凝聚是这样一种现象:一种气体在压力P小于其液体的饱和压力P0时,在一个孔道中冷凝成类似液相。一个典型的IV型等温线特征是形成最终吸附饱和的平台,但其平台长度是可长可短(有时短到只有拐点)。IVa型等温线的特点是在毛细管凝聚后伴随回滞环。当孔宽超过一定的临界宽度,开始发生回滞。孔宽取决于吸附系统和温度,例如,在筒形孔中的氮气/77K和氩气/87K吸附,临

吸附脱附曲线分析

吸附等温线- 概述 吸附等温曲线是指在一定温度下溶质分子在两相界面上进行的吸附过程达到平衡时它们在两相中浓度之间的关系曲线。在一定温度下,分离物质在液相和固相中的浓度关系可用吸附方程式来表示〔1〕。作为吸附现象方面的特性有吸附量、吸附强度、吸附状态等,而宏观地总括这些特性的是吸附等温线〔2〕。吸附等温曲线用途广泛,在许多行业都有应用。在地质科学方面,可以用于基于吸附等温线的表面分形研究及其地球科学应用〔3〕;在煤炭方面,煤对混合气体中CH4和CO2的吸附呈现出不同的吸附特点;煤对CO2优先吸附,并且随着压力的升高,煤对CO2选择性吸附… 吸附等温线- 吸附等温线平衡 在恒定温度下,对应一定的吸附质压力,固体表面上只能存在一定量的气体吸附。通过测定一系列相对压力下相应的吸附量,可得到吸附等温线。吸附等温线是对吸附现象以及固体的表面与孔进行研究的基本数据,可从中研究表面与孔的性质,计算出比表面积与孔径分布。 吸附等温线有以下六种(图 1)。前五种已有指定的类型编号,而第六种是近年补充的。吸附等温线的形状直接与孔的大小、多少有关。 Ⅰ型等温线:Langmuir 等温线 相应于朗格缪单层可逆吸附过程,是窄孔进行吸附,而对于微孔来说,可以说是体积充填的结果。样品的外表面积比孔内表面积小很多,吸附容量受孔体积控制。平台转折点对应吸附剂的小孔完全被凝聚液充满。微孔硅胶、沸石、炭分子筛等,出现这类等温线。

这类等温线在接近饱和蒸气压时,由于微粒之间存在缝隙,会发生类似于大孔的吸附,等温线会迅速上升。 Ⅱ型等温线:S 型等温线 相应于发生在非多孔性固体表面或大孔固体上自由的单一多层可逆吸附过程。在低 P/P0处有拐点B,是等温线的第一个陡峭部,它指示单分子层的饱和吸附量,相当于单分子层吸附的完成。随着相对压力的增加,开始形成第二层,在饱和蒸气压时,吸附层数无限大。 这种类型的等温线,在吸附剂孔径大于 20nm时常遇到。它的固体孔径尺寸无上限。在低P/P0区,曲线凸向上或凸向下,反映了吸附质与吸附剂相互作用的强或弱。 Ⅲ型等温线:在整个压力范围内凸向下,曲线没有拐点 B 在憎液性表面发生多分子层,或固体和吸附质的吸附相互作用小于吸附质之间的相互作用时,呈现这种类型。例如水蒸气在石墨表面上吸附或在进行过憎水处理的非多孔性金属氧化物上的吸附。在低压区的吸附量少,且不出现 B 点,表明吸附剂和吸附质之间的作用力相当弱。相对压力越高,吸附量越多,表现出有孔充填。有一些物系(例如氮在各种聚合物上的吸附)出现逐渐弯曲的等温线,没有可识别的 B点.在这种情况下吸附剂和吸附质的相互作用是比较弱的。 Ⅳ型等温线: 低P/P0区曲线凸向上,与Ⅱ型等温线类似。在较高P/P0区,吸附质发生毛细管凝聚,等温线迅速上升。当所有孔均发生凝聚后,吸附只在远小于内表面积的外表面上发生,曲线平坦。在相对压力 1 接近时,在大孔上吸附,曲线上升。 由于发生毛细管凝聚,在这个区内可观察到滞后现象,即在脱附时得到的等温线与吸附时得到的等温线不重合,脱附等温线在吸附等温线的上方,产生吸附滞后(adsorption hysteresis),呈现滞后环。这种吸附滞后现象与孔的形状及其大小有关,因此通过分析吸脱附等温线能知道孔的大小及其分布。 V型等温线的特征是向相对压力轴凸起。与III型等温线不同,在更高相对压力下存在一个拐点。V型等温线来源于微孔和介孔固体上的弱气-固相互作用,微孔材料的水蒸汽吸附常见此类线型。 VI型等温线以其吸附过程的台阶状特性而著称。这些台阶来源于均匀非孔表面的依次多层吸附。液氮温度下的氮气吸附不能获得这种等温线的完整形式,而液氩下的氩吸附则可以实现。

活性炭吸附试验报告

一、实验原理 1、活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。在吸附过程中,活性炭比表面积起着主要作用。同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。 活性炭对水中所含杂质的吸附既有物理吸附现象,也有化学吸着作用。有一些被吸附物质先在活性炭表面上积聚浓缩,继而进入固体晶格原子或分子之间被吸附,还有一些特殊物质则与活性炭分子结合而被吸着。 当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。当吸附和解吸处于动态平衡状态时,称为吸附平衡。这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。如果在一定压力和温度条件

下,用 m 克活性炭吸附溶液中的溶质,被吸附的溶质为 x 毫克,则单位重量的活性炭吸附溶质的数量qe,即吸附容量可按下式计算: q e=x/m(1) q e的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH 值有关。一般说来,当被吸附的物质能够与活性炭发生结合反应、被吸附物质又不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,q e值就比较大。 描述吸附容量q e与吸附平衡时溶液浓度 C 的关系有 Langmuir、BET 和 Fruendlieh 吸附等温式。 在水和污水处理中通常用 Fruendlich 表达式来比较不同温度 和不同溶液浓度时的活性 炭的吸附容量,即 q e=KC1/n(2)式中:q e——吸附容量(mg/g); K——与吸附比表面积、温度有关的系数; n——与温度有关的常数,n>1; C——吸附平衡时的溶液浓度(mg/L)。 这是一个经验公式,通常用图解方法求出 K,n 的值.为了方便易解,往往将式(2)变换成线性对数关系式 Lgq e=lg(C0-C/m)=lgK+lgC/n(3) 式中:C0——水中被吸附物质原始浓度(mg/L);

氮气吸附脱附曲线

1. I 类吸附等温线都有哪些特点?哪种多孔材料表现为I 类吸附等温线? I型等温线弯向P/P0轴,其后的曲线呈水平或近水平状,吸附量接近一个极限值,是典型的Langmuir等温线。吸附量趋于饱和是由于受到吸附气体能进入的微孔体积的制约,而不是由于内部表面积。在P/P0非常低时吸附量急剧上升,这是因为在狭窄的微孔(分子尺寸的微孔)中,吸附剂-吸附物质的相互作用增强,从而导致在极低相对压力下的微孔填充。但当达到饱和压力时(P/P0>0.99),可能会出现吸附质凝聚,导致曲线上扬。?微孔材料表现为I类吸附等温线。对于在77K的氮气和87?K的氩气吸附而言,I(a):? 是只具有狭窄微孔材料的吸附等温线,一般孔宽小于1?nm。?I(b):? 微孔的孔径分布范围比较宽,可能还具有较窄介孔。这类材料的一般孔宽小于2.5?nm。?具有相对较小外表面的微孔固体(例如,某些活性炭,沸石分子筛和某些多孔氧化物)具有可逆的I型等温线。其特点是吸附很快达到饱和。? 2. II 类吸附等温线都有哪些特点?哪种多孔材料表现为II 类吸附等温线? 无孔或大孔材料产生的气体吸附等温线呈现可逆的II 类等温线。其线形反映了不受限制的单层-多层吸附。如果膝形部分的曲线是尖锐的,应该能看到拐点B,它是中间几乎线性部分的起点——该点通常对应于单层吸附完成并结束;如果这部分曲线是更渐进的弯曲(即缺少鲜明的拐点B),表明单分子层的覆盖量和多层吸附的起始量叠加。当P/P0?=1 时,还没有形成平台,吸附还没有达到饱和,多层吸附的厚度似乎可以无限制地增加。? 3. III 类吸附等温线都有哪些特点?哪种多孔材料表现为III 类吸附等温线? III型等温线也属于无孔或大孔固体材料。它不存在B点,因此没有可识别的单分子层形成;吸附材料-吸附气体之间的相互作用相对薄弱,吸附分子在表面上在最有引力的部位周边聚集。对比II型等温线,在饱和压力点(即,在P/P0=1处)的吸附量有限。? 4. IV 类吸附等温线都有哪些特点?哪种多孔材料表现为IV 类吸附等温线? IV型等温线是来自介孔类吸附剂材料(例如,许多氧化物胶体,工业吸附剂和介孔分子筛)。介孔的吸附特性是由吸附剂-吸附物质的相互作用,以及在凝聚状态下分子之间的相

如何正确选择吸附或脱附曲线数据

粉末技术摘要 在介孔孔径分析中如何正确选择吸附或脱附曲线数据? 吸附和脱附之间的滞后现象给介孔材料的孔径分析带来了一个问题。对具有滞后环的等温线的孔径分析是采用吸附段曲线还是脱附段曲线来进行,这个问题已经讨论了数十年。 如果是H1 型的滞后环(即存在平行的吸附/脱附曲线段,请看IUPAC 的迟滞曲线分类 [4]),正如在诸如吸附剂SBA-15(请看图1)、MCM-41, MCM-48 以及受控多孔玻璃(CPG)中观察到的实际例子一样,滞后现象主要是与液体被困在狭窄的孔洞中 [1-3] 所引起的与孔凝聚有关的亚稳定状态造成的(即:延时孔凝聚或者亚稳态孔凝聚)。 然而,有很多证据证明,在热力学平衡的状态下发生了孔中液体的蒸发。 因此,基于描述在平衡状态下流体的吸附和相变化的常规NLDFT理论(非定域密度函数理论) 就可以用来从迟滞环的脱附段曲线中获得孔径分布信息 [1 -3] 。 另外,Neimark 等创造了 NLDFT 吸附核函数[1,2]。由于通过在凝聚前亚稳态孔中流体的压力范围内捕获数据,他们能正确地描绘孔洞凝聚的状态(即:吸附段曲线)。因此,如果运用该 NLDFT – 吸附段曲线核函数,也可以从吸附段曲线中获得正确的孔径大小分布曲线。在更为不规则的材料中,其它效应也导致滞后现象(例如:孔洞堵塞、渗透效应、抗拉强度,即:气穴效应)[5]。这些现象影响脱附的状态 – 但是,不影响迟滞环的吸附段曲线。 与迟滞环类型H1不同的迟滞环已经被发现,即:迟滞环类型H2甚至是H3(请再看IUPAC 的迟滞环分类 [4])。对于H2迟滞环来说,典型现象是迟滞环的脱附段曲线比其吸附段曲线更不合理。在这些情况下,如果采用的方法是基于对平衡的气体-液体相移的描述(例如:BJH 法,DFT 法等),脱附段曲线就不能用于分析孔径分布。例如,H2类型的滞后作用是在多孔维克耐热玻璃中观察到的(见图2)。为了获得正确的孔径以及正确的孔径分布曲线的宽度,在这种情况下,就需要分析吸附段曲线。所以,NLDFT-吸附核函数(即所谓的亚稳曲线凝聚影响函数核)就可以在此用来获得孔径分布(见图2)。 另外,由于NLDFT 核函数能够正确地获得孔凝聚和蒸发的机理,有了它就可以测试孔径分析结果的一致性。如果孔洞堵塞和渗透、以及气穴现象的影响不造成滞后现象的话,从吸附和脱附段曲线得到的孔径分布曲线就会相符(当然,你应当确保在NLDFT 影响函数核中假定的孔洞几何形状基本上与吸附剂中的孔洞几何形状相吻合)。 1900 Corporate Drive Boynton Beach, FL 33426 USA (800) 989-2476 (561) 731-4999 Fax (561) 732-9888 https://www.wendangku.net/doc/0d13234832.html, qc.sales@https://www.wendangku.net/doc/0d13234832.html, (Page 1 of 3) PN 59000-35

N2吸脱附曲线说明

N2吸脱附曲线说明 计算氮等温吸附和解吸的比表面积和孔径分布的几点注意事项 我们获得的数据只是真实的吸收-解吸曲线。比表面积、孔径分布、孔容等都是主观和人为的数据。经常听到一些学生说要做一个BET,但他们实际做的不是BET,而是氮气等温吸附-解吸曲线。BET(Brunauer-Emmet-Teller)只处理N2-N2-吸附等温线中p/p0=0.05~0.35之间的一小段,用著名的BET公式获得单层吸附数据Vm,然后根据它计算比表面积,如此而已。◆六种吸附等温线 几乎每一本类似的参考书都会提到前五类是BDDT(布鲁纳-戴明-戴明-泰勒)。首先,他们四个人把大量的等温线分成五类,而第六类台阶状的是星升。每种类型都有一组语句。事实上,可以理解,相对压力是X轴,氮吸附量是Y轴。X轴相对压力大致分为三个部分:低压(0.0-0.1)、中压(0.3-0.8)和高压(0.90-1.0)。那么吸附曲线为: 低压端偏离y轴表明材料对氮气有很强的作用力。类型??类型,类型iv),许多微孔由于微 孔隙中的强吸附势,显示在吸附曲线的起点?类型;材料作用力(?)对低压端偏离x轴的解释较弱??类型五)。中压端主要是氮气在材料孔隙中的冷凝和积聚。中孔分析来自这些数据,包括样品颗粒堆积产生的孔和有序或梯度中孔内的孔。BJH方法基于本节获得的孔径数据。高压段可以大致看出颗粒堆积的程度,如?如果模型最终上升,粒子可能不均匀。通常,当相对压力约为0.99时,获得的总孔体积通常是氮吸附的冷凝值。◆几个常数

※液氮温度为77K时,液氮六方密堆积态氮分子的横截面积为0.162平方纳米,形成单层铺展时,单层厚度为0.354纳米 ※在标准温度和压力下冷凝1毫升氮气后(假设冷凝密度不变),体积为0.001547毫升 例如,当吸附曲线p/p0在下面的吸附图中最大时,如果氮气的吸附容量为约400毫升,可以看出总孔体积= 400 * 0.001547 = 400/654 =约0.61毫升 STP占地4.354平方米/毫升的氮分子铺砌成单层。※ 例如,通过BET方法获得的比表面积是S/(m2/g)= 4.354 * Vm,其中Vm通过BET方法处理并且Vm=1/(斜率+截距) ◆以SBA-15分子筛的吸附等温线为例进行说明 该等温线属于国际石油化学联合会分类中的第四类,即H1磁滞回线。从图中可以看出,吸附量在低压段缓慢增加。 在这种情况下,N2分子以单层到多层吸附在中孔的内表面上。用BET 法计算有序介孔材料的比表面积时,相对压力p/p0 = 0.10~0.29更合适。p/p0 =0.5~0.8左右,吸附量突然增加。该段的位置反映了样品孔径的大小,其变化宽度可用作测量孔均匀性的基础。在p/p0较高时,第三段有时会上升,这可以反映样品中大孔或颗粒堆积孔的情况。比表面积、孔容和孔径分布可由N2吸附-解吸等温线确定。布鲁纳-埃米特-泰勒法通常用于分析其比表面积。孔径分布通常采用BJH模型。 ◆开尔文方程 开尔文方程是BJH模型的基础。开尔文方程得到的直径加上液膜厚

N吸脱附曲线说明

N吸脱附曲线说明

————————————————————————————————作者:————————————————————————————————日期:

关于氮气等温吸脱附计算比表面积、孔径分布的若干说明 我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。 ◆六类吸附等温线类型 几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。那么吸附曲线在: 低压端偏Y轴则说明材料与氮有较强作用力(?型,??型,Ⅳ型),较多微孔存在时由于微

孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(???型,Ⅴ型)。中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。 ◆几个常数 ※液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm ※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL 例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL ※STP每mL氮气分子铺成单分子层占用面积4.354平方米 例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距) ◆以SBA-15分子筛的吸附等温线为例加以说明 此等温线属IUPAC 分类中的IV型,H1滞后环。从图中可看出,在低压段吸附量平缓增加,

BET吸附脱附曲线分析及含义

B E T吸附脱附曲线分析 及含义 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

气体吸附等温线通常分为六种,其中五种(I-V)是由国际理论与应用化学会(IUPAC)所定义的。I型等温线表示在低的相对压力(平衡蒸汽压与饱和蒸汽压的比值)时,材料具有很强的吸附能力进而达到平衡。I型等温线通常被认为是在微孔或者单层吸附的标志,由于强的吸附作用。(这可能也有化学吸附的作用,涉及到在吸附质与吸附剂表面的化学键作用,这里我们不讨论化学吸附)值得注意的是,孔的大小是根据他们的直径(或宽度)来进行分类的:微孔(小于2nm),中孔(2-50nm),大孔(大于50nm)。鉴于大多数多孔固体是使用非极性气体(N2 Ar)进行吸附研究的,所以不太可能出现化学吸附作用。因此,对于I型等温线的经典解释是材料具有微孔。然而,I型等温线也有可能是具有孔径尺寸非常接近微孔的介孔材料。尤其是N2在77K 或者Ar在77K和87K圆柱孔情况下,I型等温线将在较低的相对压力(大约作用)下达到平衡对于材料是微孔,从最近的一些报道结果得出的。因此,当I型等温线没有在相对压力处达到平衡,该材料有可能存在大量的中孔或者就是单独的中孔。然而,这种I型分布有可能在某种程度上介孔孔径分布范围变宽。这是因为分布高度均匀圆柱孔的材料可能展示出在相对压力低于或者更小时,可以在吸附等温线被识别(因此,这些等温线可以被分类成IV型等温线,下面我们会讨论)。 尽管,接近饱和蒸汽压的多层可能会十分不连续,但大孔材料大多是通过随着相对压力增加时,吸附量逐渐地增加的方式进行多层吸附。这种不受限制的多层形成过产生了II型和III型等温线。在这种情况下,吸附-脱附曲线重合;也就是说,没有发生滞后现象。这主要取决于所测试的材料的性质,II型等温线是单层形成的明显特征,否则是在整个压力范围内都是凸起的III型等温线。后者的行为可以观察到在吸附分子与吸附剂表面和被吸附物作比较时,吸附分子之间的作用是强相互作用。

N2 吸附脱附

氮气等温吸脱附计算比 ★★注意★★ 我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。 ◆六类吸附等温线类型 几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套

说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。那么吸附曲线在: 低压端偏Y轴则说明材料与氮有较强作用力(?型,??型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(???型,Ⅴ型)。 中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据; 高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。 ◆几个常数 ※液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm ※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL 例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL ※STP每mL氮气分子铺成单分子层占用面积4.354平方米 例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距)

BET吸附-脱附曲线分析及含义

F igurc 1? Classification ol gas adsorption isotherms (a fl er refs 65 i n d 68). 气体吸附等温线通常分为六种,其中五种( I-V )是由国际理论与应用化学会(IUPAC 所定义的。I 型等温线表示在低的相对压力(平衡蒸汽压与饱和蒸汽压的比值)时,材料具 有很强的吸附能力进而达到平衡。 I 型等温线通常被认为是在微孔或者单层吸附的标志,由 于强的吸附作用。(这可能也有化学吸附的作用,涉及到在吸附质与吸附剂表面的化学键作 用,这里我们不讨论化学吸附)值得注意的是,孔的大小是根据他们的直径(或宽度)来进 行分类的:微孔(小于 2nm ),中孔(2-50 nm ),大孔(大于50 nm )。鉴于大多数多孔固体 是使用非极性气体(N2 Ar )进行吸附研究的,所以不太可能出现化学吸附作用。因此,对 于I 型等温线的经典解释是材料具有微孔。然而, I 型等温线也有可能是具有孔径尺寸非常 接近微孔的介孔材料。尤其是 N 2在77K 或者Ar 在77K 和87K 圆柱孔情况下,I 型等温线将 在较低的相对压力(大约 0.1作用)下达到平衡对于材料是微孔,从最近的一些报道结果得 出的。因此,当I 型等温线没有在相对压力 0.1处达到平衡,该材料有可能存在大量的中孔 或者就是单独的中孔。然而,这种 I 型分布有可能在某种程度上介孔孔径分布范围变宽。这 是因为分布高度均匀圆柱孔的材料可能展示出在相对压力低于 0.1或者更小时,可以在吸附 等温线被识别(因此,这些等温线可以被分类成 IV 型等温线,下面我们会讨论)。 尽管,接近饱和蒸汽压的多层可能会十分不连续, 但大孔材料大多是通过随着相对压力 增加时,吸附量逐渐地增加的方式进行多层吸附。 这种不受限制的多层形成过产生了 II 型和 III 型等温线。在这种情况下,吸附 -脱附曲线重合;也就是说,没有发生滞后现象。这主要 取决于所测试的材料的性质,II 型等温线是单层形成的明显特征,否则是在整个压力范围内 都是凸起的III 型等温线。后者的行为可以观察到在吸附分子与吸附剂表面和被吸附物作比

N2吸脱附曲线说明

地分为低压(0.0-0.1 )、中压(0.3-0.8)、高压(0.90-1.0 )三段。那么吸附曲线在: 低压端偏Y 轴则说明材料与氮有较强作用力 (?型,??型,"型),较多微孔存在时由于微 关于氮气等温吸脱附计算比表面积、孔径分布的若干说明 我们拿到的数据,只有吸脱附曲线是真实的, 比表面积、孔径分布、孔容之类的都是带有主 观人为色彩的数据。经常听到有同学说去做个 BET ,其实做的不是BET ,是氮气等温吸脱附 曲线,BET ( Brunauer-Emmet-Teller )只是对 N2-Sorption isotherm 中 p/p0=0.05~0.35 之 间的一小 段用传说中的 BET 公式处理了一下,得到单层吸附量数据 Vm ,然后据此算出比表 面积,如此而已。 ? 六类吸附等温线类型 几乎每本类似参考书都会提到,前五种是 BDDT(Bru nauer-Demi ng-Demi ng-Teller) 分类,先 由此四人将大量等温线归为五类,阶梯状的第六类为 Sing 增加。每一种类型都会有一套说 法,其实可以这么理解,以相对压力为 X 轴,氮气吸附量为Y 轴,再将X 轴相对压力粗略

孔内强吸附势,吸附曲线起始时呈?型;低压端偏X 轴说明与材料作用力弱(???型,V型 )。 中压端多为氮气在材料孔道内的冷凝积聚, 介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据; 高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。 ?几个常数 探液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时 认为单分子层厚度为0.354nm 探标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL 例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容= 400*0.001547 = 400/654 =约0.61mL 探STP每mL氮气分子铺成单分子层占用面积 4.354平方米 例: BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距) ?以SBA-15分子筛的吸附等温线为例加以说明 450 100 此等温线属IUPAC分类中的IV型,H1滞后环。从图中可看出,在低压段吸附量平缓增加, 400 350 300 250 200 150 5.7nm Darietre [nnrif De. Ad. I I 0.0 0.4 Relative pressure (P/Po) -

N2 吸附脱附

★★注意★★ 我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人为色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=~之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。 ◆六类吸附等温线类型 几乎每本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其实可以这么理解,以相对压力为X轴,氮气吸附量为Y轴,再将X轴相对压力粗略地分为低压()、中压、高压()三段。那么吸附曲线在: 低压端偏Y轴则说明材料与氮有较强作用力(?型,??型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(???型,Ⅴ型)。 中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据; 高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为左右时氮气吸附量的冷凝值。 ◆几个常数 ※液氮温度77K时液氮六方密堆积氮分子横截面积平方纳米,形成单分子层铺展时认为单分子层厚度为 ※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为

例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*=400/654=约 ※ STP每mL氮气分子铺成单分子层占用面积平方米 例:BET方法得到的比表面积则是S/(平方米每克)=*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距) ◆以SBA-15分子筛的吸附等温线为例加以说明 此等温线属IUPAC 分类中的IV型,H1滞后环。从图中可看出,在低压段吸附量平缓增加,此时N2 分子以单层到多层吸附在介孔的内表面,对有序介孔材料用BET方法计算比表面积时取相对压力p/p0 = ~比较适合。在p/p0 =~左右吸附量有一突增。该段的位置反映了样品孔径的大小,其变化宽窄可作为衡量中孔均一性的根据。在更高p/p0时有时会有第三段上升,可以反映出样品中大孔或粒子堆积孔情况。由N2-吸脱附等温线可以测定其比表面积、孔容和孔径分布。对其比表面积的分析一般采用BET(Brunauer-Emmett-Teller)方法。孔径分布通常采用BJH(Barrett-Joiner- Halenda)模型。 ◆Kelvin方程 Kelvin方程是BJH模型的基础,由Kelvin方程得出的直径加上液膜厚度就是孔道直径。弯曲液面曲率半径R‘=2γVm/[RT*ln(p0/p)],若要算弯曲液面产生的孔径R,则有R’Cos θ=R,由于不同材料的接触角θ不同,下图给出的不考虑接触角情况弯曲液面曲率半径R ‘和相对压力p/po对应图:

关于氮气等温吸脱附计算比表面积总结

关于氮气等温吸脱附计算比表面积、孔径分布的若干说明目的:是让大家对氮气等温吸脱附有一个基本的理解和概念,不会讲太多源头理论,内容不多,力求简明实用。本人有幸接触吸脱附知识的理论和实践,做个总结一是长久以来的心愿,二则更希望能和大家共同学习、探讨和提高。由于内容是自己的总结和认识,很可能会有部分错误,希望大家能给予建议、批评和指导,好对内容做进一步的完善。 我们拿到的数据,只有吸脱附曲线是真实的,比表面积、孔径分布、孔容之类的都是带有主观人色彩的数据。经常听到有同学说去做个BET,其实做的不是BET,是氮气等温吸脱附曲线,BET(Brunauer-Emmet-Teller)只是对N2-Sorption isotherm中p/p0=0.05~0.35之间的一小段用传说中的BET公式处理了一下,得到单层吸附量数据Vm,然后据此算出比表面积,如此而已。 ◆六类吸附等温线类型 本类似参考书都会提到,前五种是BDDT(Brunauer-Deming-Deming-Teller)分类,先由此四人将大量等温线归为五类,阶梯状的第六类为Sing增加。每一种类型都会有一套说法,其

实可以这么理解,以相对压力为X轴,氮气吸附量(下STP,单位cm3)为Y轴,再将X 轴相对压力粗略地分为低压(0.0-0.1)、中压(0.3-0.8)、高压(0.90-1.0)三段。那么吸附曲线在: 低压端偏Y轴则说明材料与氮有较强作用力(?型,??型,Ⅳ型),较多微孔存在时由于微孔内强吸附势,吸附曲线起始时呈?型;低压端偏X轴说明与材料作用力弱(???型,Ⅴ型)。中压端多为氮气在材料孔道内的冷凝积聚,介孔分析就来源于这段数据,包括样品粒子堆积产生的孔,有序或梯度的介孔范围内孔道。BJH方法就是基于这一段得出的孔径数据;高压段可粗略地看出粒子堆积程度,如?型中如最后上扬,则粒子未必均匀。平常得到的总孔容通常是取相对压力为0.99左右时氮气吸附量的冷凝值。 ◆几个常数 ※液氮温度77K时液氮六方密堆积氮分子横截面积0.162平方纳米,形成单分子层铺展时认为单分子层厚度为0.354nm ※标况(STP)下1mL氮气凝聚后(假定凝聚密度不变)体积为0.001547mL 例:如下面吸脱附图中吸附曲线p/p0最大时氮气吸附量约为400 mL,则可知总孔容=400*0.001547=400/654=约0.61mL ※STP每mL氮气分子铺成单分子层占用面积4.354平方米 例:BET方法得到的比表面积则是S/(平方米每克)=4.354*Vm,其中Vm由BET方法处理可知Vm=1/(斜率+截距) ◆以SBA-15分子筛的吸附等温线为例加以说明

相关文档