文档库 最新最全的文档下载
当前位置:文档库 › 平板表层缺陷检测涡流阵列传感器的设计

平板表层缺陷检测涡流阵列传感器的设计

平板表层缺陷检测涡流阵列传感器的设计
平板表层缺陷检测涡流阵列传感器的设计

无损检测----涡流阵列检测技术典型应用

目录 一、涡流阵列检测应用研究 二、涡流阵列检测应用案例 三、涡流阵列检测应用注意事项 一、涡流阵列检测应用研究 1.非铁磁性材料、均匀表面 --对比试样 ET∝f(σ,μ≈μ0, LF, 均匀性…) 均匀表面:结构或材质方面的均匀。管件、锻件、铸件等 ECA显示特点: 表面开口缺陷:幅值、相位、C扫显示∝缺陷深度 近表面缺陷:幅值、C扫显示∝埋藏深度 1.非铁磁性材料、均匀表面--工件 对于非铁磁性金属材料的均匀表面,与PT相比,ECA表面条件要求低、检测速度快、缺陷检出率高、绿色环保, 优势较为明显。 1.非铁磁性材料、均匀表面--ECA-C扫成像

绝对桥式阵列、小的线圈尺寸、多的阵列排数更有利于涡流阵列C扫成像。 均匀表面表面开口缺陷ECA-C扫成像可在一定程度上定性 2.非铁磁性材料、非均匀表面--对比试块 ET∝f(σ, LF, μ≈μ0, 均匀性…) 对接接头:局部表面出现结构或材质不均匀。 2.非铁磁性材料、非均匀表面--模拟试块 表面的不均匀性,在一定程度上影响ECA-C成像效果,直观性受到影响。焊纹也会降低检测灵敏度。 2.非铁磁性材料、非均匀平面--工件 3.铁磁性材料、均匀表面--对比试样 ET∝f(σ, LF, μ, 均匀性…) 管件、锻件、铸件等

4.铁磁性材料、非均匀表面--动态提离补偿技术 ECA C-scan Image 对接接头:局部表面出现结构或材质不均匀。 4.铁磁性材料、非均匀表面--对比试样 5.高温 奥氏体不锈钢刻槽试板高温检测实验(300℃) 6.低温

低温情况下,PT无法实施,可考虑ECA。 二、涡流阵列检测典型案例——奥氏体不锈钢对接接头 1.表面开口缺陷 ECA可以比PT更容易发现缺陷。 2.近表面缺陷 ECA可以在一定程度上检出近表面缺陷。 在线不打磨检测--动态提离补偿 动态提离补偿技术,实现了碳钢对接接头的在线不打磨表面缺陷检测。

传感器应用电路设计.

传感器应用电路设计 电子温度计 学校:贵州航天职业技术学院 班级:2011级应用电子技术 指导老师: 姓名: 组员:

摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 本文将介绍一种基于单片机控制的数字温度计。在件方面介绍单片机温度控制系统的设计,对硬件原理图做简洁的描述。系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。由于采用了智能温度传感器DS18B20,所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。它具有数字化输出,可测量远距离的点温度。系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B20内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对

无损检测---涡流阵列检测技术基本原理

目录 一、什么是涡流阵列检测技术? 二、涡流检测基础知识 三、涡流阵列检测技术工作原理 四、涡流阵列检测技术特点 五、涡流阵列检测技术的国内外现状 一、什么是涡流阵列检测技术? “涡流阵列”,又叫”阵列涡流”,英文名称“Eddy Current Array(简称ECA)”。 JB/T 11780-2014 无损检测仪器涡流阵列检测仪性能和检验 阵列涡流检测 具有按一定方式排布、且独立工作的多个检测线圈,能够一次性完成大面积扫查及成像的涡流检测技术。 C扫相关显示与缺陷形状像不像? 并能形成直观性C扫图 二、涡流检测基础知识 1. ET工作原理—电磁感应 ①激励,悬空(电0→磁0 ) 空载阻抗 Z=Z0 M—互感系数~提离 R2—电涡流短路环负载~路径几何尺寸,σ2 L2—电涡流短路环自感系数~路径几何尺寸,μ2

2.影响放置式线圈阻抗的因素 a)提离 b)边缘效应 c)电导率 d)磁导率 e)工件几何尺寸 f)缺陷 g)表面状况 h)检测频率 影响阻抗变化的因素太多,限制了涡流探伤的应用! 3.放置式涡流探头的分类 4. 绝对式探头和差分式探头的对比 绝对式 信号来自1个感应线圈; 每个缺陷产生1个闭路(半8字); 对于小缺陷、长缺陷和渐变缺陷敏感; 可用于测量材料性能差异. 可能需要参考线圈执行系统平衡; 对提离非常敏感。 差分式 信号来自2个感应线圈的减法。. 每个缺陷产生2个闭路(8字) 对小缺陷特别敏感,但渐变缺陷不敏感; 对于小缺陷具有更好的信噪比; 对于提离不太敏感。 检测前,应该根据用途、被检工件状况等确定探头的工作模式和信号响应模式!

5. 常规涡流检测技术的特点 优点 ■适用于各种导电材质的试件探伤; ■可以检出表面和近表面缺陷; ■检测结果以电信号输出,容易实现自动化; ■由于采用非接触式检测,所以检测速度快; ■无需耦合剂,环保。 缺点 ■不能检测非导电材料; ■形状复杂的工件很难检测; ■各种干扰检测的因素较多,容易引起杂乱信号; ■无法检出埋藏较深的缺陷; ■一次覆盖范围小,检测效率低; ■检测结果不直观,不能显示缺陷图形,无法缺陷定性。 ECA 三、涡流阵列技术工作原理 1.涡流阵列工作原理 多个涡流线圈按照一定的物理构造方式排布组成阵列,按照特定的工作模式、信号响应方式组成若干个阵列元;阵列元是代表涡流检测工作模式、信号响应方式且能独立工作的最小单元(可视为“放置式涡流探头”),每个阵列元都含有发射线圈和接收线圈(包括自发自收线圈);为避免阵列元之间的相互串扰,通常会采用多路切换技术分时、分批激活阵列元;编码器触发仪器将阵列元的涡流检测数据及其位置数据保存;这些数据经过软 件处理,形成直观的C扫图。 1.多路切换技术 目的:避免串扰; 特点:切换速度非常快,不会影响检测。

五大常规无损检测技术之一:涡流检测(ET)的原理和特点

五大常规无损检测技术之一:涡流检测(ET)的原理和特点 涡流检测(Eddy Current Testing),业内人士简称E T,在工业无损检测(Nondestructive Testing)领域中具有重要的地位,在航空航天、冶金、机械、电力、化工、核能等领域中发挥着越来越重要的作用。 涡流检测主要的应用是检测导电金属材料表面及近表面的宏观几何缺陷和涂层测厚。 涡流检测是五大常规无损检测技术之一,其他四种是:射线检测(Radiographic Testing):射线照相法、超声检测(Ultrasonic Testing):A型显示的超声波脉冲反射法、磁粉检测(Magnetic Particle Testing)、渗透检测(Penetrant Testing)。 按照不同特征,可将涡流检测分为多种不同的方法: (1)按检测线圈的形式分类: a)外穿式:将被检试样放在线圈内进行检测,适用于管、棒、线材的外壁缺陷。b)内穿式:放在管子内部进行检测,专门用来检查厚壁管子内壁或钻孔内壁的缺陷。 c)探头式:放置在试样表面进行检测,不仅适用于形状简单的板材、棒材及大直径管材的表面扫查检测,也适用于形状福州的机械零件的检测。

(2)按检测线圈的结构分类: a)绝对方式:线圈由一只线圈组成。 b)差动方式:由两只反相连接的线圈组成。 c)自比较方式:多个线圈绕在一个骨架上。 d)标准比较方式:绕在两个骨架上,其中一个线圈中放入已经样品,另一个用来进行实际检测。 (3)按检测线圈的电气连接分类: a)自感方式:检测线圈使用一个绕组,既起激励作用又起检测作用。 b)互感方式:激励绕组和检测绕组分开。 c)参数型式:线圈本身是电路的一个组成部分。 涡流检测原理 涡流检测,本质上是利用电磁感应原理。 无论什么原因,只要穿过闭合回路所包围曲面的磁通量发生变化,回路中就会有电流产生,这种由于回路磁通量变化而激发电流的现象叫做电磁感应现象,回路中所产生的电流叫做感应电流。 电路中含有两个相互耦合的线圈,若在原边线圈通以交流电1,在电磁感应的作用下,在副边线圈中产生感应电流2;反过来,感应电流又会影响原边线圈中的电流和电压的关系。如下图所示:

讯飞麦克风阵列声学测试方法

讯飞麦克风阵列声学测试 方法 This model paper was revised by the Standardization Office on December 10, 2020

讯飞麦克风阵列声学测试方法 测试准备 环境: 混响环境(模拟家庭客厅环境) 器材: 两个高保真音箱:1个用于播放语音,1个用于播放噪声; 音响支架2个:1个用于放置语音播放设备,1个用于放置噪音播放设备; 笔记本电脑2个:1个用于播放语音信号和噪声信号,1个用于抓取日志或录音; 分贝仪1个:用于噪声、语音信号强度测试,计算信噪比等; 卷尺1个:用于测试与设备的距离; 语料: 唤醒语料:用于测试唤醒率; 命令词语料:用于语音识别,测试识别率; 本机功放播放音频:回声消除测试使用; 家庭环境噪声音频:可播放中央台新闻节目,约30分钟; 硬件:

讯飞demo板1个 裸板1个 整机1个 软件: IPTV主板软件: 可抓日志,准备至少两个串口线。 可录音,可录15分钟以上。准备两个U盘。 可手动打开/关闭唤醒模式。可手动设置波束。 核心板固件:准备烧录工具。 唤醒词:跟唤醒词音频一致。 测试环境搭建 麦克风阵列测试示意图如下:

在安静环境下,放置阵列位于待测区域中间位置,唤醒源位于距阵列1m 处,噪声源位于距阵列处,唤醒源和阵列在一条直线上。 通过高保真音箱播放语料,通过分贝仪在阵列处测试信噪比,要求噪声源、唤醒源在阵列处的响度均为55dB 。安静环境下和噪声环境下分别测试唤醒率和识别率。 调整唤醒源的位置,距阵列的距离分别为3m 和5m 。要求唤醒源在阵列处的响度仍为55dB 。安静环境下和噪声环境下分别进行唤醒率和识别率测试。 测试说明: 测试环境因素影响非常大,唤醒源的位置角度调一调,响度校正时测试值的波动也很大。每次测试都要有对比物,只有同一时间同一环境对比测试的结果才有意义。 一、声学效果测试 1 分别对音箱6麦克整机与音箱裸麦、音箱裸麦与评估板裸麦进行唤醒、声源定位测试 测试步骤: 唤醒源 待测区域 麦克风阵

涡流无损检测实验报告

江苏科技大学数理学院开放性选修 实验训练 涡流无损检测实验报告 指导老师:魏勤 组员:彭加福(0640502112)胡进军(0640502107)徐大程(0640502115) 江苏科技大学数理学院06级应用物理学 2009年12月15日

涡流无损检测实验报告 彭加福 (江苏科技大学数理学院应用物理 0640502112) 涡流检测是建立在电磁感应原理基础之上的一种无损检测方法,它仅适用于导电材料,如果我们把一块导体置于交变磁场之中,在导体中就有感应电流存在,即产生涡流。由于导体自身各种因素(如电导率、磁导率、形状、尺寸和缺陷等)的变化会导致感应电流的变化,利用这种现象而判知导体性质、状态的检测方法,叫做涡流检测方法。在涡流探伤中,是靠检测线圈来建立交变磁场,把能量传递给被检导体,同时又通过涡流所建立的交变磁场来获得被检测导体中的质量信息。作为无损检测的一种重要手段,涡流检测在现代工业无损检测中得到了深入而广泛的应用和推广。 实验训练期间,我们采用SMART-2097智能便携式多频涡流仪、D60K数字金属电导率测量仪和7504塗层测厚仪等涡流仪器完成了定标、探伤、电导率测定和膜厚测量等实验,掌握了涡流的产生机理及涡流探伤原理,熟练掌握了各种涡流探伤仪、测量仪的基本操作。 1 实验目的 1.1 熟悉各种涡流探伤仪、测量仪的基本操作,简单了解各实验仪器的工作原理及性能,并通过系列实验了解涡流无损检测在现代工业中的应用; 1.2 学习掌握涡流检测的基本方法及相关理论知识,了解涡流检测仪、测量仪及涡流探头的内部结构和工作原理; 1.3 分别使用SMART-2097智能便携式多频涡流仪、D60K数字金属电导率测量仪和7504塗层测厚仪进行探伤、测电导率和薄膜厚度。 2 实验仪器 SMART-2097智能便携式多频涡流仪、D60K数字金属电导率测量仪、7504塗层测厚仪、各种涡流探头及数据传输线、SMART-2097智能便携式多频涡流仪标准试块(含有深为0.1mm, 0.5mm, 1.0mm的划痕)、D60K数字金属电导率测量仪高值-低值定标试块、7504塗层测厚仪标准膜。 3 实验原理 3.1 螺线管磁场 如果将长直导线绕成螺线管,磁力线分布类似于条形磁铁,磁场方向取决于电流方向,同样可以用右手定则表示,其磁场强度取决于两个因素:线圈的圈数和电流的大小,圈数越多或电流越大,则磁场越强。 对一个螺线管来说,它所形成的磁场是数个线圈磁场的叠加,所以当交流电通过螺线管时,可形成既强又集中的交变磁场,如图1所示。

涡流检测技术概述

涡流检测技术概述 涡流技术由于具有的很多优点而被广泛应用。首先,它是非接触检测,而且能穿透非导体的覆盖层,这就使得在检测时不需要做特殊的表面处理,因此缩短了检测周期,降低了成本。同时,涡流检测的灵敏度非常高。涡流检测按激励方式和检测原理的不同可以分为单频涡流、多频涡流、脉冲涡流、远场涡流等,下面对这些技术的发展简要的加以介绍。 传统的涡流采用单频激励的方式,主要来对表面及近表面的缺陷进行检测,根据被测材料及缺陷深度的不同,激励频率的范围从几赫兹到几兆赫兹不等,为 了得到良好的检测信号,激励线圈必须在缺陷的附近感应出最大的涡流,感应电 流的大小和激励频率、电导率、磁导率、激励线圈的尺寸和形状以及激励电流的 大小有关,通过测量阻抗或电压的变化来实现对缺陷的检测。然而,由于其它参数也很敏感,这就影响了对缺陷的检测。 为了克服单频涡流的缺点,1970 年美国人 Libby 提出了多频涡流的技术(Multi-frequency Eddy Current, MFEC),多频涡流是同时用几个频率信号激励探头,较单频激励法可获取更多的信号,这样就可以抑制实际检测中的许多干扰因素,如热交换管管道中的支撑板、管板、凹痕、沉积物、表面锈斑和管子冷加工产生的干扰噪声,汽轮机大轴中心孔、叶片表面腐蚀坑、氧化层等引起的电磁噪声,以及探头晃动提离噪声等。理论与实践表明,被测工件的缺陷和上述干扰因素对不同频率的激励信号各有不同的反应,可反应出不同的涡流阻抗平面。利用这一原理,用两个(或多个)不同频率的正弦波同时激励探头,然后由两个(或多个)通道分别进行检波、放大和旋转等处理,此后,通过多个混合单元的综合运算,就可以有效的去除信号干扰,准确的获取缺陷信号。但是,多频涡流只能提供有限的检测数据,很难以可视化的方式实现对缺陷的成像检测。 70 年代中后期,脉冲涡流技术(Pulsed Eddy Current, PEC)在世界范围内得到广泛的研究,PEC最早由密苏里大学的Waidelich在20世纪50年代初进行研究,脉冲涡流的激励电流为一个脉冲,通常为具有一定占空比的方波,施加在探头上的激励方波会感应出脉冲涡流在被测试件中传播,根据电磁感应原理,此脉冲涡流又会感应出一个快速衰减的磁场,随着感生磁场的衰减,检测线圈上

《传感器与检测技术》课程设计

课程设计任务书及指导书 一.设计题目 《压力测量仪的设计》 二.设计目的 (1)使同学们掌握金属箔应变片组成的称重传感器的正确使用方法;了解压力测量仪的工作原理及其在电子天平中的应用。 (2)通过设计、安装、调试电路等实践环节,提高学生的动手能力,提高分析问题、解决问题的能力。 三.设计任务 (1)学生根据设计要求完成设计与测试。 (2)在完成设计后书写课程设计报告。 四.时间安排2005年12月5日至2005年12月30日 五.设计内容 压力测量仪由以下五个部分组成:传感器、传感器专用电源、信号放大系统、模数转换系统及 显示器等组成。其原理框图如图1所示: 图1 压力测量仪组成框图 (1) 传感器测量电路 称重传感器的测量电路通常使用电桥测量电路,它将应变电阻值的变化转换为电压的变化,这就是可用的输出信号。 电桥电路由四个电阻组成,如图2所示:桥臂电阻R 1,R 2 ,R 3 和R 4 ,其中两对角点AC接电源电 压U SL =E(+10V),另两个对角点BD为桥路的输出U SC ,桥臂电阻为应变电阻。 R 1R 4 =R 2 R 3 时,电桥平衡,则测量对角线上的输出U SC 为零。当传感器受到外界物体重量影响时, 电桥的桥臂阻值发生变化,电桥失去平衡,则测量对角线上有输出,U SC ≠0。

图2 传感器电桥测量电路 (2) 放大系统 压力测量仪的放大系统是把传感器输出的微弱信号进行放大,放大的信号应能满足模数转换的要求。该系统使用的模数转换是3位半A/D转换,所以放大器的输出应为0V ~ 1.999V。 为了准确测量,放大系统设计时应保证输入级是高阻,输出级是低阻,系统应具有很高的抑制共模干扰的能力。 (3) 模数转换及显示系统 传感器的输出信号放大后,通过模数转换器把模拟量转换成数字量,该数字量由显示器显示。显示器可以选用数码管或液晶显示器 (4) 传感器供电电源 有恒压源与恒流源 对于恒压源供电:参考图2,设四个桥臂的初始电阻相等且均为R,当有重力作用时,两个桥臂电阻增加△R,而另外两个桥臂的电阻减少,减小量也为△R。由于温度变化影响使每个桥臂电阻均变化△R T 。这里假设△R远小于R,并且电桥负载电阻为无穷大,则电桥的输出为: U SC = E*( R+△R+△R T )/( R-△R+△R T +R+△R+△R T )- E*( R-△R+△R T )/( R+△R+△R T +R-△R+△ R T )= E*△R/(R+△R T ) 即 U SC = E*△R/(R+△R T )式(1) 说明电桥的输出与电桥的电源电压E的大小和精度有关,还与温度有关。 如果△R T =0,则电桥的电源电压E恒定时,电桥的输出与△R/R成正比。 当△R T ≠0时,即使电桥的电源电压E恒定,电桥的输出与△R/R也不成正比。这说明 恒压源供电不能消除温度影响。 对于恒流源供电:供电电流为I,设四个桥臂的电阻相等,则 I ABC =I ADC =0.5I 有重力作用时,仍有 I ABC =I ADC = 0.5I 则电桥的输出为: U SC = 0.5I*(R+△R+△R T )- 0.5I*(R-△R+△R T )=I*△R 即 U SC = I*△R 式(2) 因此,采用恒流源供电,电桥的输出与温度无关。因此,一般采用恒流源供电为好。 由于工艺过程不能使每个桥臂电阻完全相等,因此,在零压力时,仍有电压输出,用恒流源供电仍有一定的温度误差。 四、设计提示 (1) 放大电路设计 首先,由于传感器测量范围是0 ~ 2Kg,灵敏度为1mV/V,其输出信号只有0 ~10mV左右;而A/D转换的输入应为0V ~ 1.999V,对应显示0 ~ 1.999Kg,当量为1mV/g,因此要求放大器的放大倍数约为200倍,一般采用二级放大器组成。 其次,在电路设计过程中应考虑电路抗干扰环节、稳定性。选择低失调电压,低漂移,高稳定

阵列信号识别声源相关总结_1002

阵列信号识别声源相关总结

1 阵列信号识别声源的方法归类 噪声源的识别方法可大致分为3类:传统的噪声源识别方法,如选择运行法、铅覆盖法及数值分析方法等,传统方法虽然陈旧、使用效率低,但目前仍有许多企业在应用。例如,为了测量汽车高速行驶时的车内噪声,需要将车门缝隙用铅皮封住;第二类,利用现代信号处理技术进行噪声源识别,如声强法、相干分析、偏相干分析适合与很多场合,能解决许多一般问题。如评价某些噪声源、某些频谱对场点(模拟人头耳朵处),这时采用相干分析就可以解决。第三类,利用现代图像识别技术进行振动噪声源识别,其分为两种,一种是近场声全息方法(NAH),一种是波束形成方法(Beamforming)。 相比于传统识别和现代信号处理方法,声阵列技术具有测试操作简单、识别效率高,以及可对声源进行量化分析并对声场进行预测等优点。 1.1 声全息方法 近场声全息技术经过很长时间的发展已经日趋成熟,广泛应用于近距离测量和对中低频噪声源的识别。 声全息方法,其基本原理是首先在采样面上记录包括声波振幅和相位信息的全息数据,然后利用声全息重建公式推算出重建面上的声场分布。该方法一方面可以获得车外声场分布的三维信息,另一方面可以进行运动车辆车外噪声源识别的研究,而且还具有在进行噪声测试时,抗外界干扰强的特点。按声场测量的原理可分为常规声全息、近场声全息和远场声全息三种。 常规声全息,全息数据是在被测物体的辐射或散射场的菲涅尔区和弗朗和费区(即全息接收面与物体的距离d远大于波长λ的条件下)采用光学照相或数字记录设备记录的,因为受到自身实用条件的限制,根据全息测量面重建的图像受制于声波的波长。它只能记录空间波数小于等于2π/λ的传播波成分,而且其全息测量面只能正对从声源出来的一个小立体角。因此,当声源辐射场具有方向性时,可能丢失声源的重要信息。并且通过声压记录得到的全息图,只能用于重建声压场,而不能得到振速、声强等物理量。 远场声全息NAH(Near-field Acoustical Holography),其特点是全息记录平面与全息重建平面的距离d远远大于声波的波长λ,即其全息数据是在被测声源产生声场的辐射或散射声场的菲涅尔区和弗朗和费区获得的。这种方法通过测量离声源很远的声压场来重建表面声压及振速场,由此可预报辐射源外任意一点的声压场、振速场、声强矢量场。由于进行全息数据记录的表面距离被测声源面较远,而全息记录的表面的面积是有限的。所以声源发出的声波有很大一部分不

二极管阵列检测器

二极管阵列检测器(Diode Array Detector,DAD)在食品添加剂检测中的作用 食品是人类赖以生存和发展的物质基础,食品分析与其他领域化学分析的不同之处在于食品种类多样、成分复杂、基质干扰严重,因此,准确可靠的检验结果是正确评价食品质量和保障食品安全的先决条件。传统的紫外检测器每次进样只能完成单一波长扫描,而利用二极管阵列检测器可以在一次程序运行中进行190 nm~800 nm之间的全波长立体扫描,并可在数据采集完成后显示某一波长的色谱图。因此可以实现利用被测物质的光谱吸收曲线的模式图形状、最大吸收波长、色谱峰纯度分析、导数光谱辅助定性及快速选择最佳检测波长等方面的优势,从而弥补利用单一紫外波长吸收进行色谱分析过程中,单独采用色谱峰保留时间定性的不足,增强高效液相色谱定性分析能力[1-2]。苯甲酸、山梨酸、脱氢乙酸和安赛蜜、糖精是加工食品中最常用的防腐剂和甜味剂,因受到食品复杂基质干扰,在样品检测过程中单纯依靠色谱峰保留时间来定性常常会出现杂质干扰造成假阳性,影响检测结果的准确性。因此结合5种常见食品添加剂检测分析的具体实例,探讨二极管阵列检测器在利用被测物质与标准样品紫外吸收光谱曲线及其二阶导数图形模式比较来识别色谱峰以及对色谱峰进行纯度分析等方面的应用,排除二极管阵列检测器(Diode Array Detector,DAD)能够对被测物质进行全波长扫描,在物质定量尤其是定性分析方面显示独特的优势。以食品中常见的3种防腐剂(苯甲酸、山梨酸、脱氢乙酸)及两种甜味剂(安赛蜜、糖精)的检测为实例,介绍利用DAD检测器获得被测物质的紫外吸收光谱及其导数光谱、色谱纯

霍尔传感器转速测量电路设计

课程设计报告书

2.概述 2.1系统组成框图 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用AT89C51单片机,显示器采用8位LED数码管动态显示。本课题采用的是以8051系列的A T89C51单片机为核心开发的霍尔传感器测转速的系统。系统硬件原理框图如图1所示: 图1 系统框图 2.2系统工作原理 转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机AT89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

2.2.1霍尔传感器 霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz ,额定电压为5-30(V )、检测距离为10(mm )。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V ,直流电源要有足够的滤波电容,测量极性为N 极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm 处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2.2.2转速测量原理 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b 、d 。若在垂直于薄片平面(沿厚度 d )方向施加外磁场B ,在沿l 方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:qVB f = 式中:f —洛仑磁力, q —载流子电荷, V —载流子运动速度, B —磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d —元件厚度,B —磁感应强度, I —控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) H K 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和 单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度B 反向时,霍尔电动势也反向。图2为霍耳元件的原理结构图。

阵列光纤定位方法及检测

阵列光纤定位方法及检测 积分视场光谱分析已经成为现代天文物理观测的一项重要技术,通过对采样到的天文光谱进行分析,可以得到关于天体各种特性的丰富信息。积分视场单元(IFU)作为天体三维观测技术的重要器件,能够得到二维焦平面上的三维光谱信息,并且可以同时进行图像采集和光谱采集。目前比较常见的IFU结构为微透镜阵列加阵列光纤的组合,阵列光纤作为IFU上的光传输媒介,直接关系到其性能表现的好坏。因此对阵列光纤进行加工处理以及性能测评是IFU制作工艺中不可或缺的几个重要环节。 本文围绕如何在不影响阵列光纤性能的情况下,将其精准定位。并对定位完毕的光纤进行定位精准度和光纤性能的检测。本文以阶跃型多模光纤传输光波导理论为前提,通过对IFU模型进行分析,并结合焦比退化理论,阐述了与光纤出射光斑相关的几个参数。从而为阵列光纤定位加工提出了要求和目标,并提供了理论依据。 针对阵列光纤需要在IFU微透镜端和赝狭缝端两端进行加工,分别讨论了其加工方式。在微透镜端选取了微孔板排列法。在赝狭缝端选取了石英V槽定位方法,提出了光纤错位双排狭缝的排列方式,并对定位好的光纤进行了整体抛磨。然后对准并粘合了石英微孔基板和微透镜阵列。 成功完成了对阵列光纤的精准定位。对光纤效率、光纤整体焦比进行了检测。在未装上微透镜阵列之前,光纤整体效率在86%91%之间,其有效值(用均方根RMS计算得出)为88.7%,达到了望远镜正常工作的指标;在安装上微透镜阵列之后,其出射效率有效值下降了2.7%,但考虑到微透镜反向打光会增大光纤出射角度降低效率,其性能也足以达到正常工作的标准;用光斑标线法测得两个赝狭缝端的出射焦比F/#out1=7.32、 F/#out2=7.23,线性度均为R2=0.999;用光斑图像整体处理法测得2号赝狭缝端出射焦比F/#out2=6.94,线性度为 R2=0.997。两种方法测量结果均显示IFU出射焦比退化能够达到正常工作需求。 对光纤排列精度进行了检测,用CCD拍出光纤整体图像再利用图像处理的方法计算出每个光纤的坐标,并用均方根(RMS)代表光斑偏移量的有效值。实验测

交通大学_无损检测_涡流检测实例

涡流检测 测控技术与仪器(1)班魏永徵 一、涡流检测的原理 将通有交流电的线圈置于待测的金属板上或套在待测的金属管外,这时线圈内及其附近将产生交变磁场,使试件中产生呈旋涡状的感应交变电流,称为涡流。涡流的分布和大小,除与线圈的形状和尺寸、交流电流的大小和频率等有关外,还取决于试件的电导率、磁导率、形状和尺寸、与线圈的距离以及表面有无裂纹缺陷等。因而,在保持其他因素相对不变的条件下,用一探测线圈测量涡流所引起的磁场变化,可推知试件中涡流的大小和相位变化,进而获得有关电导率、缺陷、材质状况和其他物理量(如形状、尺寸等)的变化或缺陷存在等信息。但由于涡流是交变电流,具有集肤效应,所检测到的信息仅能反映试件表面或近表面处的情况。 二、涡流检测仪器及设备 涡流检测仪器是涡流检测装置最核心的组成部分,根据应用目的不同,涡流检测仪器可分为涡流探伤仪、涡流电导仪和涡流测厚仪等三种类型,它们的电路型式也各不相同。但在检测时他们需要完成一些相同任务:①产生激励信号;②检测我留信息;③鉴别影响因素;④指示检测结果。 涡流检测的电子电路主要分为基本电路和信号处理电路两大部分。基本电路包括振荡器、信号检出电路、放大器、显示器和电源。,这些几乎是所有涡流检测仪都具有的;信号处理电路是鉴别影响因素和抑制干扰的电路,随检测目的不同而不同。 针对不同检测对象的应用,不仅各类涡流检测设备在构成完整的检测系统上有所不同,而且同类检测设备也会因检测对象不同有所差异,特别是涡流探伤系统表现得尤为明显。一般而言,涡流检测装置包括检测线圈、检测仪器、辅助装置。 1.涡流检测线圈 涡流检测线圈通常又称探头。从制作方式和检测信号产生原理两方面考虑,“检测线圈”这一名称比“探头”要更准确、合理。“探头”是各种小尺寸探测器的俗称,在电磁检测中,有几种原理不同的“探头”,如霍尔元件、磁敏二极管及电磁线圈等。涡流检测中通常所称的“探头”即其中的“电磁线圈”,它是

红外线避障传感器电路设计

3.4 传感器电路设计 清洁机器人上安装有多种传感器:各种红外传感器、碰撞传感器和霍尔速度传感器。这些传感器协调工作,保证了机器人对外界环境和自身运动状态的判断。 3.4.1 传感器布局 传感器网络共有4 个周边红外传感器、3 个底盘红外传感器、2 个调频 红外传感器、2 个碰撞传感器、2 个霍尔转速传感器以及1个电机过流传感器、1 个充电电源检测传感器、1 个电池充满传感器和一个A D。其布局如图 3-7 所示。 图3-7 传感器布局 3.4.2红外线避障传感器电路设计 避障传感器的基本原理是利用物体的反射性质。因为在一定范围内,如果没有障碍物,发射出去的红外线,因为传播距离越远而逐渐减弱,最后消失。而如果有障碍物,红外线遇到障碍物,被反射到传感器的接收头。传感器检测到这一信号就可以确认正前方有障碍物,并传送给单片机,单片机通过输入内部的算法,协调小车两轮工作,从而完成躲避障碍物的动作。

通过比较,本系统中选用E18--D80NK-N红外避障传感器。E18-D80NK-N是E18-D80NK的升级版。改动部分主要是内部电路板和外部连线。传感器外部接线,在末端增加了杜邦头,方便用户使用。 E18-D80NK-N这是一种集发射与接收于一体的光电传感器,发射光经过调制后发出,接收头对反射光进行解调输出。有效的避免了可见光的干扰。透镜的使用,也使得这款传感器最远可以检测80厘米距离的问题(由于红外光的特性,不同颜色的物体,能探测的最大距离也有不同白色物体最远,黑色物体最近)。检测障碍物的距离可以根据要求通过尾部的电位器旋钮进行调节。该传感器具有探测距离远、受可见光干扰小、价格便宜、易于装配、使用方便等特点,可以广泛应用于机器人避障、流水线计件等众多场合。E18--D80NK-N的工作电压为5V,工作电流为10--15mA,驱动电流为100mA,探测距离为3--80cm。E18--D80NK-N也是一个数字传感,其为NPN型光电开关,输出状态是0和1,即数字电路中的低电平和高电平;检测到目标是高电平输出,正常状态是低电平输出。此时可以通过旋转传感器后面的按钮,改变传感器可以测量的距离,比如可以通过调节旋钮,使它测5cm距离以内是否有障碍物,如果5cm以内有物体则返回一个高电平,同时传感器里面的绿色小灯被点亮。本系统需要可以测得距离是否有变化的传感器,所以该传感器可以胜任。本系统共用4个E18--D80NK-N红外避障传感器,通过调节旋钮,使它们可以测得设定距离以内的障碍物,这样当机器人处在障碍物设定距离内的地方时,传感器返回低电平,被单片机检测到并作相应的处理。 我们利用上述传感器设计如下图所示电路,其中D1发射红外线,D2接受红外线信号。LM231(此芯片待定)的第5、7引脚为频率的设定端,一般通过调整其外接可变电阻来改变频率。红外载波信号来自其第7脚,也就是说载波信号与频率一致时,能够极大的提高抗干扰特性。当接收到的红外载波信号和频率一致时,说明不是干扰,则第6脚输出低电平。 红外信号经反射后,由探头的光敏三极管接收反射光,经过RC滤波电路及LM741组成的并联负反馈放大电路对信号进行放大,输出频率的方波送到LM231中进行解调,然后经其内部的比较器转换为数字信号经由6号脚输出。

高效液相色谱二极管阵列检测器联用仪技术参数

高效液相色谱-二极管阵列检测器联用仪技术参数 1、二元泵主机 *两个双活塞串联泵,具有独特的伺服控制可变冲程(100ul)驱动、浮动活塞设计。 *可设置的流速范围:0.001~10mL/min, 增量为0.001mL/min *流速精密度:≤0.070%RSD或≤0.02min SD 流速准确度:±1%或10uL/min *压力范围:0~600bar 压力脉动:< 2% pH范围:1.0~12.5 梯度形成:高压二元混合 梯度延迟体积:600~800μL(与反压相关); 梯度组成比例范围:0-100% 混合准确度:<0.2%RSD或<0.04min SD *集成的脱气元件:通道个数:2通道;每个通道的内部体积:1.5mL 2、集成真空脱气机 *二通路在线真空膜过滤技术,内置真空泵,压力传感器,实时监控真空腔压力变化,保证及时高效的脱气操作。 最大流速(每一通路):10mL/min 内体积(每一通路):12mL pH耐受范围:1~14 3、标准自动进样器 自动进样器具独特的流路设计,采用高压、阀进样技术。 进样范围:0.1~100uL,增量为0.1uL;安装多次进样组件,最大进样体积可达1800uL 进样精密度:< 0.25% RSD(进样体积5~100uL) < 1% RSD (进样体积1~5uL) < 0.5% RSD (进样体积达1500uL,安装多次进样套件)最快进样速度:1000uL/min 样品粘度范围:0.2~5cp pH范围:1.0~9.5 *样品容量≥130位2mL样品瓶 交叉污染:<0.004% *操作压力范围:最高800bar 4、柱温箱 *半导体温控设计,流动相柱前预加热,有效防止流动相在色谱柱内的热交换,有利于色谱柱内快速温度平衡,及两相间的物质分配平衡。 控温范围:室温下10℃~80℃,宏命令可控制至90℃ 控温速率:室温加热至40℃,5min;40℃降温至20℃,10min 控温精度:±0.15℃ 控温准确度:±0.5℃ 最大柱容量:9.4mm ID × 30cm × 2 *内体积:左控温模块3μL,右控温模块6μL 5、二极管阵列检测器 检测器类型:1024个二极管元件

钢棒阵列涡流探伤技术

钢棒阵列涡流探伤技术 阵列涡流技术是近十多年出现的一项新的涡流检测技术,它是通过涡流检测线圈结构的特殊设计,并借助于计算化的涡流仪强大的控制和处理功能,实现对金属材料的快速、有效地检测。阵列涡流用于钢铁企业生产检验的主要优点表现在:① 一个完整的探头由多个独立的线圈排列而成,对于不同方向的线性缺陷具有一致的检测灵敏度;② 探头覆盖区域较大,检测效率比常规涡流点探头大很多倍;③ 具有点探头的高灵敏性,但在检测钢棒时不需要探头旋转,省却了复杂的旋转头装置。 1 阵列涡流探伤技术原理 阵列涡流技术与传统的涡流检测技术相比,主要不同点在于阵列涡流探头是由多个独立工作的线圈构成,这些线圈按照特殊的方式排布,且激励线圈与接收线圈之间形成两种方向相互垂直的电磁场传递方式。工作时不需使用机械式探头扫描,只需按照设定的逻辑程序,对阵列线圈进行分时切换,并将各线圈获取的涡流响应信号通过多路复用器接入仪器的信号处理系统中去,即可完成一个阵列的巡回检测。为提高检测效率,阵列涡流探头中包含有几个或十几个甚至几十个线圈,不论是激励线圈,还是接收线圈,相互之间距离都非常近。采用多路复用技术可以有效避免不同线圈间的相互干扰。 如图1所示是一个检测圆钢的阵列涡流探头的原理示意图,它由一个与圆钢截面为同心圆的骨架以及在骨架上安装的两排阵列线圈组成。 这些阵列线圈在局部会产生许多的小涡流场,使得局部 涡流场强度大大增加,从而提高了检测灵敏度。圆钢从 探头内部穿过时,是如何完成对圆钢的检测呢?为便于 叙述和理解,将这二排线圈分为A 组(A 1,A 2,A 3,……) 和B 组(B 1,B 2,B 3,……),如图2所示。相对于A 组线圈而言,B 组线圈为激励线圈,如图中,B 1线圈产生的磁场在圆钢表面激励产生涡流,该涡流在再生磁场被A 1和A 2线圈所感应接收;以这种方式电磁耦合形成的涡流适于发现圆钢表面上轴线方向的缺陷。同理,B 2线圈作用于A 2和A 3线圈,B 3线圈作用于 图1 圆钢阵列涡流探头 图2 阵列线圈的电磁耦合方式

涡流无损检测中的定量分析

第匏卷第5期2000年s胃 无损检测 NDT V01.22NO.5 May2000涡流无损检测中的定量分析’ 孙晓云路妯袁斌盛剑嚣 (西安交通大学,曲安710049) 摘要提出满流光损检测中定量分析髓需考虑的问题,介绍鹕漶定量捡测砖方法,龟括tl-波分辨技书、人工神经鼹络、百褪纯技书麓数嚣霹艘术等。 主麓诵涡流检验信昔处理定量分析 QUAN零l零A譬lV嚣ANALYSlSFoR嚣DDYCURREN簟NoNDESTRUCTIVETESTlNG SunXiaoyunlmCanYuan蟊jnShengJiannJ (XihnJiaotongUniversity) AbstractTheproblemsshouldbeconsideredinthequamltatlvearmlysisforeMycurren*nondestruetivetes{.ingareputforVvardQuantitativeanalysismethodsareintroduced.includingwaveletanalysis.neuralnetwork。vi—sualizationandda*abasemethods KeywordsEddycurrenttestingSignsIprocessingQuantitativeanalysis 无损评估楚铼诳工监安全生产而建立的一项练台性的高科技方法,它以无损检测为基础。评健巾缺陷可分为廷险牲驰无戴睑性群大粪。前者是在运行中产生豹.如表面裂纹,逐步向内发袋,导致设备破裂“1:对这种裂纹必须严密监视,用涡流检测法捡测巽寿独特赫挠点, 嚣翦涡流无援硷测处予定性分橱蹬段,要向定肇努辑发展,需要考虑的阁题毒①提离捡溅终空溺分辨力和掰鬣仪器的灵敏瀵。②缺陷检测不是一次检测的直接结果,而蔼根据一次检测结果进行缺赡识S《:缺路识别属于电磁场闯题的逆闻鼷,~般来浇无唯一解;需冀有先验知识加以约束才能获得实际缺陷的形状刹尺寸。③通过{义器获得的信息难免混育多种干扰信号,必籁将干扰去除到允许范醋内,才髓避行识别:①识别商离线识别捌在线识别,后者可甥快识别遮襞,实现实对检测。⑤侵于测试A员瑟时了解梭蒯情况或进行必要的人工干预、原始数据的铰对及缺赂的昆示等。 1激韵线湖酾探测线疆分蔫,以提塞窑瓣努辨力 在融抗变化的满流检测中,一般都将激勋线霹 *国家教帮部媾士盎蕊垒拦助壤舄和探测线圈台二为一。探头两端的感应电盛表镬了线圈艇在范鼹幽磁运量的时闫变化率,斟此空闺分辨力随探测线圈横截面积增大而减小。本课题组提出将探测栖激励线圈分离,且增大激励线圈的体穰郄缩小探测线圈豹体积;显然,老将搽测线黉缩小到某~程度可分辨出空间磁场的分布,这样投大疆离了磁场的空闽分辨力,可方便地反映缺照的位鼍爱大,』、,我孵髂之为基于场量分析的涡流无损检测敖术,详缅分析方法见文献i2]。模拟计算表骢,在这种方法巾.疆把探测缝匿魄体积擞得足够小,才能提囊空闰分辨力。另补,搽测线圈两端的感应电压约在徼侠数麓级。因此必须提高测擐仪器的灵敏度,否则难以达到孝藿辘捡测的g的。 2搦强横拟计葬,为缺陷识剐提鬣先骏知识 前蕊已指出,缺掐识别属于电磁场的逆问题,需要事窝的先验知识加以约束,才蘸获碍噍一解。先验知识的虢取,可用实验测定或模献计算,丽置看者与蓊着褶比可节省大量的入力和幸势力,还可获得一堕前蠢无法羲褥的知识。龙损检测系统中瓣涡漉场~般为三缎开域场。用常甄豹毒隈元法戢边拜元法嚣翥饕禳天的计算量,用三维青隈元法计算时,特剐楚当敬璐很小时,所嚣的计箕量更加盛犬。濯她本澡溪缢掇出r微撬场的观点,鄄将由缺陷Sf超的场定义 ?195?  万方数据

相关文档
相关文档 最新文档