文档库 最新最全的文档下载
当前位置:文档库 › 【CN109680028A】一种改善水产蛋白溶解性的方法【专利】

【CN109680028A】一种改善水产蛋白溶解性的方法【专利】

【CN109680028A】一种改善水产蛋白溶解性的方法【专利】
【CN109680028A】一种改善水产蛋白溶解性的方法【专利】

《豆制品及面筋制品》标准编制说明

《豆制品及面筋制品》标准编制说明 1、任务由来及说明 我市豆制品生产企业较多,品种丰富多彩,尤其是很多有地方特色的产品,深受消费者喜爱。但由于缺乏统一的标准,导致了我市豆制品质量参差不齐,甚至出现鱼目混珠的现象。这给政府的管理,优势企业的发展,全行业的规范均造成了影响。为了提高我市豆制品的质量,规范我市豆制品生产,重庆市质量技术监督局向我院下达了制定重庆市豆制品地方标准的任务。重庆市计量质量检测研究院接受任务后,填报“豆制品”标准项目任务书,在任务书中阐明了制定该标准的目的和意义、技术内容、工作进度计划等,经过市检测院食品中心科研人员近1年的研究,提出了《豆制品及面筋制品》标准讨论稿。 2、标准制定的目的和意义 豆制品是以大豆或其他杂豆为主要原料,经加工制成的产品。狭义上讲,豆制品是指由大豆或大豆饼粕的豆浆凝固而成的豆腐及其再制品的总称。 传统豆制品根据其发酵工艺不同,又分为发酵性豆制品和非发酵性豆制品。发酵性豆制品是指以大豆为主要原料,经过微生物发酵酶解而加工成的豆制品,如腐乳、豆豉等;非发酵性豆制品是指以大豆为主要原料,不经过发酵过程制成的产品,如豆浆、豆乳、豆腐、豆腐再加工制品(豆干、腐竹)等。豆制品营养丰富,种类繁多,且多为熟食,食用方便,是植物蛋白的重要来源,深受广大消费者的青睐。豆制品所含人体必需氨基酸与动物蛋白相似,含有丰富的钙、磷、 铁等人体需要的矿物质,以及维生素B l 、B 2 和纤维素等,却不含胆固醇。豆制品 在中国人民的膳食结构及健康饮食中具有非常重要的地位。 豆制品是我国传统食品,加工历史悠久,发展前景广阔,然而,传统作坊式加工经营方式使得豆制品生产工业化程度低,保质期短、卫生质量差、产品标准化率低,产品质量不稳定,严重影响了豆制品行业的发展。 目前,重庆地区有羊角豆干、忠县腐乳、永川豆豉等地方特色知名品牌,从事这些产品生产的企业有几十家。这些产品在全国均具有较高的知名度,但产量产值一直不高,与国内一些大型豆制品企业相比还有一定差距,在全国市场上的占有率低,严重制约了重庆地方经济的发展。这就迫切需要对重庆市豆制品生产

影响蛋白质水合和溶解性的因素有哪些

1.影响蛋白质水合和溶解性的因素有哪些?这两方面的影响因素有何异同? 答:(1)蛋白质的水合性质(PropertiesHydration of Proteins) A.蛋白质水合性质:蛋白质分子中带电基团、主链肽基团、Asn、 Gln的酰胺基、Ser、Thr和非极性残基团与水分子相互结 合的性质。 B. 蛋白质水合能力:当干蛋白质粉与相对湿度为90-95%的水蒸汽 达到平衡时,每克蛋白质所结合的水的克数。 α=?C +0.4 ?P+0.2 ?N (α:水合能力,g水/g蛋白质;?C, ?P , ?N:带电的、极性和非极性的分数) C.影响蛋白质结合水的环境因素: 1.pH 当pH=pI时,蛋白质的水合能力最低 2.温度温度升高,氢键作用和离子基团的水合作用减弱,水合能力下降。 3.氨基酸组成极性氨基酸越多,水合能力越高 4,离子强度低浓度的盐能提高蛋白质的水合能力。 5.盐的种类 (2)蛋白质的溶解度(SolubilityofProteins) 影响蛋白质溶解性质的主要的相互作用: A 疏水相互作用能促进蛋白质—蛋白质相互作用,使蛋白质溶解度降低; B离子相互作用能促进蛋白质—水相互作用,使蛋白质溶解度增加。 1.pH 当pH高于或低于等电点时,蛋白质带净的负电荷或净的正电荷, 水分子能同这些电荷相互作用并起着稳定作用 U-形曲线,最低溶解度出现在蛋白 2.①“盐溶”(salted in)中性盐的离子在0.1-1M能提高蛋白质的溶 解度。 ②“盐析”(salted out)中性盐的离子大于1M,蛋白质的溶解 度降低,并可能导致蛋白质沉淀。 ③当离子强度<0.5时,离子中和蛋白质表面的电荷。 电荷掩蔽效应对蛋白质的溶解度的影响取决于蛋白质的表面性质。如果蛋白质含 有高比例的非极性区域,那么此电荷掩蔽效应使它的溶解度下降,反之, 溶解度提高。 当离子强度>1.0时,盐对蛋白质溶解度具有特殊的离子效应。 硫酸盐和氟化物(盐)逐渐降低蛋白质的溶解度。在相同的μ,各种离子对蛋 白质溶解度的相对影响(提高溶解度)的能力。Hofmeister系列 阴离子(提高蛋白质溶解度的能力): SO42-<F-

氢氧化钾蛋白质溶解度的测定

氢氧化钾蛋白质溶解度 ---参照GB/T 19541-2004 1适用范围:豆粕、菜籽粕、棉籽粕。 2 氢氧化钾蛋白质溶解度 大豆粕样品在规定的条件下,可溶于0.2%氢氧化钾溶液中的粗蛋白质含量占样品中总的粗蛋白质含量的质量百分数。 3氢氧化钾蛋白质溶解度的测定 3.1 方法原理 氢氧化钾蛋白质溶解度可以反映大豆粕产品加热过度的情况。不同加热程度的大豆粕,氢氧化钾蛋白质溶解度不同。先测定大豆粕样品在规定的条件下,可溶于氢氧化钾溶液中的粗蛋白质含量;再测定同一大豆粕样品中总的粗蛋白含量,计算出氢氧化钾蛋白质溶解度。 3.2 试剂 所用试剂均为分析纯,所用的水为按GB/T 6682中规定的三级水。 3.2.1 0.2%的氢氧化钾溶液:2.44g氢氧化钾(含量:≥82%)溶解于水中,稀释并定容至1L。 3.3 仪器设备 3.3.1实验室用样品粉碎机。 3.3.2样品筛:孔径0.25mm。 3.3.3分析天平:感量0.0001g。 3.3.4 磁力搅拌器。 3.3.5离心机:转速为2700 r/min以上。 3.3.6 TECATOR装置:消化管、消化系统、蒸馏系统。 3.4 样品的制备 取具有代表性的大豆粕样品,用四分法缩减分取200g左右,粉碎过0.25mm 孔径的样品筛,充分混匀,装入磨口瓶中备用。 3.5 测定步骤

称取大豆粕式样1.0g,精确到0.1mg,置于250mL高型烧杯中,加入50.00mL 氢氧化钾溶液,在磁力边搅拌器上搅拌20min,将溶液转移至离心管中,以2700 r/min离心10min,小心移取清液10.00ml,放入消化管中,加入6.4g混合催化剂和10mL浓硫酸,消化,蒸馏,测其粗蛋白,同时测定同一式样总的粗蛋白质含量。 3.6 结果计算 氢氧化钾蛋白质溶解度X,数值以质量分数表示,按式计算: X = W1 / W2 ×K × 100 公式中: W1 —大豆粕式样溶于氢氧化钾溶液中的粗蛋白质含量,%。 W2 —大豆粕式样总的粗蛋白质含量(以两次平行测定结果的算术平均值为测定结果),%。 K —稀释倍数。 计算记过表示到小数点后一位。 3.7 精密度 3.7.1重复性 在同一实验室,由同一操作人员完成的两个平行测定结果,相对偏差不大于2%;以两次平行测定结果的算术平均值为测定结果。 3.7.2 再现性 再不同实验室,由不同操作人员用不同的仪器设备完成的两个测定结果,相对偏差不大于4%。

氢氧化钾蛋白质溶解度的测定

氢氧化钾蛋白质溶解度的测定 1、原理 氢氧化钾蛋白质溶解度可以反映蛋白质变性的情况。不同的蛋白质品种,氢氧化钾蛋白质溶解度不同。蛋白质变性越大,氢氧化钾蛋白质溶解度越小。 用一定浓度的氢氧化钾溶液提取试样中的可溶性蛋白质,在催化剂作用下用浓硫酸将提取液中可溶性蛋白质的氮转化为硫酸铵。加入强碱进行蒸馏使氨逸出,用硼酸吸收后,再用盐酸滴定测出试样中可溶性蛋白质含量;同时,测定原始试样中粗蛋白质含量,计算出试样的蛋白溶解度。 2、试剂 a)??氢氧化钾(分析纯),无水硫酸钾、五水硫酸铜、氢氧化钠、硼酸、甲基红、溴甲酚绿、硫酸铵; b)??浓硫酸、盐酸(分析纯)、95%乙醇、蒸馏水。 3、仪器和设备 a)??感量为g分析天平; b)??磁力搅拌器; c)??离心机(带离心管),转速为2700r/min以上; d)??样品粉碎机; e)??60目分析筛; f)??电炉;

g)??100 mL或250 mL凯氏烧瓶; h)??凯氏蒸馏装置; i)??250 mL锥形瓶; j)??1000 mL容量瓶; k)??微量滴定管。 4、试剂的制备 a)??%氢氧化钾溶液 称取g氢氧化钾,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 b)??混合催化剂 称取6 g硫酸钾和g硫酸铜,磨碎混匀。 c)??氢氧化钠溶液 称取400 g氢氧化钠,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 d)??硼酸溶液 称取20 g硼酸,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 e)??盐酸标准溶液 量取mL浓盐酸,注入1000 mL水中混匀,按GB 601-88要求进行标定即可。 f)??混合指示剂 称取1 g甲基红和5 g溴甲酚绿,加入乙醇溶解后,转移至1000 mL

大豆蛋白肉制品中的使用方法

大豆蛋白的使用方法 分离蛋白在各种组合使用方法中,已被大多数厂家广泛接受,尤其是斩拌机法最受欢迎,主要原因是其功能多,且制造过程较具伸缩性。 1 复水法:先将大豆分离蛋白同4~5倍的冰水放入斩拌机内用高速斩拌1~2min,然后,再加入瘦肉、冰水、多聚磷酸盐和食盐,以高速斩拌2min,以抽取盐溶性肉蛋白,此时温度刚好控制在2~4℃ ,因为在此温度下是盐溶性蛋白抽取之最适当温度,盐溶性蛋白抽取后,再加入肥膘和冰水,继续斩拌2min,此时温度应在6~8℃ 左右,这是最普遍的方法。 2)凝胶法:先将大豆分离蛋白用4倍水,用斩拌机高速乳化后待用,再视其需要量和瘦肉一同加入斩拌,其他步骤和上述附水法相同,另外凝胶法可储藏在冷藏库备用,虽然分离蛋白在冷藏室可存放2~3d,但是,容易产生酸败和容易滋长细菌,建议尽快用完。 3)乳化油法:利用分离蛋白生产乳化油之原料,可以利用鸡皮、肥膘、牛油、大豆油和猪皮等作原料。制造乳化油之方法,最主要是用斩拌机将分离蛋白附水后再加入油,继续斩拌成乳化油后再备用。在乳化产品生产过程中,乳化油在盐溶性肉蛋白被抽取后加入,较凝胶法复杂些,但是乳化油加工及添加适当,不仅可以降低产品成本,还可增加产品香度和柔韧性。 4)干加法:此法使用方法简单,先将分离蛋白加入瘦肉里,稍做斩拌,再加4倍水,斩拌1~2min 再加入多聚磷酸盐、冰水和食盐,继续斩拌2min,其步骤与上相同。但也有直接将分离蛋白与淀粉等干物质最后加入斩拌的方法。此法固然便捷,但因大豆分离蛋白未能完全附水,功能也未能完全发挥,所做产品在配方相同条件下会较软,吸水性和保油性都会较差,因此不建议采用此法。又例如:将分离大豆蛋白和瘦肉一起加,但没有附水,此效果既不能将大豆分离蛋白有适当附水,又影响盐溶性蛋白的抽取,所制造产品会更软。因此,附水和添加步骤也影响最终产品的品质。 由于分离蛋白本身性能的影响,遇盐会发生一定的可逆反应,减弱其乳化特性、保油性、持水性的性能。故不论使用何种方法来生产乳化肉制品,要使大豆分离蛋白能发挥最大的功能性,必须将大豆分离蛋白完全附水。

大豆分离蛋白工艺

大豆分离蛋白工艺 摘要:作为一种食品添加剂,大豆分离蛋白广泛应用于各种各样的食品体系中。 大豆分离蛋白的成功应用在于它具有多种样的功能性质,功能性质是大豆分离蛋白最为重要的理化性质,如凝胶性、乳化性、起护色注、粘度等。本文主要大豆分蛋白的一种制取工艺。 关键字:大豆分离蛋白、分离工艺、影响因素、设备 前言 大豆分离蛋白是重要的植物蛋白产品, 除了营养价值外,它还具有许多重要的功能性质, 这些功能性质对于大豆蛋白在食品中的应用具有重要的价值。大豆蛋白的功能性质可归为三类一是蛋白质的水合性质( 取决于蛋白质-水相互作用),二是与蛋白质-蛋白质相互作用有关的性质,三是表面性质[1]。水合性质包括:水吸收及保留能力、湿润性、肿胀性、粘着性、分散性、溶解度和粘度。而蛋白分子间的相互作用在大豆蛋白发生沉淀作用、凝胶作用和形成各种其它结构(例如面筋) 时才有实际的意义。表面性质主要是指乳化性能和起泡性能[2]。 1.功能特性 1.1乳化性 乳化性是指将油和水混合在一起形成乳状液的性能。大豆分离蛋白是表面活性剂, 它既能降低水和油的表面张力,又能降低水和空气的表面张力。易于形成稳定的乳状液。乳化的油滴被聚集在油滴表面的蛋白质所稳定,形成一种保护层。这个保护层可以防止油滴聚集和乳化状态的破坏, 促使乳化性能稳定。在烤制食品、冷冻食品及汤类食品的制作中, 加入大豆分离蛋白作乳化剂可使制品状态稳定。 1.2水合性 大豆分离蛋白沿着它的肽链骨架,含有很多极性基,所以具有吸水性、保水性和膨胀性。 1.2. 1吸水性 一般是指蛋白质对水分的吸附能力,它与即水份活度、pH、深度、蛋白质的颗粒大小、颗粒结构、颗粒表面活性等都是密切相关的。随水份活度的增强,其吸水性发生快——慢——快的变化。 1.2. 2保水性 除了对水的吸附作用外,大豆蛋白质在加工时还有保持水份的能力,其保水性与粘度、pH、电离强度和温度有关。盐类能增强蛋白质吸水性却削弱分离蛋白的保水性。最高水分保持能力在pH= 7,温度35~55℃时,为14g水/g蛋白质。1.2. 3膨胀性 膨胀性即蛋白质的扩张作用,是指蛋白质吸收水分后会膨胀起来。它受温度、pH 和盐类的影响显著,加热处理增加大豆蛋白的膨胀性,80℃时为最好,70~100℃之间膨胀基本接近[3]。 1.3吸油性 1.3. 1促进脂肪吸收作用

大豆蛋白制品

大豆蛋白制品 简介: 大豆蛋白质:即大豆类产品所含的蛋白质,含量约为38%,是谷类食物的4~5倍。大豆蛋白质的氨基酸组成与牛奶蛋白质相近,除蛋氨酸略低外,其余必需氨基酸含量均较丰富,是植物性的完全蛋白质,在营养价值上,可与动物蛋白等同。 FAO/WHO(1985)人类试验结果表明,大豆蛋白必需氨基酸组成较适合人体需要,对于两岁以上的人,大豆蛋白的生理效价为100。大豆中富含蛋白质,其蛋白质含量几乎是肉、蛋、鱼的二倍。而且大豆所含的蛋白质中人体“必需氨基酸”含量充足、组分齐全,属于“优质蛋白质”。人体对蛋白质的需求因年龄、性别、体重、工种等不同而有所差异。为了指导人们的膳食,世界各国结合本国实际情况分别制订出“推荐每日膳食营养素供给量”(RDA)。1999年,美国食品药品监督局(FDA)发表声明:每天摄入25克大豆蛋白,有减少患心脑血管疾病的风险。 生产企业: 安阳市得天力食品有限责任公司 网址: https://www.wendangku.net/doc/0d16287235.html,/ 主要大豆产品: 高筋组织蛋白 高筋蛋白蛋白高、吸水性强。广泛用于高档水饺、素食肉和休闲食品等原料。本产品的特点是久泡不烂、口感佳、绿色食品。 灭菌脱腥大豆蛋白粉 灭菌脱腥大豆蛋白粉是以非转基因大豆为原料,经过脱皮、制粉、灭菌一系列工序生产的高标准的脱脂大豆蛋白粉,其色泽为微 黄色粉未,可用于肉制品、奶制品等产品中。 具体用法及用量:1、制作大豆蛋白粉面包,用量可在4%—12%之 间,可以补充面粉中氨基酸的不足,在营养上起到互补的作用,将大豆蛋白质作为面包的强化剂。2、大豆蛋白粉可以加入面粉中,制成各种主食馒头、面条、方便面、饼干、蛋糕、油条、饺子皮和馄饨皮等。大豆粉和面粉混合制成食品在营养上有两个好处:一、是大豆蛋白粉的添加使面粉食品的蛋白含量增加。大豆蛋白粉含蛋白50%,面粉含蛋白10%,将10%大豆粉与90%面粉混合,豆-面混合粉的蛋白质含量便可提高到14%,较面粉的蛋白质含量增加40%。二、是蛋白质的质量提高。面粉缺乏赖氨酸,大豆粉恰恰富含赖氨酸,10%大豆蛋白粉与90%面粉混合后,其蛋白质的PDCAAS评分提高到0.99,接近理想水平。由于大豆蛋白质具有许多功能特性,比如吸水性、保水性、吸油性、保油性、乳化性、胶凝性、起酥性等等,在面粉中添加5%-10%的大豆蛋白粉制作食品,还能赋予食品良好的口感、光滑饱满的外表、果仁般的风味、更长的保鲜期以及更高的营养价值。3、大豆蛋白粉可以作为

大豆蛋白制品通用标准

大豆蛋白制品通用标准 CXS 175-1989 1989年通过,2019年修正NB059/Ch.

1.范围 本标准适用于用大豆(Glycine Max. L.品种)经分离和提取加工程序制备而成的植物蛋白制品(VPP)。这些产品用于进一步加工的食品和食品加工业。 2.说明 本标准所涉及大豆蛋白制品(SPP)是采用特定方式降低或去除大豆中主要非蛋白质成分(水分、脂肪、碳水化合物),使蛋白(N x 6.25)含量达到: -大豆蛋白粉(SPF)蛋白质含量≥50%,且<65%; -浓缩大豆蛋白(SPC)蛋白质含量≥65%,且<90%; -分离大豆蛋白(SPI)蛋白质含量≥90%。 蛋白质含量的计算基数为除添加的维生素类、矿物质之外的产品干重。 3.基本成分和质量与营养指标 3.1原料 按照良好操作规范,基本上无其他种子和外来物质的,清洁、完好、成熟、干燥的大豆种子,或满足本标准所要求的低蛋白含量的大豆蛋白制品(SPP)。 3.2大豆蛋白制品(SPP)应符合下述成分要求: 3.2.1水分含量不超过10%(质量分数)。 3.2.2粗蛋白(N6.25)应: -大豆蛋白粉(SPF)蛋白质含量≥50%,且<65%; -浓缩大豆蛋白(SPC)蛋白质含量≥65%,且<90%; -分离大豆蛋白(SPI)蛋白质含量≥90%。 以除添加的维生素、矿物质、氨基酸和食品添加剂之外的干重计。 3.2.3灰分 灼烧灰分量不应超过8%(以干重计)。 3.2.4脂肪 残留脂肪量应与良好操作规范一致。

3.2.5粗纤维含量应不超过: -大豆蛋白粉(SPF):5%; -浓缩大豆蛋白(SPC):6%; -分离大豆蛋白(SPI):0.5%。 以干重计。 3.3可选配料 (a)碳水化合物,包括糖; (b)食用油脂; (c)其他蛋白制品; (d)维生素类和矿物质类; (e)食盐; (f)香草和香料。 3.4营养指标 加工过程应严格控制并充分保证成品具有最优风味和可口性,也要控制如胰蛋白酶抑制剂、血凝素等的使用。在必须控制胰蛋白酶抑制剂活性的食品中,其最大允许量应根据最终产品确定。某些大豆蛋白制品(SPP)需要在低温条件下生产,以避免蛋白质溶解和酶活性丧失。特殊用途大豆蛋白制品(SPP)在经适当的热处理后,应检测蛋白营养价值。热处理不应太剧烈,以避免严重影响营养价值。 4.食品添加剂 4.1加工助剂 大豆蛋白制品(SPP)的加工过程中可采用下述加工助剂: 符合本标准的产品中使用的加工助剂应符合《加工助剂物质使用指南》(CXG 75-2010)。 -酸度调节剂; -消泡剂; -固化剂; -酶制剂; -萃取剂;

国家标准《大豆蛋白粉》编制说明

国家标准《大豆蛋白粉》编制说明 国家标准《大豆蛋白粉》的制修订工作,是国家标准化管理委员会《2005年制修订国家标准项目计划》下达的任务,项目编号为20050649-T-449。 一、工作简况(包括任务来源、协作单位、主要工作过程、国家标准主要起草人及其所做工作等) 国家粮食局标准质量中心全面负责国家标准《大豆蛋白粉》(项目编号为20050649-T-449)的制修订工作,成立了大豆蛋白粉国家标准制修订工作组。由全国粮油技术标准化委员会油脂及油脂技术工作组、武汉工业学院、河南工业大学共同负责,为此专门成立了《大豆蛋白粉》国家标准起草小组,并根据项目内容确定了该项工作的具体方案和工作计划,按照项目要求开展工作。各成员单位按照大豆蛋白粉标准制修订工作方案,进行了资料收集、分析和相关试验的研究。 本标准制定的主要工作过程为: (一)查询资料 本起草小组查阅了大量的国内外有关大豆蛋白粉的科技文献,如大豆蛋白粉的原料、大豆蛋白粉的生产工艺、大豆蛋白粉国内外相关标准、大豆蛋白粉检测方法等,并对资料进行了分析、研究与总结。

同时对大豆蛋白粉的生产、销售等市场进行了调查及研究。结果表明,大豆蛋白粉的生产一般是以大豆(或食用大豆粕)为原料,经过清选除杂、脱皮、脱脂、脱溶(溶剂法脱脂)、粉碎、筛分等加工过程实现的。目前,国际上的脱脂大豆粉和相关大豆蛋白制品有低温脱脂豆粉、高温脱脂豆粉、加磷脂大豆粉、大豆浓缩蛋白粉和大豆分离蛋白粉等制品,并根据制品具体的质量指标冠以对应的商品名称;国内的大豆脱脂豆粉,无论是部分脱脂豆粉、低温脱脂豆粉、高温脱脂豆粉、加磷脂的脱脂豆粉,多数生产企业喜欢在上述产品中加上“蛋白”二字以“大豆蛋白粉”的名称在商业流通中增加“卖点”效益。大豆蛋白粉尚无国际标准,国内只有与大豆蛋白粉有一定关系的国家标准,如QB/T20371-2006《食品工业用大豆蛋白》、QB/T13382-92《食用大豆粕》等。QB/T20371-2006《食品工业用大豆蛋白》包含蛋白质含量由50%到90%以上的大豆蛋白粉、大豆浓缩蛋白和大豆分离蛋白三大类产品,对于世界大豆分离蛋白生产量最大中国,缺乏标准的准确性和科学性;QB/T13382-92《食用大豆粕》标准,主要是为大豆浓缩蛋白和分离蛋白生产企业提供原料依据的标准。 大豆经加工的蛋白产品分为大豆分离蛋白、大豆浓缩蛋白、大豆蛋白粉等,各种产品的不同蛋白含量,其功能性和应用范围都有很大

1蛋白质化学(答案)

1 蛋白质化学 一、名词解释 1、氨基酸的等电点(pI):在某一pH 的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH 值称为该氨基酸的等电点。 2、a-螺旋:多肽链沿长轴方向通过氢键向上盘曲所形成的右手螺旋结构称为α-螺旋。 3、b-折叠:两段以上折叠成锯齿状的多肽链通过氢键相连而并行成较伸层的片状结构。 4、分子病:由于基因突变导致蛋白质一级结构发生变异,使蛋白质的生物学功能减退或丧失,甚至造成生理功能的变化而引起的疾病。 5、电泳:蛋白质在溶液中解离成带电颗粒,在电场中可以向电荷相反的电极移动,这种现象称为电泳。 6、变构效应:又称变构效应,是指寡聚蛋白与配基结合,改变蛋白质构象,导致蛋白质生物活性改变的现象. 7、盐析:在蛋白质溶液中加入高浓度的中性盐,可有效地破坏蛋白质颗粒的水化层。同时又中和了蛋白质表面的电荷,从而使蛋白质颗粒集聚而生成沉淀,这种现象称为盐析(salting out )。 8、分段盐析:不同蛋白质析出时需要的盐浓度不同,调节盐浓度以使混合蛋白质溶液中的几种蛋白质分段析出,这种方法称为分段盐析。 9、盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 二、填空 1、不同蛋白质的含(N )量颇为相近,平均含量为(16)%。 2、在蛋白质分子中,一个氨基酸的α碳原子上的(羧基)与另一个氨基酸α碳原子上的(氨基)脱去一分子水形成的键叫(肽键),它是蛋白质分子中的基本结构键。 3、蛋白质颗粒表面的(水化层)和(电荷)是蛋白质亲水胶体稳定的两个因素。 4、赖氨酸带三个可解离基团,它们Pk 分别为2.18,8.95,10.53,其等电点为(9.74)。 <碱性氨基酸;PI= ()R k p k p '+'22 1> 5、氨基酸的结构通式为( )。 6、组成蛋白质分子的碱性氨基酸有(赖氨酸)、(精氨酸)和(组氨酸)。酸性氨基酸有(天冬氨酸)和(谷氨酸)。 7、氨基酸在等电点时,主要以(兼性或偶极)离子形式存在,在pH>pI 的溶液中,大部分以(阴)离子形式存在,在pH

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

豆粕蛋白溶解度和尿酶值

大豆蛋白是家禽日粮中最为重要的,也是质量最好的植物蛋白饲料,除蛋氨酸略缺乏外,其它各种氨基酸都接近理想平衡。如同其它蛋白质饲料一样,豆粕质量受各种营养素含量的影响,如能量、蛋白质、纤维素和氨基酸等,例如普通豆粕与去皮豆粕间在以上指标方面就有很大的差别(见表1)。去皮豆粕由于纤维素含量低而有较高的能量水平。但是蛋白质水平高的豆粕不一定保证低纤维和高能量水平,例如某些未去皮中国豆粕的蛋白质含量可高达48%甚至50%,而仍然含有6%至7%的纤维素。因此高蛋白水平豆粕的代谢能水平仍然可能因纤维素含量高而下降,尚未见到这些高蛋白质“高纤维素”豆粕的代谢能测定值。但一般可以估计:在去皮豆粕纤维素正常含量3.5%以上时,每增加1%纤维素使每公斤猪饲料的代谢能下降32至42大卡,而每公斤禽饲料则下降将近60大卡。另一方面,豆粕质量在很大程度上受加工方面问题的影响而使它的氨基酸含量和氨基酸消化率以致于能量受到影响。本文主要讨论由加工不足或加热过度所引起的豆粕质量变异以及对生产性能的影响,同时介绍目前可行的鉴定豆粕质量的方法—尿酶活性(pH变化值)与0.2%氢氧化钾蛋白溶解度,并加以评估。 一、生大豆——抗胰蛋白酶与尿酶 众所周知,豆粕必须经过适度热加工以破坏大豆中所含的数种抗营养物质。其中对畜禽影响最大者为抗胰蛋白酶(Tripsin Inhibitor),有幸的是这些抗营养因子在加热后都会遭到破坏。适度加热是豆粕加工的关键,因为加热不足或过度都会降低豆粕的营养价值。 抗胰蛋白酶是生大豆中的一种蛋白酶抑制物,它在消化道内能使胰蛋白酶和凝乳酶失活,从而降低蛋白质的消化率,并引起胰脏代偿性增大,由于胰酶富含硫氨基酸,因此,大量分泌消化酶可能加剧大豆蛋白含硫氨基酸的缺乏现象。抗胰蛋白酶的测定方法很耗时也很昂贵,因此需要寻找一种简易而快速的测定方法。 生大豆中含不等量尿酶(Urease)。尿酶本身无营养意义,但它与抗胰蛋白酶的含量接近,而且遇热变性失活的程度与抗胰蛋白酶相似(图1),因此可用尿酶活性作为豆粕加工适宜度的间接估测指标。 抗胰蛋白和尿酶(UA)活性不仅受到加热的温度影响,而且还受加热时间及水分含量的影响(图2,图3)。由图可见,在水分含量很低时,抗胰蛋白酶和尿酶活性的破坏程度不大。

大豆蛋白质含量是怎样的

大豆蛋白质含量是怎样的 在我们的生活中总是会吃到一些豆制品,比如我们平时作为早餐首先的豆浆以及豆腐,他们的营养价值都是非常丰富的,经常食用还对我们的身体有很多的好处,但是我们对大豆的营养价值不是特别的了解,为了能让我更好吸收大豆的营养价值,下面我们一起了解下大豆蛋白质含量是怎样的。 大豆蛋白质含量 大豆是蛋白质含量最高、氨基酸组成合理的农作物。大豆蛋白质含量范围在35-50%之间,平均蛋白含量在40%左右,其蛋白质组成分别为63%球蛋白,12%白蛋白,3%醇溶蛋白和7%谷蛋白。 黄豆的功效与作用 1、增强机体免疫功能:大豆含有丰富的蛋白质,含有多种人体必需的氨基酸,可以提高人体免疫力; 2、防止血管硬化:黄豆中的卵磷脂可除掉附在血管壁上的胆固醇,防止血管硬化,预防心血管疾病,保护心脏。大豆中的卵磷脂还具有防止肝脏内积存过多脂肪的作用,从而有效地防治因肥胖而引起的脂肪肝; 3、通导大便:大豆中含有的可溶性纤维,既可通便,又能降低胆固醇含量; 4、降糖、降脂:大豆中含有一种抑制胰酶的物质,对糖尿病有治疗作用。大豆所含的皂甙有明显的降血脂作用,同时,可抑制体重增加;

5、大豆异黄酮是一种结构与雌激素相似,具有雌激素活性的植物性雌激素,能够减轻女性更年期综合征症状、延迟女性细胞衰老、使皮肤保持弹性、养颜、减少骨丢失,促进骨生成、降血脂等。 现代医学研究认为,黄豆不含胆固醇,并可以降低人体胆固醇,减少动脉硬化的发生,预防心脏病,黄豆中还含有一种抑胰酶的物质,它对糖尿病有一定的疗效。因此,黄豆被营养学家推荐为防治冠心病,高血压动脉粥样硬化等疾病的理想保健品。黄豆中所含的软磷脂的大脑细胞组成的重要部分,常吃黄豆对增加和改善大脑技能有重要的效能。 祖国医学认为,服食黄豆可另人长肌肤,益颜色,填精髓,增力气,补虚开胃,是适宜虚弱者使用的补益食品,具有益气养血。健脾宽中,健身宁心,下利大肠,润燥消水的功效。 食用功效 大豆味甘、性平,入脾、大肠经;具有健脾宽中,润燥消水、清热解毒、益气的功效;主治疳积泻痢、腹胀羸瘦、妊娠中毒、疮痈肿毒、外伤出血等。黄豆还能抗菌消炎,对咽炎、结膜炎、口腔炎、菌痢、肠炎有效。 贴士 1、应用于手足抽筋疼痛:黄豆100克,细米糠60克,加水煎至黄豆熟烂,一天分2次吃; 2、应用于烧烫伤:治疗期间每天用黄豆适量煮汁服,可加快治愈,愈后无疤痕。 3、美国从事转基因农产品与人体健康研究的人士发现,吃豆

大豆蛋白质含量的测定

大豆蛋白质含量的测定实验方案 1 原理 试样在催化剂存在下用硫酸消解,反应产物用碱中和后蒸馏。释放出的氨被硼酸溶液吸收,吸收液用硫酸溶液滴定,测定氮含量并计算粗蛋白质含量。 2试剂 除参考物质外,只使用经确认无氮的分析纯试剂,试验用水为蒸馏水或去离子水或同等纯度水. 警告:2.4、2.8、2.ll和 2.12中提到的试剂应谨慎使用。 2.1 硫酸钾 (K 2SO 4 )。 2.2 五水硫酸铜 (CuSO 4·5H 2 0)。 2.3 二氧化钛 (TiO 2 )。 2.4 硫酸(H 2SO 4 ):c(H 2 SO 4 )=18mol/L,ρ20(H 2 SO 4 )=1.84g/mL。 2.5 石蜡油。 2.6 N-乙酰苯胺 (C 8H 9 NO):熔点114℃,氮含量10.36g/100g。 2.7 色氨酸(C 11H 12 N 2 2 ):熔点282℃,氮含量13.72g/100g。 2.8 五氧化二磷(P 20 5 )。 2.9 硼酸:水溶液 ,ρ20(H 3BO 3 )=40g/L,或所使用仪器推荐的浓度。 2.10 指示剂:按照所使用仪器的推荐,加入一定体积的溶液A(2.10.1)和溶液B(2.10.2 )(例如:5体积溶液A和1体积溶液B)。 注1:有可能准各使用的硼酸溶液中含有指示剂(2.9+2.10)。 注2:溶液A和溶液B的比例可根据仪器进行调整。 也可以使用pH电极进行电位滴定,PH电极需要每天校准。 5.10.1溶液A:200mg溴甲酚绿(C 21H 14 Br 4 O 5 S)溶于体积分数为95%的乙醇 (C 2H 5 OH),配制成100mL溶液。 5.10.2溶液B:200mg甲基红(C 15 H 15 N 3 O 2 )溶于体积分数为95%的乙醇(C 2 H 5 OH), 配制成100mL溶液。 5.11 氢氧化钠水溶液(NaOH):质量分数33%或40%,含氮量少于或等于

蛋白质的理化性质(一)

蛋白质的理化性质(一) 关键词:蛋白质蛋白质是由氨基酸组成的大分子化合物,其理化性质一部分与氨基酸相似,如两性电离、等电点、呈色反应、成盐反应等,也有一部分又不同于氨基酸,如高分子量、胶体性、变性等。 一、蛋白质的胶体性质 蛋白质分子量颇大,介于一万到百万之间,故其分子的大小已达到胶粒1~100nm范围之内。球状蛋白质的表面多亲水基团,具有强烈地吸引水分子作用,使蛋白质分子表面常为多层水分子所包围,称水化膜,从而阻止蛋白质颗粒的相互聚集。 与低分子物质比较,蛋白质分子扩散速度慢,不易透过半透膜,粘度大,在分离提纯蛋白质过程中,我们可利用蛋白质的这一性质,将混有小分子杂质的蛋白质溶液放于半透膜制成的囊内,置于流动水或适宜的缓冲液中,小分子杂质皆易从囊中透出,保留了比较纯化的囊内蛋白质,这种方法称为透析(dialysis)。 蛋白质大分子溶液在一定溶剂中超速离心时可发生沉降。沉降速度与向心加速度之比值即为蛋白质的沉降系数S。校正溶剂为水,温度20℃时的沉降系数S20·w可按下式计算:式中X 为沉降界面至转轴中心的距离,W为转子角速度,W2X为向心加速度,dX/dt为沉降速度。单位用S,即Svedberg单位,为1×1013秒,分子愈大,沉降系数愈高,故可根据沉降系数来分离和检定蛋白质。 二、蛋白质的两性电离和等电点 蛋白质是由氨基酸组成的,其分子中除两端的游离氨基和羧基外,侧链中尚有一些解离基,如谷氨酸、天门冬氨酸残基中的γ和β-羧基,赖氨酸残基中的ε-氨基,精氨酸残基的胍基和组氨酸的咪唑基。作为带电颗粒它可以在电场中移动,移动方向取决于蛋白质分子所带的电荷。蛋白质颗粒在溶液中所带的电荷,既取决于其分子组成中碱性和酸性氨基酸的含量,又受所处溶液的pH影响。当蛋白质溶液处于某一pH时,蛋白质游离成正、负离子的趋势相等,即成为兼性离子(zwitterion,净电荷为O),此时溶液的pH值称为蛋白质的等电点(isoelectricpoint,简写pI)。处于等电点的蛋白质颗粒,在电场中并不移动。蛋白质溶液的pH 大于等电点,该蛋白质颗粒带负电荷,反之则带正电荷。各种蛋白质分子由于所含的碱性氨基酸和酸性氨基酸的数目不同,因而有各自的等电点。 凡碱性氨基酸含量较多的蛋白质,等电点就偏碱性,如组蛋白、精蛋白等。反之,凡酸性氨基酸含量较多的蛋白质,等电点就偏酸性,人体体液中许多蛋白质的等电点在pH5.0左右,所以在体液中以负离子形式存在。 三、蛋白质的变性 天然蛋白质的严密结构在某些物理或化学因素作用下,其特定的空间结构被破坏,从而导致理化性质改变和生物学活性的丧失,如酶失去催化活力,激素丧失活性称之为蛋白质的变性作用(denaturation)。变性蛋白质只有空间构象的破坏,一般认为蛋白质变性本质是次级键,二硫键的破坏,并不涉及一级结构的变化。 变性蛋白质和天然蛋白质最明显的区别是溶解度降低,同时蛋白质的粘度增加,结晶性破坏,生物学活性丧失,易被蛋白酶分解。 引起蛋白质变性的原因可分为物理和化学因素两类。物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射、超声波的作用等;化学因素有强酸、强碱、尿素、重金属盐、十二烷基磺酸钠(SDS)等。在临床医学上,变性因素常被应用于消毒及灭菌。反之,注意防止蛋白质变性就能有效地保存蛋白质制剂。 变性并非是不可逆的变化,当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能,变性的可逆变化称为复性。例如,前述的核糖核酸酶中四对二硫键及其氢键。在巯基乙醇和8M尿素作用下,发生变性,失去生物学活性,变性后如

有机溶剂蛋白质沉淀

蛋白质纯化方法 蛋白质浓缩有多种方法,有盐析,超滤,离子交换,有机溶剂沉淀等方法。 有机溶剂沉淀法:有机溶剂能降低溶液的电解常数,从而增加蛋白质分子上不同电荷的引力,导致溶解度的降低;另外,有机溶剂与水的作用,能破坏蛋白质的水化膜,故蛋白质在一定浓度的有机溶剂中的溶解度差异而分离的方法,称“有机溶剂分段沉淀法”,它常用于蛋白质或酶的提纯。使用的有机溶剂多为乙醇和丙酮。高浓度有机溶剂易引起蛋白质变性失活,操作必须在低温下进行,并在加入有机溶剂时注意搅拌均匀以避免局部浓度过大。由此法析出的沉淀一般比盐析容易过滤或离心沉降,分离后的蛋白质沉淀,应立即用水或缓冲液溶解,以降低有机溶剂浓度。操作时的pH值大多数控制在待沉淀蛋白质的等电点附近,有机溶剂在中性盐存在时能增加蛋白质的溶解度,减少变性,提高分离的效果,在有机溶剂中添加中性盐的浓度为0.05mol/L左右,中性盐过多不仅耗费有机溶剂,可能导致沉淀不好。沉淀的条件一经确定,就必须严格控制,才能得到可重复的结果。医学教育`网搜集整理有机溶剂浓度通常以有机溶剂和水容积比或用百分浓度表示。有机溶剂沉淀蛋白质分辨力比盐析法好,溶剂易除去;缺点是易使酶和具有活性的蛋白质变性。故操作时要求条件比盐析严格。对于某些敏感的酶和蛋白质,使用有机溶剂沉淀尤其要小心。 可与水混合的有机溶剂,如酒精、甲醇、丙酮等,对水的亲和力很大,能破坏蛋白质颗粒的水化膜,在等电点时使蛋白质沉淀。在常温下,有机溶剂沉淀蛋白质往往引起变性。例如酒精消毒灭菌就是如此,但若在低温条件下,则变性进行较缓慢,可用于分离制备各种血浆蛋白质。

蛋白质浓缩技术是免疫学中常用的手段,现介绍几种常用的浓缩技术。 (一)透析袋浓缩法 利用透析袋浓缩蛋白质溶液是应用最广的一种。将要浓缩的蛋白溶液放入透析袋(无透析袋可用玻璃纸代替),结扎,把高分子(6 000-12 000)聚合物如聚乙二醇(碳蜡)、聚乙烯吡咯、烷酮等或蔗糖撒在透析袋外即可。也可将吸水剂配成30%-40%浓度的溶液,将装有蛋白液的透析袋放入即可。吸水剂用过后,可放入温箱中烘干或自然干燥后,仍可再用。 (二)冷冻干燥浓缩法 这是浓缩蛋白质的一种较好的办法,它既使蛋白质不易变性,又保持蛋白质中固有的成分。它是在冰冻状态下直接升华去除水分。具体做法是将蛋白液在低温下冰冻,然后移置干燥器内(干燥器内装有干燥剂,如NaOH、CaCl2和硅胶等)。密闭,迅速抽空,并维持在抽空状态。数小时后即可获得含有蛋白的干燥粉末。干燥后的蛋白质保存方便,应用时可配成任意浓度使用。也可采用冻干机进行冷冻干燥。 (三)吹干浓缩法 将蛋白溶液装入透析袋内,放在电风扇下吹。此法简单,但速度慢,且温度不能过高,最好不要超过15℃。 (四)超滤膜浓缩法 此法是利用微孔纤维素膜通过高压将水分滤出,而蛋白质存留于膜上达到浓缩目的。有两种方法进行浓缩:一种是用醋酸纤维素膜装入高压过滤器内,在不断搅拌之下过滤;另一种是将蛋白液装入透析袋内置于真空干燥器的通风口上,负压抽气,而使袋内液体渗出。 (五)凝胶浓缩法 选用孔径较小的凝胶,如SephadexG25或G50,将凝胶直接加入蛋白溶液中。根据干胶的吸水量和蛋白液需浓缩的倍数而称取所需的干胶量。放入冰箱内,凝胶粒子吸水后,通过离心除去。 (六)浓缩胶浓缩法 浓缩胶是一种高分子网状结构的有机聚合物,具有很强的吸水性能。每克干胶可吸水120ml~150ml。它能吸收低分子量的物质,如水、葡萄糖、蔗糖、无机盐等,适宜浓缩10 000分子量以上的生物大分子物质。浓缩后,蛋白质的回收率可达80%~90%。比浓缩胶应用方便,直接加入被浓缩的溶液中即可。必须注意,浓缩溶液的pH值应大于被浓缩物质的等电点,否则在浓缩胶表面产生阳离子交换,影响浓缩物质的回收率。 选择材料及预处理 以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、硷、高温,剧烈机械作用而导致所提物质生物活性的丧失。蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。

大豆蛋白制品标准

Q/HJS 有限责任公司发布

前言 本标准按照GB/T1.1《标准化工作导则第1部分:标准的结构和编写规则》编写。本标准由提出并起草。 本标准起草人: 本标准于2014年9月29日首次发布。

大豆蛋白制品 1 范围 本标准规定了大豆蛋白制品的产品要求、试验方法、检验规则、标志、标签、包装、运输、贮存等。 本标准适用于以大豆蛋白粉、谷朊粉、食用大豆粕、玉米粉、小麦粉为原料,辅以大豆油、食用盐、谷氨酸钠(味精)、酱油、白砂糖、辣椒红、香辛调味料、食用香精、5'-呈味核苷酸二钠、乙基麦芽酚、山梨酸钾,经混合、挤压膨化、成型、油炸、脱水、卤制或滚揉调味、包装、灭菌、外包装工艺加工而成的具有一定组织状态(或纤维结构)的大豆蛋白制品。 2 规范性引用文件 下列文件中对于本文件的应用是必不可少的。凡是注明日期的引用文件,仅所注日期的版本适用于本文件,凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本标准。 GB/T 191 包装储运图示标志 GB 317 白砂糖 GB 1355 小麦粉 GB 1535 大豆油 GB 2711 非发酵豆制品及面筋卫生标准 GB 2761 食品安全国家标准食品中真菌毒素限量 GB 2762 食品安全国家标准食品中污染物限量 GB 2763 食品安全国家标准食品中农药最大残留限量 GB 4789.2 食品安全国家标准食品微生物学检验菌落总数测定 GB 4789.3 食品安全国家标准食品微生物学检验大肠菌群计数 GB 4789.4 食品安全国家标准食品微生物学检验沙门氏菌检验 GB 4789.5 食品安全国家标准食品微生物学检验志贺氏菌检验 GB 4789.10 食品安全国家标准食品微生物学检验金黄色葡萄球菌检验 GB 4789.15 食品安全国家标准食品微生物学检验霉菌和酵母计数 GB 5009.3 食品安全国家标准食品中水分的测定 GB 5009.4 食品安全国家标准食品中灰分的测定

相关文档