文档库 最新最全的文档下载
当前位置:文档库 › CD4015 CMOS 双4位串入、并出移位寄存器

CD4015 CMOS 双4位串入、并出移位寄存器

CD4015  CMOS 双4位串入、并出移位寄存器
CD4015  CMOS 双4位串入、并出移位寄存器

Data sheet acquired from Harris Semiconductor

SCHS025D ? Revised October 2003

The CD4015B-series types are supplied in

16-lead hermetic dual-in-line ceramic

packages (F3A suffix), 16-lead dual-in-line

plastic package (E suffix), 16-lead

small-outline packages (M, M96, MT, and NSR

suffixes), and 16-lead thin shrink small-outline

packages (PW and PWR suffixes).

Copyright 2003, Texas Instruments Incorporated

PACKAGING INFORMATION Orderable Device

Status (1)Package Type Package Drawing Pins Package Qty Eco Plan (2)Lead/Ball Finish MSL Peak Temp (3)CD4015BE

ACTIVE PDIP N 1625Pb-Free (RoHS)CU NIPDAU Level-NC-NC-NC CD4015BF

ACTIVE CDIP J 161None Call TI Level-NC-NC-NC CD4015BF3A

ACTIVE CDIP J 161None Call TI Level-NC-NC-NC CD4015BM

ACTIVE SOIC D 1640Pb-Free (RoHS)CU NIPDAU Level-2-260C-1YEAR/Level-1-235C-UNLIM CD4015BM96

ACTIVE SOIC D 162500Pb-Free (RoHS)CU NIPDAU Level-2-260C-1YEAR/Level-1-235C-UNLIM CD4015BMT

ACTIVE SOIC D 16250Pb-Free (RoHS)CU NIPDAU Level-2-260C-1YEAR/Level-1-235C-UNLIM CD4015BNSR

ACTIVE SO NS 162000Pb-Free (RoHS)CU NIPDAU Level-2-260C-1YEAR/Level-1-235C-UNLIM CD4015BPW

ACTIVE TSSOP PW 1690Pb-Free (RoHS)CU NIPDAU Level-1-250C-UNLIM CD4015BPWR

ACTIVE TSSOP PW 162000Pb-Free (RoHS)CU NIPDAU Level-1-250C-UNLIM (1)The marketing status values are defined as follows:

ACTIVE:Product device recommended for new designs.

LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.

NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.

PREVIEW:Device has been announced but is not in production.Samples may or may not be available.

OBSOLETE:TI has discontinued the production of the device.

(2)Eco Plan -May not be currently available -please check https://www.wendangku.net/doc/0d17635142.html,/productcontent for the latest availability information and additional product content details.

None:Not yet available Lead (Pb-Free).

Pb-Free (RoHS):TI's terms "Lead-Free"or "Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high

temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS &no Sb/Br):TI defines "Green"to mean "Pb-Free"and in addition,uses package materials that do not contain halogens,including bromine (Br)or antimony (Sb)above 0.1%of total product weight.

(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications,and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

https://www.wendangku.net/doc/0d17635142.html, 28-Feb-2005Addendum-Page 1

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. T o minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers https://www.wendangku.net/doc/0d17635142.html, Audio https://www.wendangku.net/doc/0d17635142.html,/audio

Data Converters https://www.wendangku.net/doc/0d17635142.html, Automotive https://www.wendangku.net/doc/0d17635142.html,/automotive

DSP https://www.wendangku.net/doc/0d17635142.html, Broadband https://www.wendangku.net/doc/0d17635142.html,/broadband

Interface https://www.wendangku.net/doc/0d17635142.html, Digital Control https://www.wendangku.net/doc/0d17635142.html,/digitalcontrol

Logic https://www.wendangku.net/doc/0d17635142.html, Military https://www.wendangku.net/doc/0d17635142.html,/military

Power Mgmt https://www.wendangku.net/doc/0d17635142.html, Optical Networking https://www.wendangku.net/doc/0d17635142.html,/opticalnetwork Microcontrollers https://www.wendangku.net/doc/0d17635142.html, Security https://www.wendangku.net/doc/0d17635142.html,/security

Telephony https://www.wendangku.net/doc/0d17635142.html,/telephony

Video & Imaging https://www.wendangku.net/doc/0d17635142.html,/video

Wireless https://www.wendangku.net/doc/0d17635142.html,/wireless

Mailing Address:Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2005, Texas Instruments Incorporated

移位寄存器及其应用(精)

移位寄存器及其应用 一、实验目的 1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。 2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。 二、原理说明 1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。按代码的移位方向可分为左移、右移和可逆移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同又可分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图8-3-3-1所示。 其中 D0、D1、D2、D3为并行输入端;Q0、Q1、Q2、Q3为并行输出端;S R为右移串行输入 C为直接无条件清零端; 端,S L为左移串行输入端;S1、S0为操作模式控制端;R CP为时钟脉冲输入端。 CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q0→Q3),左移(方向由Q3→Q0),保持及清零。 S1、S0和R C端的控制作用如表8-3-3-1。 图8-3-3-1 CC40194的逻辑符号及引脚功能 表8-3-3-1 CC40194功能表

2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验研究移位寄存器用作环形计数器和数据的串、并行转换。 (1)环形计数器 把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位, 如图8-3-3-2所示,把输出端 Q3和右移串行输入端S R 相连接,设初始状态Q0Q1Q2Q3=1000,则在时钟脉冲作用下Q0Q1Q2Q3将依次变为0100→0010→0001→1000→……,如表10-2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。图8-3-3-2 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。其状态表如表8-3-3-2所示。 表8-3-3-2 环形计数器状态表 图 8-3-3-2 环形计数器 如果将输出Q O与左移串行输入端S L相连接,即可达左移循环移位。 (2)实现数据串、并行转换 ①串行/并行转换器 串行/并行转换是指串行输入的数码,经转换电路之后变换成并行输出。 图8-3-3-3是用二片CC40194(74LS194)四位双向移位寄存器组成的七位串/并行数据转换电路。

移位寄存器

双向移位寄存器的设计 一、实验目的 利用数字电路设计中移位寄存器的相关知识,通过课程设计更加深入的了解移位寄存器的功能。在计算机中常要求寄存器有移位功能。如在进行乘法时 要求将部分积右移在将并行传送的数转换成串行数时也需要移位。因此 移位寄存器的设计是必要的。 二、硬件要求 主芯片Altera EPM7128SLC84-15,时钟信号,拨码开关。 三、实验内容 设计一个双向移位寄存器 四、实验原理 用VHDL语言描述任意分频数的分频器,并实现占空比任意设置.每当系统时钟上升沿到来时,计数器就加计数一位(可任意设置为N位),当计数值到达预定值时就对分频时钟翻转.这样就会得到一个连续的时钟脉冲. 当移位信号到来时,移位寄存器就对存储的二进制进行移位操作.移位寄存方式可自行设置(可左移,右移,一位移,多位移位寄存)。 五、实验源程序 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity tdirreg is port (clk: in std_logic; din: in std_logic; dir : in std_logic; op_l: out std_logic; op_r: out std_logic); end tdirreg; architecture a of tdirreg is signal q: std_logic_vector(7 downto 0); begin process(clk) begin if clk'event and clk= '1'then if dir = '0' then q(0) <= din; for i in 1 to 7 loop q(i) <= q(i-1); end loop ; else q(7) <= din; for i in 7 downto 1 loop q(i-1) <=q(i); end loop ;

CD4015 CMOS 双4位串入、并出移位寄存器

Data sheet acquired from Harris Semiconductor SCHS025D ? Revised October 2003 The CD4015B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic package (E suffix), 16-lead small-outline packages (M, M96, MT, and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes). Copyright 2003, Texas Instruments Incorporated

PACKAGING INFORMATION Orderable Device Status (1)Package Type Package Drawing Pins Package Qty Eco Plan (2)Lead/Ball Finish MSL Peak Temp (3)CD4015BE ACTIVE PDIP N 1625Pb-Free (RoHS)CU NIPDAU Level-NC-NC-NC CD4015BF ACTIVE CDIP J 161None Call TI Level-NC-NC-NC CD4015BF3A ACTIVE CDIP J 161None Call TI Level-NC-NC-NC CD4015BM ACTIVE SOIC D 1640Pb-Free (RoHS)CU NIPDAU Level-2-260C-1YEAR/Level-1-235C-UNLIM CD4015BM96 ACTIVE SOIC D 162500Pb-Free (RoHS)CU NIPDAU Level-2-260C-1YEAR/Level-1-235C-UNLIM CD4015BMT ACTIVE SOIC D 16250Pb-Free (RoHS)CU NIPDAU Level-2-260C-1YEAR/Level-1-235C-UNLIM CD4015BNSR ACTIVE SO NS 162000Pb-Free (RoHS)CU NIPDAU Level-2-260C-1YEAR/Level-1-235C-UNLIM CD4015BPW ACTIVE TSSOP PW 1690Pb-Free (RoHS)CU NIPDAU Level-1-250C-UNLIM CD4015BPWR ACTIVE TSSOP PW 162000Pb-Free (RoHS)CU NIPDAU Level-1-250C-UNLIM (1)The marketing status values are defined as follows: ACTIVE:Product device recommended for new designs. LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect. NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design. PREVIEW:Device has been announced but is not in production.Samples may or may not be available. OBSOLETE:TI has discontinued the production of the device. (2)Eco Plan -May not be currently available -please check https://www.wendangku.net/doc/0d17635142.html,/productcontent for the latest availability information and additional product content details. None:Not yet available Lead (Pb-Free). Pb-Free (RoHS):TI's terms "Lead-Free"or "Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS &no Sb/Br):TI defines "Green"to mean "Pb-Free"and in addition,uses package materials that do not contain halogens,including bromine (Br)or antimony (Sb)above 0.1%of total product weight. (3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications,and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis. PACKAGE OPTION ADDENDUM https://www.wendangku.net/doc/0d17635142.html, 28-Feb-2005Addendum-Page 1

74LS194左右移位寄存器

74LS194左右移位寄存器 一、移位寄存器 在数字电路中,用来存放二进制数据或代码的电路称为寄存器。按功能 可分为:基本寄存器和移位寄存器。 移位寄存器中的数据可以在移位脉冲作用下一次逐位右移或左移,数据既可以并行输入、并行输出,也可以串行输入、串行输出,还可以并行输入、串行输出,串行输入、并行输出,十分灵活,用途也很广。 二、74LS194双向移位寄存器 目前常用的集成移位寄存器种类很多,其中74LS194为四位双向移存器。 图一 74LS194移位寄存器的引脚图 以上为74LS194的引脚图,其中 D 0~D 3 :并行输入端; Q ~Q 3 :并行输出端; S 0、S 1 :操作模式控制端;:为直接无条件清零端; S R :右移串行输入端 S L :左移串行输入端; CP:时钟脉冲输入端;

表一 74LS194的模式控制和状态输出表 三、移位寄存器型计数器 利用移位寄存器可构成环形和扭环形计数器。可先使S 0=S 1 =1,并行输入预 置数值,再改变S 0和S 1 的电平,实现左移或右移状态。若把移位寄存器的输出 以一定方式反馈到串行输入D SR 端或D SL 端,就可以构成移位寄存器型计数器。 例如,将74LS194的Q 3接到D SR 端,可得到模4的环形计数器(不可自启动); 将Q 3端通过一个非门接到D SR 端,则可得到模8的扭环形计数器(不可自启动)。用一片74LS194及门电路构成一个课实现7分频或8分频器。7分频器的分 频信号由Q 2输出,同时将Q 2 、Q 3 输出通过与非门后接入D SR 端,S S 1 =10。8分频 器的分频信号由Q 3取非后输出,同时将该信号送入D SR 端,S S 1 =10。

32位移位寄存器

实验四 一、实验名称 32位并进/并出移位寄存器设计 二、实验原理 用一个8位移位寄存器,再增加一些电路,如4个8位锁存器等,设计成为一个能为32位二进制数进行不同方式移位的移位寄存器。 三、实验步骤 1、建立一个工程项目,设置路径,项目名和顶层实体名一致; 2、设计一个8位移位寄存器电路; 3、设计一个8位锁存器电路; 4、运用元件调用声明语句和元件例化语句完成顶层设计。 四、实验程序 1、八位移位寄存器程序 LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; ENTITY jicun IS PORT ( CLK,CO: IN STD_LOGIC; --时钟和进位输入 MD : IN STD_LOGIC_VECTOR(2 DOWNTO 0); --移位模式控制字 D : IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- 待加载移位的数据 QB : OUT STD_LOGIC_VECTOR(7 DOWNTO 0); --移位数据输出 CN : OUT STD_LOGIC); --- 进位输出 END jicun; ARCHITECTURE behav OF jicun IS SIGNAL REG : STD_LOGIC_VECTOR(7 DOWNTO 0); SIGNAL CY : STD_LOGIC; BEGIN

PROCESS(CLK,CO,MD) BEGIN IF CLK'EVENT AND CLK='1' THEN CASE MD IS WHEN "001"=> REG(0)<=CO; ---带进位循环左移 REG(7 DOWNTO 1)<= REG(6 DOWNTO 0);CY<=REG(7); WHEN "010" => REG(0)<=REG(7); ---自循环左移 REG(7 DOWNTO 1)<= REG(6 DOWNTO 0); WHEN "011"=>REG(7)<=REG(0); ---自循环右移 REG(6 DOWNTO 0)<=REG(7 DOWNTO 1); WHEN "100" =>REG(7)<=CO; ---带进位循环右移 REG(6 DOWNTO 0)<=REG(7 DOWNTO 1);CY<=REG(0); WHEN "101" =>REG(7 DOWNTO 0)<=D(7 DOWNTO 0); --加载待移数 WHEN OTHERS=>REG<=REG;CY<=CY;--保持 END CASE; END IF; END PROCESS; QB(7 DOWNTO 0)<=REG(7 DOWNTO 0);CN<=CY; END behav; 2、锁存器程序 library ieee ; use ieee.std_logic_1164.all ; entity suocun is port(d : in std_logic_vector(7 downto 0) ; q: out std_logic_vector(7 downto 0); clk : in std_logic ); end suocun ; architecture one of suocun is signal q1: std_logic_vector(7 downto 0);

移位寄存器 第三章答案

第三章习题参考答案 1.画出以1)(2 4 6 +++=x x x x f 为联接多项式的线性移位寄存器逻辑框图,及其对应的状态图。 解:由1)(2 46+++=x x x x f ,得反馈函数为531621),,,(x x x x x x f ++=Λ,故 (1)逻辑框图: (2)状态图: 状态圈-1: 状态圈-2: 状态圈-3: 状态圈-4: 状态圈-5: 状态圈-6: 状态圈-7: 状态圈-8:

状态圈-9: 状态圈-10: 状态圈-11: 状态圈-12: 2.已知图3-2所示的7级线性反馈移位寄存器: 图3-2 (1)绘出该移位寄存器的线性递推式,联接多项式及特征多项式。 (2)给出状态转移矩阵。 (3)设初态为(1 1 1 1 1 1 1),给出输出序列a 。 解:(1)由逻辑框图得,递推式为: k k k k a a a a ++=+++357 ()0≥k 。 联接多项式为:7 4 2 1)(x x x x f +++=。 特征多项式为:7531)(~ x x x x f +++=

(2)状态转移矩阵:? ? ???? ? ?? ? ? ??0100000 101000000010001000100 000001000000011000000。 (3)输出序列:)111111111(ΛΛ=- a 。 3.设5级线性反馈移位寄存器的联接多项式为1)(2 5 ++=x x x f ,初态为(10101)。求输出序列a 。 解:由联接多项式得,反馈函数为:41521),,,(x x x x x f +=Λ。故以)10101(为初态的状态转移图为: 10101 01010001010001000001100000100000100100100100110100110100110100110100111100111100111101111101111001110001110001110000110010110110111110101110101110101110101→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ 由此可得,输出序列为:=a 44444443444444421一个周期 0110100100000011111001010111011…。 4.证明:n 级线性反馈移位寄存器的状态转移变换是n 维线性空间n F 2上的线性变换。 证明:设f T 为n 级线性移位寄存器的状态转移变换,对n F 2,∈?βα,令),,,(110-=n a a a Λα, ),,,(110-=n b b b Λβ,有: ),,,(),,,()(121110∑=--==n i i n i n f f a c a a a a a T T ΛΛα, ),,,(),,,()(1 21110∑=--==n i i n i n f f b c b b b b b T T ΛΛβ。 ) ()() ,,,(),,,() )(,,,() ,,,()(1 211 2112211111100βαβαf f i n n i i i n n i i n i i n i n i n n f f T T b c b b a c a a b a c b a b a b a b a b a T T +=+=+++=+++=+-=-==----∑∑∑ΛΛΛΛ 对 2F k ∈?, ))((),,,(),,,()(1 21110ααf i n n i i n f f T k a c k ka ka ka ka ka T k T ===-=-∑ΛΛ。 故n 级线性反馈移位寄存器的状态转移变换是n 为线性空间n F 2上的线性变换。

实验五移位寄存器及其应用

实验五移位寄存器及其应用 一、实验目的 1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。 2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。 二、实验原理 1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图10-1所示。 图10-1 CC40194的逻辑符号及引脚功能 其中 D 0、D 1 、D 2 、D 3 为并行输入端;Q 、Q 1 、Q 2 、Q 3 为并行输出端;S R 为右 移串行输入端,S L 为左移串行输入端;S 1 、S 为操作模式控制端;R C为直接无 条件清零端;CP为时钟脉冲输入端。 CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q 0→Q 3 ),左移 (方向由Q 3→Q ),保持及清零。 S 1、S 和R C端的控制作用如表10-1。

2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验研究移位寄存器用作环形计数器和数据的串、并行转换。 (1)环形计数器 把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位, 如图10-2所示,把输出端 Q 3和右移串行输入端S R 相连接,设初始状态Q Q 1 Q 2 Q 3 =1000,则在时钟脉冲作用下Q 0Q 1 Q 2 Q 3 将依次变为0100→0010→0001→1000 →……,如表10-2所示,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。图10-2 电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。 图 10-2环形计数器 如果将输出Q O 与左移串行输入端S L 相连接,即可达左移循环移位。 (2)实现数据串、并行转换

VHDL实验代码位移位寄存器

VHDL实验代码:位移位寄存器 --实验6.4 --8位移位寄存器 LIBRARY ieee; USE ieee.std_logic_1164.all; ENTITY shifter IS PORT ( data_in : IN STD_LOGIC_VECTOR(7 DOWNTO 0); --输入的数据 n : IN STD_LOGIC_VECTOR(2 DOWNTO 0); --移位的数量 dir : IN STD_LOGIC; --移动的方向0:左1:右 kind : IN STD_LOGIC_VECTOR(1 DOWNTO 0); --移动类型00:算术移01:逻辑移10:循环移 clock : IN BIT; --手动时钟PULSE data_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0) --移位的结果 ); END shifter; ARCHITECTURE behav of shifter IS BEGIN PROCESS (data_in, n, dir, kind) VARIABLE x,y : STD_LOGIC_VECTOR(7 DOWNTO 0); VARIABLE ctrl0,ctrl1,ctrl2 : STD_LOGIC_VECTOR (3 DOWNTO 0); BEGIN IF (clock'EVENT AND clock = '1')THEN --产生控制向量ctrl ctrl0 := n(0) & dir & kind(1) & kind(0); ctrl1 := n(1) & dir & kind(1) & kind(0); ctrl2 := n(2) & dir & kind(1) & kind(0); CASE ctrl0 IS WHEN "0000" | "0001" | "0010" | "0100" | "0101" | "0110" => x := data_in; --n=0时不移动 WHEN "1000" => x := data_in(6 DOWNTO 0) & data_in(0); --算术左移1位 WHEN "1001" => x := data_in(6 DOWNTO 0) & '0'; --逻辑左移1位 WHEN "1010" => x := data_in(6 DOWNTO 0) & data_in(7); --循环左移1位

8位双向移位寄存器电路设计

目录 摘要 (1) 1 多功能双向移位寄存器 (2) 1.1 基本工作原理 (2) 1.2 基本实现方案 (2) 2 电路图设计 (4) 2.1 电路结构 (4) 2.2 真值表 (4) 3 Verilog描述8位双向移位寄存器 (6) 4 程序仿真 (8) 5 总结 (10) 参考文献 (11)

摘要 移位寄存器是基本的同步时序电路,基本的移位寄存器可以实现数据的串行/并行或并行/串行的转换、数值运算以及其他数据处理功能。在本设计中,使用硬件描述语言Verilog,在EDA工具QuartussII中,设计8位双向移位寄存器硬件电路,根据设计语言进行功能时序仿真,验证设计的正确性与可行性。 关键字:Verilog QuartusII 移位寄存器

8位双向移位寄存器电路设计 1 多功能双向移位寄存器 1.1 基本工作原理 移位寄存器是基本的同步时序电路,基本的移位寄存器可以实现数据的串行/并行或并行/串行的转换、数值运算以及其他数据处理功能。在本设计中定义移位寄存器中的数据从低位触发器移向高位为右移,移向低位为左移。 为了扩展逻辑功能和增加使用的灵活性,某些双向移位寄存器集成电路产品 又附加了并行输入、并行输出等功能。如图1所示是上述几种工作模式的简化示意图。 并行输入 并行输出 右移串行输入(D IR 左移串行输出(D OL 右移串行输出(D OR ) D IL ) 0123 图1 多功能移位寄存器工作模式简图 1.2 基本实现方案 图2所示是实现数据保持、右移、左移、并行置入和并行输出的一种电路方 案。图中的D 触发器m FF 是N 为移位寄存器中的第m 位触发器,在其数据输入端插入了一个4选1数据选择器m MUX ,用2位编码输入10S S 、控制m MUX ,来选择触发器输入信号m D 的来源。当100S S ==时,选择该触发器本身输出的m Q , 次态为1m n n m m Q D Q +==,使触发器保持状态不变;当100,1S S ==时,触发器1m FF -的输出1m Q -被选中,故CP 脉冲上升沿到来时,m FF 存入1m FF -此前的逻辑值,即 1m 1n n m Q Q +-=,而1m +1n n m Q Q +=, 从而实现右移功能;类似地,当101,0S S ==时,m MUX 选择1m Q +,实现左移功能;而当101S S ==时,则选中并行输入数据m DI ,其次 态1 n m m Q DI +=,从而完成并行数据的置入功能。上述四种操作概述于表1,此外,

74HC164 串入、并出8 位移位寄存器

8 位串入、并出移位寄存器 1. 概述 74HC164、74HCT164 是高速硅门 CMOS 器件,与低功耗肖特基型 TTL (LSTTL) 器件的引脚兼容。74HC164、74HCT164 是 8 位边沿触发式移位寄存器,串行输入数据,然后并行输出。数据通过两个输入端(DSA 或 DSB)之一串行输入;任一输入端可以用作高电平使能端,控制另一输入端的数据输入。两个输入端或者连接在一起,或者把不用的输入端接高电平,一定不要悬空。 时钟 (CP) 每次由低变高时,数据右移一位,输入到 Q0, Q0 是两个数据输入端(D SA 和 DSB)的逻辑与,它将上升时钟沿之前保持一个建立时间的长度。 主复位 (MR) 输入端上的一个低电平将使其它所有输入端都无效,同时非同步地清除寄存器,强制所有的输出为低电平。 2. 特性 ?门控串行数据输入 ?异步中央复位 ?符合JEDEC 标准no. 7A ?静电放电(ESD) 保护: ·HBM EIA/JESD22-A114-B 超过2000 V ·MM EIA/JESD22-A115-A 超过200 V 。 ?多种封装形式 ?额定从-40 °C 至+85 °C 和-40 °C 至+125 °C 。 3. 功能图 图 1. 逻辑符号

图 2. IEC 逻辑符号 图 3. 逻辑图 图 4. 功能图 4. 引脚信息

图 5. DIP14、SO14、SSOP14 和 TSSOP14 封装的引脚配置 引脚说明 74HC164中文资料(功能,真值表,引脚图及电气参数介绍) SN54HC164,/SN74HC164是8位移位寄存器,当其中一个(或二个)选通串行输入端的低电平禁止进入新数据,并把第一个触发器在下一个时钟脉冲来后复位到低电平时,门控串行输入端(A 和B)可完全控制输入数据。一个高电平输入后就使另一个输入端赋能,这个输入就决定了第一个触发器的状态。虽然不管时钟处于高电平或低电平时,串行输入端的数据都可以被改变,但只有满足建立条件的信息才能被输入。时钟控制发生在时钟输入由低电平到高电平的跃变上。为了减小传输线效应,所有输入端均采用二极管钳位。 https://www.wendangku.net/doc/0d17635142.html,/info/cmos/0083928.html H=高电平(稳定态)L=低电平(稳定态)×=不定↑=从低电平转换到高电平 QA0…QH0=在稳定态输入条件建立前QA…QH 的相应电平 QAn…QHn=在最近的时钟输入条件(↑)建立前QA…QH 的相应电平,表示移位一位

实验五 移位寄存器

实验五、移位寄存器的设计 一、实验目的 设计并实现一个异步清零同步置数8位并入并出双向移位寄存器电路。 二、实验原理 在数字电路中,用来存放二进制数据或代码的电路成为寄存器。寄存器按功能可分为:基本寄存器和移位寄存器。移位寄存器中的数据可以在移位脉冲作用下一次逐位右移或左移,数据既可以并行输入、并行输出,也可以串行输入、串行输出,还可以并行输入、串行输出,串行输入、并行输出,十分灵活,用途也很广。下面是一个并入串出的8位左移寄存器的VHDL描述: library ieee; use ieee.std_logic_1164.all; port(data_in: in std_logic_vector(7 downto 0); clk: in std_logic; load: in std_logic; data_out:out std_logic); end; architecture one of left8 is signal q: std_logic_vector(7 downto 0); begin process(load,clk) begin if load='1' then q<=data_in; data_out<='Z'; elsif clk'event and clk='1' then for I in 1 to 7 loop 图5-1 q(i)<=q(i-1); end loop; data_out<=q(7); end if; end process; end one; 异步清零同步置数8位并入并出双向移位寄存器电路结构图如图5-1所示。 三、实验要求 输入信号有D[0]~D[7]、DIL、DIR、S、LOAD、CLK和CLR,其中CLK接时钟,其余接拨码开关,输出信号有Q[0]~Q[7],接发光二极管。改变拨码开关的状态,观察实验结果。 实验工程项目命名为rlshift,源程序命名为rlshift8.vhd。 四、实验记录 对比较器实验结果造表,得到其真值表。 五、实验报告要求

32位移位寄存器

8位数码扫描显示电路设计 一、实验目的 学习硬件扫描显示电路的设计; 二、实验原理 动态数码扫描显示方式是利用了人眼的视觉暂留效应,把八个数码管按一定顺序进行点亮,当点亮的频率不大时,我们看到的是数码管一个个的点亮,然而,当点亮频率足够大时,我们看到的不再是一个一个的点亮,而是全部同时显示,与传统方式得到的视觉效果完全一样。因此我们只要给数码管这样一个扫描频率,那么就可以实现两个以上的数码管同时点亮。而这个频率我们可以通过一个计数器来产生,只要计数频率足够大,就可以实现我们的要求。事实上,因为数码管点亮不是瞬间就可以的,它也需要一定的时间,该时间与数码管的选择有关系。为了折中这一对矛盾,实验中一般可将计数频率选择在100Hz左右。 图示8位数码扫描显示电路,其中每个数码管的8 个段:h、g、f、e、d、c、b、a(h 是小数点)都分别连在一起,8 个数码管分别由8 个选通信号k1、k2、… k8 来选择。被选通的数码管显示数据,其余关闭。如在某一时刻,k3 为高电平,其余选通信号为低电平,这时仅k3 对应的数码管显示来自段信号端的数据,而其它7 个数码管呈现关闭状态。根据这种电路状况,如果希望在8 个数码管显示希望的数据,就必须使得8 个选通信号k1、k2、… k8 分别被单独选通,并在此同时,在段信号输入口加上希望在该对应数码管上显示的数据,于是随着选通信号的扫变,就能实现扫描显示的目的。 实验参考扫描显示程序中clk 是扫描时钟;SG 为7 段控制信号,由高位至低位分别接g、f、e、d、c、b、a 7个段;BT 是位选控制信号,接图5-2 中的8 个选通信号:k1、k2、… k8 。程序中CNT8 是一个3 位计数器,作扫描计数信号,由进程P2 生成;进程P3 是7 段译码查表输出程序,进程P1 是对8 个数码管选通的扫描程序,例如当CNT8 等于

实验五移位寄存器及其应用共10页文档

实验五 移位寄存器及其应用 一、实验目的 1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。 2、熟悉移位寄存器的应用 — 实现数据的串行、并行转换和构成环形计数器。 二、实验原理 1、移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又能右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为CC40194或74LS194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图10-1所示。 图10-1 CC40194的逻辑符号及引脚功能 其中 D 0、D 1 、D 2 、D 3为并行输入端;Q 0、Q 1、Q 2、Q 3为并行输出端;S R 为右移串行输入端,S L 为左移串行输入端;S 1、S 0 为操作模式控制端; R C 为直接无条件清零端;CP 为时钟脉冲输入端。 CC40194有5种不同操作模式:即并行送数寄存,右移(方向由Q 0→Q 3),左移(方向由Q 3→Q 0),保持及清零。 S 1、S 0和R C 端的控制作用如表10-1。 表10-1

2、移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验研究移位寄存器用作环形计数器和数据的串、并行转换。 (1)环形计数器 把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位, 如图10-2所示,把输出端 Q 3和右移串行输入端S R 相连接,设初始状态 Q 0Q 1 Q 2 Q 3 =1000,则在时钟脉冲作用下Q Q 1 Q 2 Q 3 将依次变为0100→0010→0001 →1000→……,如表10-2所示,可见它是一个具有四个有效状态的计数

74LS194左右移位寄存器

4位移位寄存器仿真 其中,3D 、2D 、1D 、0D 为并行输入端;3Q 、2Q 、1Q 、0Q 为并行输出端;R S 为右移串行输入端;L S 为左移串行输入端;1S 、0S 为操作模式控制端;R C 为直接无条件清零端;CP 为时钟脉冲输入端。74LS194有5种不同操作模式:并行送数寄存;右移(方向由3Q →0Q );左移(方向由0Q →3Q );保持及清零。 1S 、0S 和R C 端的控制作用如表3.10.1所示。 表3.10.1: 输 入 输 出 功能说明 CLR CLK 1S 0S L S R S 1+n A Q 1+n B Q 1+n C Q 1 +n D Q 0 × × × × × 0 0 n A Q 0 n B Q 0 n C Q 异步清0

移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或并行数据转换为串行数据等。 把移位寄存器的输出反馈到它的串行输入端,就可进行循环移位,如图3.10.2所示。把输出端0Q 和右移串行输入端R S 相连接,设初始状态3Q 2Q 1Q 0Q =1000,则在时钟脉冲作用下,3Q 2Q 1Q 0Q 将依次变为0100→0010→0001→1000→……,可见,它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。图3.10.2电路可以由 各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。

图3.10.2 四、实验室操作实验内容: 1.逻辑功能验证 移位寄存器(1)将两块74LS74集成片插入IC空插座中,按图41(a)连线,接成左移移位寄存器。接好电源即可开始实验。先置数据0001,然后输入移位脉冲。置数,即把Q3、Q2、Q1、Q0置成0001,按动单次脉冲,移位寄存器实现左移功能。(2)按图42(b)连线,方法同(1)则完成右移移位功能验证。 (a)左移移位

实验七 移位寄存器及其应用

实验七 移位寄存器及其应用 一、实验目的 1. 掌握中规模4位双向移位寄存器逻辑功能及使用方法。 2. 熟悉移位寄存器的应用——环形计数器。 二、实验原理 1. 移位寄存器是一个具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。既能左移又有右移的称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位要求。根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。 本实验选用的4位双向通用移位寄存器,型号为74LS194或CC40194,两者功能相同,可互换使用,其逻辑符号及引脚排列如图 1所示。 图 1 74LS194的逻辑符号及其引脚排列 其中D 3、D 2、D 1、D 0为并行输入端, Q 3、Q 2、Q 1、Q 0为并行输出端;S R 为右移串行输入端,S L 为左移串行输入端,S 1、S 0为操作模式控制端;CR 为直接无条件清零端;CP 为时钟脉冲输入端。74LS194有5种不同操作模式:即并行送数寄存,右移(方向由Q 3→Q 0),左移(方向由Q 0→Q 3),保持及清零。S 1、S 0和CR 端的控制作用如表 1所示。 表 1

2.移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。本实验研究移位寄存器用作环形计致器和串行累加器的线路及其原理。 (1) 环形计数器:把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位, 如图2所示,把输出端Q 0和右移串行输入端S R 相连接,设初始状态Q 3 Q 2 Q 1 Q =1000, 则在时钟脉冲作用下Q 3Q 2 Q 1 Q 将依次变为0100→0010→0001→1000→……,可见它是具 有四个有效状态的计数器,这种类型的计效器通常称为环形计数器。图2电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。

74LS194左右移位寄存器

4 位移位寄存器仿真 其中, D 3 、 D 2 、 D 1、 D 0 为并行输入端; Q 3 、Q 2 、Q 1 、Q 0 为并行输出端; S R 为右 移串行输入端; S 为左移串行输入端; S 1、S 0 为操作模式控制端; CR 为直接无条件清零 L 端;CP 为时钟脉冲输入端。 74LS194 有 5 种不同操作模式: 并行送数寄存; 右移( 方向由 Q 3 → Q 0 ) ;左移 ( 方向由 Q 0 →Q 3 ) ;保持及清零。 S 1、 S 0 和 CR 端的控制作用如表 3.10.1 所示。 表 3.10.1 : 输 入 输 出 C LR CLK S S 0 S L S R 1 n Q A 1 Q n B 1 n Q C 1 Q n D 1 功 能 说 明 0 0 0 0 0 异步清 0 × × × × × 1 0 1 × 0 0 ↑ n Q A n Q B Q n C 右移 1 0 1 × 1 1 ↑ n Q A n Q B Q n C 右移 1 1 0 0 × ↑ n Q B n Q C n Q D 左移 1 1 0 1 × ↑ n Q B n Q C n Q D 1 左移 1 1 1 A B C D ↑ × × 并行输入

1 ↑0 0 ××n Q A n Q B Q n C n Q 保持 D 移位寄存器应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或并行数据转换为串行数据等。 把移位寄存器的输出反馈到它的串行输入端,就可进行循环移位,如图 3.10.2 所示。 把输出端Q和右移串行输入端S R 相连接,设初始状态Q3 Q2 Q1 Q0 =1000,则在时钟脉冲0 作用下,Q Q2 Q1 Q0 将依次变为0100→0010→0001→1000→??,可见,它是一个具有3 四个有效状态的计数器,这种类型的计数器通常称为环形计数器。图3.10.2 电路可以由各 个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。 Q 3 Q Q 2 Q 1 0 S R 4位右移寄存器 CP S S 1 图3.10.2 四、实验室操作实验内容: 1. 逻辑功能验证 移位寄存器(1)将两块74LS74 集成片插入IC 空插座中, 按图41(a)连线,接成左移移位 寄存器。接好电源即可开始实验。先置数据0001, 然后输入移位脉冲。置数, 即把Q3、Q2、Q1、Q0 置成0001, 按动单次脉冲, 移位寄存器实现左移功能。(2)按图42(b)连线,方法同(1) 则完成右移移位功能验证。

相关文档