文档库 最新最全的文档下载
当前位置:文档库 › 兰电250KW发电机故障解释

兰电250KW发电机故障解释

兰电250KW发电机故障解释

发电机故障解释

当发电机电压只有300V时,E1、E2系统是否断线或短路,当调节电压不会动静就要考虑调压器、线路问题,调压线路电压为36V左右,线头为R、和RR 极。线头21进自动调压电压为100~140V,

电抗器线端两头电压大约在100V 左右并且三组电压要基本相等,电抗器线4、21电压为60V,线5、22,线6、23、都为60V左右,

当发电机进行大修时或受大电流短路冲击,修复后出现并车并不上,合上就跳闸、有逆功率现象(逆功率保护器出现动作灯会亮正常是不亮的),就是合上了

整个电站马上变暗,随后就跳闸,就极有可能是磁场冲击过头,(直流)正、负极极线冲相反了,本来电机里面是正极红线,负极是黑线或其他颜色(直流)。把线调换过来就可以了,或是把电板后面的交流接触器出线调换一下也可以,两者只能调一处。

发电机机组如果出现没有电压(只有100V以下)和频率,按励磁电压有上升又马上落下来说明静止整流模块击穿,量极向21,22,23,通,反向不通为正常,否则不正常,要换整流模块(桥式整流器型号SQL10-8或是SQL40-10或更大点),接线是E1接正极,E2接负极,

排序E1、21、22、23、E2。其中21、22、23为交流三极E1、E2为直流正、负极。

论大型发电机定子铁心常见故障及处理措施

论大型发电机定子铁心常见故障及处理措施 发表时间:2016-05-23T11:59:01.650Z 来源:《电力设备》2016年第2期作者:巩宇 [导读] (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040)定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。 (哈尔滨电机厂有限责任公司黑龙江哈尔滨 150040) 摘要:定子铁心是组成发电机基本和主要的部件之一,起着构成电机工作磁路和固定定子绕组的重要作用。发动机在运行多年后,由于种种原因,定子铁心的压紧力会逐渐减小,甚至发生松动。它的产生给发电机的安全运行带来隐患,有的甚至造成了机组被迫停运。而这种情况一旦出现,不但会造成严重的经济损失,还会影响发动机的寿命。因此,有必要对此问题进行探讨和重视。现代大型汽轮发电机更注重选用有方向或无方向性的优质冷轧硅钢片,以降低铁心损耗,提高发电机效率。本文主要探讨大型发电机定子铁心常见故障及处理措施。 关键词:发电机;定子铁心;故障 发电机在人们生活中占到很大的比重,维护发电机的正常运转,对于维护正常的经济生活非常重要。而定子铁心的相关问题在发动机故障中经常出现,影响到发电机定子铁心的因素很复杂,定子铁心常见故障一般分为定子铁心与机座的振动异常、定子铁心压装变松等多种。对于这些故障,在机组进行修整期间,应该使用探测仪对定子铁心进行以下检查,密切关注相关部位振动值和噪声、齿部和轭部、铁损试验。为了获得要求的磁、电特性和机械强度,减少磁滞和涡流损耗,定子铁心选择了磁导率高、损耗小,能达到一定工艺要求。 1 大型发电机定子铁心常见的故障 1.1 定子铁心与机座的振动异常 发电机运行后,轴系、定子铁心及机座的振动是不可避免的。采用端盖式轴承的发电机,定子铁心及机座的振源来自两方面:一是来自转子传来的机械振动;二是电机电磁场产生的电磁振动。由于转子的平衡精度不可能达到理想程度,转子旋转后,由于质量不平衡引起的振动通过轴承和端盖传到定子机座,产生工频(50Hz)振动;而由于转子磁极(大齿)与小齿呈现的相互垂直的刚度的差异,则对定子产生二倍工频(100Hz)的振动[1]。由电机电磁场产生的电磁振动力为:(1)因定子铁心有交变磁通通过所产生的交变电动力导致的工频振动。在铁心未压紧或铁心局部过热时即产生强烈的振动和噪声。(2)旋转的转子加励磁后,相当于旋转的电磁铁,对定子铁心产生使其变形的磁拉力,由此产生二倍频振动力,即椭圆振动--这也是定子铁心振动的主要振源。发电机带负载后将使铁心的倍频振动力加强,且由于定子端部漏磁场的轴向分量影响产生轴向的倍频振动力。当发电机发生三相短路时,将使定子铁心的椭圆振动与形加剧。两相短路时,定子铁心还会发生扭转振动。为将这些危害发电机安全运行的振动减至最小,除在设计和制造工艺方面提高定子铁心的刚度和弹性模量,使其固有频率避开工频和二倍频外,对大型汽轮发电机的定子铁心还采用弹性固定的办法即弹性定位筋或弹簧板隔振结构固定在定子机座上,以减小铁心振动直接传至机座上。 1.2 定子铁心压装变松 国产及进口200MW及以上容量的大型汽轮发电机曾多次发生过定子铁心硅钢片压装变松故障,轻微者仅对松弛部位加塞涂绝缘漆的硅钢片等塞紧,或扭紧定位筋及穿心螺母进行局部处理;严重者则需将定子绕组全部抬出,相关的紧固件全部拆除,以更换已损坏的整段铁心,对铁心进行整体压装,造成极大损失。从历次对铁心松弛故障原因分析的结果来看,老旧机组大多因为运行年久,在交变电磁振动力及铁心自身重力的影响下,破坏了铁心叠片间绝缘漆膜形成的阻滞力,导致铁心叠片变松,片间绝缘被破坏,形成片间短路和局部过热。新投入的发电机定子铁心叠片变松的原因则是多方面的。 2 大型发电机定子铁心常见故障及处理措施 排除接地故障时,应认真观察绕组的损坏情况,除了由于绝缘老化、机械强度降低造成绕组接地故障,需要更换绕组外,若绕组绝缘尚好,仅个别绕组接地,只需局部修复。(1)槽口部位接地。如果查明接地点在槽口或槽底线圈出口处,且只有一根导线绝缘损坏,可把绕组加热至130℃左右使绝缘软化后,用划线板或竹板撬开接地点处的槽绝缘。把接地处烧焦的绝缘清理干净,插入适当大小的新绝缘纸板,再用绝缘电阻表测量绝缘电阻。绕组绝缘恢复后,趁热在修补处涂上白干绝缘清漆即可。若接地点有两根以上导线绝缘损伤,应将槽绝缘和导线绝缘同时修补好,避免引起匝间短路。(2)双层绕组上层边槽内部接地。先把绕组加热到130℃左右使绝缘软化,取出接地线圈上的槽楔,再把接地线圈的上层边起出槽口清理损伤的槽绝缘,并用新绝缘纸板把损坏的槽绝缘处垫好。同时检查接地点有无匝间绝缘损伤,然后把上层边再嵌入槽内,折合槽绝缘,打入槽楔并做好绝缘处理。在打入槽楔前,应用绝缘电阻表测量故障绕组的绝缘电阻,使绝缘电阻恢复正常。对于双层绕组下层边槽内部对地击穿,可采用局部换线法和穿线修复法进行修复。(3)若接地点在端部槽口附近,损伤不严重,在导线与铁心之间垫好绝缘后,涂刷绝缘清漆即可。(4)若接地点在槽的里边,可轻轻抽出槽楔,用划线板和线匝一根一根地取出,直到取出故障导线为止,用绝缘带将绝缘损坏处包好,再把导线仔细嵌回线槽。(5)绕组受潮引起接地的应先进行烘干,当冷却到60~70℃左右时,浇上绝缘漆后再烘干。(6)若由于铁心凸出,划破绝缘,应将凸出的硅钢片敲下,在绝缘破损处重新包好绝缘。 定子铁心故障探测仪的应用。发电机定子铁心故障检查试验的目的是查找运行时的过热点隐患,防止扩大为发电机事故。上节提到的铁心试验方法是传统的试验方法,是通过临时安装的励磁绕组,在定子铁心上产生周向环绕磁通,试验时要抽出转子,大型发电机通常要用承载约300A电流的电缆,穿过定子内膛至定子机壳外部绕若干匝。对于500MW的发电机,要在铁心中产生的磁通密度达到发电机额定工作磁密的80%,大约需要3MVA的试验电源。试验时用红外热像仪测量定子内膛铁心表面的温度分布查找铁心故障点,以确定铁心表面的局部缺陷。这一电压是由穿过ABCD回路的磁通感应产生的,随着该回路尺寸的不同,电压数值可能达到几十甚至几百伏,后者是指轴向通风的发电机,在这些发电机中温度计导线沿着槽由定子端部引出。显然,这个电阻温度计对汽轮发电机机壳的任意第二点短路,都会形成电流回路。假如,定子机壳的E点是第二个短路点,在ABC-DE回路中就有电流,电流数值与回路电阻及短路点之间的感应电压数值有关。通常,电阻温度计的引线沿槽布设,从临近的铁心段间的径向通风沟引出。如运行经验指出,由于AB-CDE的面积小,故回路的感应电势和感应电流也小,未曾发现铁心损坏。具有轴向通风系统的汽轮发电机,当电阻温度计本身或它的引线绝缘损坏时,可能损坏有效铁

6发电机常见故障及处理方法

6.发电机常见故障及处理方法 6.1 发电机不发电或电压<100V 故障原因诊断分析: 1. 发电机运转至正常转速后电压为0,一般发生于长时间停用的发电机组,大多是发电机缺少剩磁造成的。在静止状态下用6V~12V蓄电池接在励磁绕组接线端子F1、F2上,F1接电源的正极,F2接电源的负极,短时间接通一下电源即可。 2. 若充磁后电压不能恢复,说明电机绕组存在短路故障,具体测量可用直流电阻电桥测量电机绕组的直流电阻。 3. 充磁后,如果试验空载电压恢复正常,但是,带载后电压下降厉害,应重点检查静止整流模块、旋转整流模块、电流互感器、整流变压器。 4. 如果U≠0 ,在30V~50V左右,进行它励试验,若电压不能恢复正常,应检查旋转整流模块是否损坏,励磁机绕组、主机绕组是否存在短路、断路。 5. 若进行它励试验时正常,一般故障出现在励磁系统,重点检查静止整流模块 V4、电流互感器T1、T2、T3,电抗器L1、整流变压器T6,检查绕组有无断路,插套有无松动,静止整流模块是否损坏。

6.2 发电机有电压,但电压在300多伏 故障原因诊断分析: 1. 发电机的电压调整范围一般为360V~440V,电压整定电位器调整至最大时,发电机电压应440V左右。若调整无效,电压保持在360V左右,可能是电压整定电位器阻值为零或电压整定电位器至AVR板上X2插头的1、3端子的两根线出现短路。应检查电压整定电位器是否完好,可用万用表测量电位器的直流电阻,阻值应在0~4.7kΩ内均匀变化。或者检查电位器是否接入AVR板。 2. 如检查电压整定电位器完好,检测弯板上的可控硅是否损坏,可控硅损坏严重(完全导通)可能导致分流电阻完全分流且分出电流大小不可调,从而使励磁电流较小,发电机电压始终处于低压状态。 3. 如果发电机电压在350以下,最大可能性是三块旋转整流模块中有一块出现故障,导致励磁机转子三相电流只有两相通过整流供给主机转子。 4.电抗器气隙太小,可适当加大电抗器气隙。

对于风电场电气设备中风力发电机的运行维护的措施

对于风电场电气设备中风力发电机的运行维护的措施 发表时间:2017-10-25T17:50:34.937Z 来源:《基层建设》2017年第17期作者:盛电波 [导读] 摘要:随着当前经济的快速发展,人们在生产生活中对于电能的需求逐渐增大。电能的应用,对于经济的发展也产生了巨大的影响。 中车株洲电力机车研究所有限公司风电事业部湖南省 412007 摘要:随着当前经济的快速发展,人们在生产生活中对于电能的需求逐渐增大。电能的应用,对于经济的发展也产生了巨大的影响。此类现状下,传统火力发电以及水力发电,已经不足以支撑社会经济的发展。随后风力发电的技术发展,也引起了广泛的关注。风力发电通过应用风力驱动,进行电能的生产,有效的降低了对生产能源的需求,对于当前发展绿色经济促进意义重大。针对此类现状,文章针对当前风电场电气设备中风力发电机的运行维护措施,进行简要的分析研究。 关键词:风力发电;电气设备;风力发电机;运行维护 随着当前国民经济的快速发展,能源对于经济发展产生的影响越来越大。此类现状下,电能作为主要的应用能源之一。关于其稳定生产,则引起了广泛的关注。实际发展的过程中,风力发电作为主要的电力生产渠道之一。关于风力发电机的运行维护,则成为当前风力发电作业中,主要的核心内容。笔者针对当前风电场电气设备中风力发电机的运行维护,进行简要的剖析研究,以盼能为我国风力发电设备维护的发展提供参考。 1.风力发电 风力发电当前在发展的过程中,其运行原理为:通过风能驱动叶轮进行旋转,之后将旋转机械能转换为电能。实际发展的过程中,对于外力驱动的要求较低。因此在实际发展的过程中,也获得了世界各国的认可。风能作为一种可再生的清洁能源,其对于当前环境现状的改善,以及发展绿色经济的应用意义重大。 2.当前风电场电气设备中风力发电机运行维护中的常见故障及存在问题 当前风电场电气设备中电力发电机的运行维护,整体的发展现状较为良好。但在细节方面,也出现了较多的问题。例如:维护制度执行不到位、维护人员专业技能较弱。此类现状的出现,严重的影响了风电场的稳定运行,并且对于电能的稳定生产,也产生了极大的影响。针对此类现状,笔者根据当前风电场电气设备中风力发电机的常见故障,以及存在问题进行简要的分析研究。 2.1叶片故障 风电场在运行的过程中,通过风力驱动机械设备进行电能生产。其中主要的机械设备部件即为:电机叶片。电机叶片在运行的过程中,随着使用时间的增长,以及环境变化等现状。电机叶片出现故障较为常见,当前在实际应用的过程中,电机叶片主要出现的故障现象为:叶片损坏、叶片异动等现象。 2.2变流器故障 变流器为风电场风力发电机中主要的电气设备,其对于电能的稳定输出,以及电厂电业的稳定性影响重大。当前在实际发展的过程中,变流器故障出现原因为:电流电压变化异常,造成变流器运行不稳定。严重时甚至造成变流器击穿,影响了电气设备的稳定运行。 2.3控制软件故障 风电场电器设备中风力发电机的运行,通过软件参数控制机械设备进行运转。实际运行的过程中,软件故障也为发电机故障现象之一。软件故障造成设备运行异常,造成电流输出不稳定,或电压异常变化。最终随着此类现象的持续,出现了较多的故障现象。对于电气设备的运行性能等方面,也造成了严重的影响。 2.4维护制度执行不到位 当前风电场电器设备中风力发电机运行维护出现问题,主要的原因为:维护制度执行不到位。由于维护制度执行不到位,造成设备“带病”运作。随着此类现象的持续,最终造成设备出现故障现象。影响了电力生产的稳定性,并且对于电力企业的实际收益,造成了较大的影响。 2.5维护人员专业技能较弱 风电场电气设备中风力发电机的运行维护,对于维护人员的专业素养要求较好。当前在实际发展的过程中,运行维护主要出现问题的原因之一为:维护人员专业技能较弱。由于维护人员专业技能较弱,造成在实际发展的过程中,无法有效的处理设备故障现状。增加了设备维护的周期,影响了风电场的运行质量。 3.风电场电气设备中风力发电机的运行维护措施 当前风电场电器设备中风力发电机的运行维护,整体的发展现状较为良好。但在细节方面,还存在较多的问题。此类问题的出现,严重的影响了风电场的稳定运行,并且在实际发展的过程中,对于电力企业的实际收益造成了较大的影响。在此现状下,笔者综合分析当前风电场电器设备中风力发电机的运行维护现状,并提出了以下的改善措施。例如:更换故障叶片、定期维护检修、加强绩效考核落实、加强维护人员专业技能培养。 3.1更换故障叶片 电机叶片故障为当前风电场中风力发电机常见的故障现象之一,此类故障现象表现明显。实际维护的过程中,如电机叶片出现损坏现状,则之间进行叶片的更换维修。如因叶片出现异动现象,则检查是否为部件固定装置松动。以此进行故障检测,并针对性的进行设备的维护。 3.2定期维护检修 风电场电气设备中风力发电机出现故障现象,为了有效的降低设备故障率,并且提升风电场的稳定运行。实际发展的过程中,电力企业应注重对电力设备的定期检查。通过设立定期检查制度,针对设备现状进行检查。以此保障设备的稳定运行,并且提升风电场的发电稳定性,提升电力企业实际收益。 3.3加强绩效考核落实 风电场电气设备中风力发电机的运行维护,出现故障现状除去设备自身原因外,人为原因也较多。由于维护人员落实维护制度不到位,或维护人员维护意识较低,最终造成设备的故障现象。针对此类现象,电力企业可通过整体规划,细节划分的方式进行改善。通过确

风力发电机状态监测与故障诊断技术分析

风力发电机状态监测与故障诊断技术分析 摘要:目前,全世界因煤炭、石油等传统燃料型能源不可再生且对环境污染危害性大,对其开采利用进行了严格管控,并将研究方向转至如风能、太阳能、地热能等清洁能源。风力发电作为风能利用的重要方式,在用风电场数量与增量逐年递增,设备故障诊断和维护保养工作已成为亟待解决的问题。此外,如何提高故障诊断和维护技术也成为各风力发电企业的重要研究工作。本文以风力发电机组故障诊断为例,从不可控的风力风速影响和风力发电机组故障类型、故障机理或产生部位、诊断处理等方面寻求快速诊断检修方法,力求缩短维修时间,降低检修成本,提高风力发电机组安全在线运行时长,确保风力发电质量和电能。 关键词:风力发电机组;状态监测;故障诊断技术 引言 近年来,随着工业的发展,环境污染日益严重,新能源风力发电在各行业领域应用日益广泛。一般风力发电场多建于偏远地区,地处环境恶劣,无法应用有效监测技术解决风力发电机组各种故障与信号不统一等问题。因此,基于风力发电机不同监测数据,全面分析风力发电机组运行时遇到的故障,深入研究风力发电机组监测与故障技术具有非常重要的意义。 1风力发电机采用状态监测和故障诊断技术的必要性 为了便于风能的获取,风场一般都设在比较偏远的山区或者近海区域,所以风力发电机会受到阵风、侵蚀等因素的影响。风力发电机组一般设在50-120m的高空,在机组运行时需要承受较大的受力载荷。由于设计不合理、焊接质量缺陷等原因会引发机组运行故障,当出现阵风时,会对叶片造成短暂而频繁的冲击载荷,而叶片受到的荷载又会对传动链上的部件产生不同程度的影响而引发故障,其中风轮、主轴、齿轮箱、发电机等受到的影响较大。计划维修和事后维修是风力发电机比较常用的维修方式,但是这两种维修方式都存在一定的缺陷,计划维修的检修范围不大,维修内容不详细,无法全面的反应出机电设备的运行状况。而事后维修的维修时间长,维修效率低,所以造成的经济损失较大。所以需要提高风力发电机维修水平,采用状态监测和故障诊断技术可大大提高风力发电机运行的稳定性和可靠性。 2风力发电机系统的状态监测现状分析 近年来以风力发电为代表的可再生能源产业得到了快速发展,不断完善的风力发电技术凭借自身独特的优势为风力发电规模的不断扩大提供了支撑,但风力发电系统在运行时的安全问题逐渐凸显,需对风力发电系统进行科学有效的监控,确保及时发现潜在隐患及故障,进而保证系统正常运行。风力发电过程中将风能转化为电能主要通过使用风机实现(电磁感应原理),再对转换后的电能进行调压等操作后向电网中的用户输送。目前我国的风力发电机组建设较为完善,基于恒速恒频的风力发电机组进一步完善了风力发电系统。目前变桨距技术在监测风力发电机系统的状态过程中较为常用,该技术能够根据实际情况动态调整风机叶轮转速,并以实际风速变化情况为依据对变流技术进行调整,以确保风力发电输出频率的恒定。风力发电质量在引入变速恒频技术(在风力发电并网系统中应用较多)后得以显著提高。 3风力发电机运行中存在的故障问题 3.1风机叶片故障

康明斯系列柴油发电机的常见故障俭修原因分析

一、 康明斯柴油机的常见故障原因 (一)柴油机冒黑烟 1)涡轮增压器工作失郊; 2)气门组件密封不良; 3)喷油器或高压油泵精密偶件工作失郊; 4)凸轮轴组件磨损过度; 5)中冷器过脏、入气量不足; 6)喷油器胶圈密封不良; 7)气缸组件拉缸; 8)柴油质量不良。 (二)柴油机冒白烟 1)喷油器或高压油泵精密偶件失郊; 2)柴油机烧机油(即增压器烧机油); 3)气门导管及气门磨损过度,机油漏入气缸; 4)柴油中有水; 5)喷油气缸套漏水入气缸; 6)活塞环磨损过度或油环装反,气缸烧机油。 (三)在高负载时,排烟管及增压器发红 1)喷油器或高压油泵精密偶件工作失郊; 2)凸轮轴、随动臂组件、摇臂组件磨损过度; 3)中冷器过脏、入气量不足; 4)增压器工作失郊; 5)气门组件密封不良。 (四)柴油机工作时功率亏损较大 1)气缸组件磨损过大; 2)喷油器或高压油泵精密偶件工作失郊; 3)PT油泵工作失郊; 4)正时机构工作不良; 5)增压器工作失郊; 6)中冷器过脏; 7)气门组件密封不良; 8)柴油格、空气格过脏。 (五)柴油机机油压力过低 1)轴瓦和曲轴的配合间隙过大,即轴瓦和曲轴磨损过大; 2)各种衬套和轴系磨损过大; 3)冷却喷咀或机油管漏油; 4)机油泵工作失郊; 5)油压传感器失郊; 6)机油冷却器过脏导致油温过高; 7)机油品质不良。 (六)柴油机水温过高 1)水泵损坏; 2)节温器损坏;

3)风扇皮带,水泵皮带过松; 4)水箱过脏。(内部或外部) (七)柴油机出现烧瓦现象 1)机油泵工作失郊; 2)轴瓦间隙过大,引起油压过低; 3)柴油机缺水而出现高温; 4)机油格堵塞; 5)机油品质不良。 (八)柴油机下浊气大现象或有白烟从下浊气管排出 1)气缸组件磨损过大; 2)油底壳有水;(缸盖破裂,喷油器铜套水,缸套烂穿,缸套胶圈漏水,缸体漏水) 3)有拉缸现象。 (九)柴油机转速不稳 1)柴油机有功率亏损过大的故障; 2)PT泵的电子执行器磨损过度以及PT泵内部机件故障; 3)EFC电子调速板工作失郊; 4)测速磁头损坏; 5)柴油格过脏; 6)柴油管道漏气。 (十)油底壳有水 1)缸套破裂或缸套胶圈破损; 2)缸体破裂; 3)缸盖破裂; 4)喷油器铜套漏水。 (十一)油底壳有柴油 1)喷油器O形形圈损坏; 2)喷油器雾化不良,滴油; 3)喷油器安装不当; 4)喷油器得新安装时没有换新的O形圈。 (十二)柴油机异响 1)气门和活塞碰撞; 2)连杆螺钉松动,活塞和缸盖碰撞; 3)EFC板故障; 4)PT油泵故障而引起供油不稳; 5)喷油器滴油爆缸; 6)柴油机轴瓦间隙过大; 7)柴油管道漏气。 (十三)柴油机震动过大 1)柴油机轴瓦间隙过大或轴向间隙超标; 2)喷油器雾化不良而敲缸; 3)柴油机和电球的连接变形; 4)飞轮组件安装不当; 5)曲轴,连杆各种紧固螺钉松动; 6)增压器工作失郊。

风电机组运维

风电机组运维 根据中国可再生能源学会统计,截止2013年底,我国风电累计装机容量超过9000万千瓦。预计2014年风电装机将超过1亿千瓦,到2020年达到2亿千瓦。随着我国风电装机数量的增加,风电运维市场越来越大,工作也越来越复杂,特别是我国风电机组种类多,未来对风电运维的管理提出了更高的要求。风电机组运维工作如何分类、有什么样的模式、对策值得各方,特别是风电运行方关注。 一、风电机组运维的工作分类 风电机组运维主要是指风电机组的定期检修和日常维护,其中,日常维护中的大部件的更换和一些特定部件的检修工作比较特殊,与普通的检修要求不一样,本文将其单列。 1、定期检修 定期检修(简称“定检”)是指按照风电机组的技术要求,根据运行时间对风电机组进行定期的检测、维护、保养等,一般按运行时间制定定检计划,如三个月、六个月、一年……,定检工作内容相对比较固定,一般都有比较标准的程序和要求。每台机组每次定检大概需要80个工时左右(根据不同机组要求、定检频次,时间不尽相同),可由1名工程技术人员带领多名技术工人参加。由于定检设备较多、工作较为繁重,对人员的体力有一定的要求,且部分工作(如连接螺栓力矩检查)存在安全风险,需要做一定的安全培训。

风电机组运行环境较为恶劣,定检可以让设备保持最佳的状态,并延长风电机组的使用寿命,因此该项工作很重要。根据时间不同,工作内容也有所不同,主要包括连接件的力矩检查(包括电气连接)、润滑性能检查、部件功能测试、油位和电气设备的检查、设备的清洗等,技术上的要求不高。 2、日常运维 日常运维包括故障处理与巡检。故障处理主要是对风电设备故障进行预判、检测、消除等,时间上不好确定,没有固定的工作内容,要求人员的技术实力比较强,特别是具有电气、通信方面的专业能力。该项工作也是风电机组运行维护最具技术、最富挑战的一项工作,人是关键因素,人员的工作经验、技术水平、知识储备决定了处理的速度与效果,直接影响到风电的正常运行。优秀的故障处理人员一般需要工程师以上的技术职称(或相当经验)、大约有2年以上同类机型的工作经验。故障处理人员的培训需要较长时间,人员成本相对较高,目前国内这方面的人员主要受雇于整机厂家及部分关键零部件厂家。目前因不同厂家机型不一,控制系统等不太一样,导致技术人员的跨公司流动性不强,即便是优秀的工程人员,更换一种机型后,适应时间也需要半年以上,因此该类人员需要注重长效的培训。 巡检是指在日常维护中对设备进行定期巡查,大约是每月一次(或2月一次),每台机组大约需要4个工时左右。工作方法主要是目视,或是简单的测试,有时可与故障处理结合,工作内容比较固定,

风电机组状态监测与故障诊断相关技术研究

新能源与风力发电? EMCA2014,41(2 =============================================================================================== )风电机组状态监测与故障诊断相关技术研究 张文秀1, 武新芳2 (1.南京理工大学能源与动力工程学院,江苏南京 210094; 2.上海电力学院能源与机械工程学院,上海 200090) 摘 要:对风电机组进行状态监测和故障诊断,可有效降低机组的运行维护成本,保证机组的安全稳定运行三首先概述了状态监测与故障诊断研究的研究情况,然后介绍了风电机组的状态监测技术和状态监控系统的应用开发情况,接着针对机组中的主要故障组件及整个风电系统,介绍了国内外状态监测和故障诊断方法的研究现状与研究进展,最后探讨了风力发电系统状态监测的发展趋势以及未来的研究方向三关键词:风电机组;状态监测;故障诊断;研究现状;发展趋势 中图分类号:TM307+.1∶TM614 文献标志码:A 文章编号:1673?6540(2014)02?0050?07 Research on Condition Monitoring and Fault Diagnosis Technology of Wind Turbines ZHANG Wenxiu1, WU Xinfang2 (1.School of Energy and Power Engineering,Nanjing University of Science&Technology, Nanjing210094,China;2.School of Energy and Mechanical Engineering,ShangHai University of Electric Power,Shanghai200090,China) Abstract:The technologies of condition monitoring and fault diagnosis can effectively reduce the cost of operation and maintenance,as well as ensure the security and stability of wind turbine.The research of condition monitoring and fault diagnosis were overviewed,then the status of the wind tubine monitoring technology and application development conditions of monitoring system were introduced,and aiming at the main failure parts for wind turbine and the wind power system,the research status and progress of condition monitoring and fault diggnosis methods in domestic and abroad were introduced.Finally the development trend of wind power generation system status montoring and research direction in the future were discussed. Key words:wind turbines;condition monitoring;fault diagnosis;research status;development trend 0 引 言 近年来,风能作为一种绿色能源在世界能源结构中发挥着愈来愈重要的作用,风电装备也因此得到迅猛发展三根据世界风能协会(WWEA)的报告,截止2009年底,全球风力发电机组发电量占全球电力消耗量的2%,根据目前的增长趋势,预计到2020年底,全球装机容量至少为1.9×106MW,是2009年的10倍[1]三在 九五”期间,我国风力发电场的建设快速发展,过去十年中,我国的风力发电装机容量以年均55%的速度高速增长,2010年已达1000万kW三 随着大规模风电场的投入运行,出现了很多运行故障,因而需要高额的运行维护成本,大大影响了风电场的经济效益三风电场一般处于偏远地区,工作环境复杂恶劣,风力发电机组发生故障的几率比较大,如果机组的关键零部件发生故障,将会使设备损坏,甚至导致机组停机,造成巨大的经济损失[2]三对于工作寿命为20年的机组,运行维护成本一般占到整个风电场总投入的10%~ 15%,而对于海上风电场,整个比例高达20%~ 25%[3]三因此,为了降低风电机组运行的风险,维护机组安全经济运行,都应该发展风电机组状态监测和故障诊断技术三 状态监测和故障诊断可以有效监测出传动系统二发电机系统等的内部故障,优化维修策略二减 05

风力发电机常见故障及其分析概要

茂名职业技术学院 毕业设计 题目:风力发电组轴承的常见失效形式及故障分析系别:机电信息系专业:机械制造与自动化班别:13机械一班姓名:何进生指导老师:张浩川日期:2015年7月1日至2016年5月1日

内容摘要 随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。风力发电己成为世界各国更加重视和重点开发的能源之一。随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。 本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。 关键词 风力发电机;故障模式;齿轮箱;故障诊断

Common Faults And Their Analysis Of The Wind Turbine Abstract With the global economic development and population growth, humanity is facing with the pressure from two sides of the energy use and environmental protection, the energy problem and environmental pollution has become an increasingly prominent issue. Wind power as a abundant reserves of natural resources, because of its convenient use, renewable, low cost, no pollution, has been more widely used and rapid development in the world. Wind power has been taken as one of the priority development energy sources in the world.The increase of wind power capacity and complicated system structure will not only cause power outage,but also raise serious accidents when the set is at fault. In the beginning, the dissertation introduces the practical significance of project and the common failure mode of wind turbines, then researches and describes the failure of gearbox in detail, including the cause of failure, how to identify and how to improve the design. Based on the analysis of common failures, not only provide assistance for fault diagnosis to the technical

电厂发电机常见故障原因分析及预防分析 郝天通

电厂发电机常见故障原因分析及预防分析郝天通 发表时间:2018-05-30T09:00:26.640Z 来源:《电力设备》2018年第2期作者:郝天通[导读] 摘要:国家电力工程事业的不断进步与发展,极大地促进了电厂发电机应用技术的飞跃。 (身份证号码:13020319850621xxxx 河北省唐山市开平区大唐国际发电股份有限公司陡河发电厂河北唐山 063000)摘要:国家电力工程事业的不断进步与发展,极大地促进了电厂发电机应用技术的飞跃。研究电厂发电机常见故障原因及预防问题,对于提升故障应对效率,优化发电机应用效果有着重要意义。文章介绍了电厂发电机的常见故障,分析了其故障产生的多方面原因,并立足实际提出了发电机故障的预防措施,望对相关工作的开展有所裨益。 关键词:电厂;发电机;故障;预防 1前言 随着电厂发电机应用条件的不断变化,对其故障原因的分析及预防提出了新的要求,因此有必要对其相关课题展开深入研究与探讨,以期用以指导相关工作的开展与实践,并取得理想效果。基于此,本文从概述相关内容着手本课题的研究。 2电厂发电机的常见故障通常情况下,火电厂的发电机故障可以分为线圈故障、电气故障、液压系统故障等三大部分。 2.1线圈故障 线圈是发电机内部的重要部件,同时也是使用最频繁的部件,因此线圈故障是电厂发电机最常见的故障之一。常见的线圈故障主要包括线圈的老化、转子线圈的磨损、定子线圈的高温等。 2.2电气故障 随着时代科技的进步,电气设备结构越来越复杂,并且越来越现代化、智能化,这给电气设备的故障检测与维修带来了很大困难。一般情况下,发电机经常出现的电气故障主要有线套管温度过高、发电机大轴磁化、转子连接故障以及励磁回路故障等。 2.3液压系统故障 随着火力发电的快速发展,大型汽轮机组得到了广泛的应用,而液压系统作为大型汽轮机组的主要组成系统之一,一旦其发生故障就会严重的影响到机组的正常工作。目前常见的液压系统故障主要有汽轮机控制零件故障、液压控制系统故障、汽轮机高压控制油泄露故障等。 总之,电厂发电机组的故障多种多样,并且造成故障的原因也各不相同,因此在分析发电机故障原因时,要针对不同故障分别展开分析。 3电厂发电机故障产生的原因 3.1线圈故障原因分析 线圈故障有多种,因此本文针对不同种类的线圈故障,分析了故障产生的原因。 3.1.1线圈绝缘老化。这类故障是指线圈的绝缘层出现老化,使得绝缘层的耐压能力低于最低标准,从而很容易出现电压击穿故障。造成线圈绝缘老化的原因主要有以下几个:其一,线圈长时间的使用,导致线圈绝缘层出现自然老化。由于长时间使用而造成的绝缘层老化占到线圈绝缘层老化故障的大多数,是一种比较常见的线圈事故;其二,线圈质量不合格,浸胶不良,使用过程中出现绝缘侧脱落现象。质量差的线圈导线在使用过程中,经常会出现绝缘层松动,绝缘效果变差的问题。 3.1.2转子线圈磨损。在正常的发电生产中,发电机一般保持高速运转,甚至在某些时候要高负荷运转,因此发电机转子的转动速度很快,从而使得转子线圈的磨损十分严重,进而加速了绝缘层的老化,出现短路故障,造成发电机的严重损毁,甚至产生很大的生产事故。 3.1.3定子线圈磨损。定子与转子之间会产生摩擦,因此转子速度越快,定子受到的摩擦越严重,定子线圈的磨损就越严重,从而加速了定子线圈绝缘层的破坏,产生电压击穿事故。另外,外界灰尘、水、油等物质会浸入绝缘层中,影响绝缘效果,造成电压击穿事故。 3.2发电机的电气故障原因分析 由于发电机电气设备结构十分复杂,元部件众多,因此造成电气故障的原因有很多,从而给电气故障的诊断和预防带来很大困难。本文针对几种典型的电气故障,分析了造成电气故障的具体原因。 3.2.1线套管温度过高的原因。当发电机的无功负荷过高时,发电机底部的漏磁就会增多,从而产生电流,造成线套管温度升高。另外,发电机组中存在磁场,其产生的涡流会产生过多的热量,从而造成线套管温度升高。 3.2.2大轴磁化与退磁原因。发电机的大轴一般由含有铬镍等金属的钢材制成,因此大轴在长期工作中会被磁化,当发电机停机后,大轴内的磁场会因摩擦或者接触而产生电流,从而烧毁轴瓦,影响发电机的正常工作。 3.2.3转子连接部位故障原因。发电机在长时间使用后,发电机与转子连接部位的接触片会发生松动,从而增大了连接部位的摩擦,造成接触片的变形,严重的会导致发电机的停机。 3.2.4由于变阻器、晶闸管、云母片等部件引起的电刷抖动,会导致接触不良,从而造成励磁回路短路。 3.3发电机的液压系统故障原因分析 3.3.1发电机零部件故障原因。造成发电机零部件故障的原因主要有施工安装质量不合格以及零部件本身质量不合格。这些会造成控制电缆的老化以及接头松动等问题,从而影响机组的正常运行。 3.3.2控制系统故障原因。当系统的油压存在较大波动时,就会影响液压控制系统,而造成油压波动的原因主要是稳定控制油压的蓄能器出现损坏,无法起到蓄能作用,从而造成油压波动,影响控制系统,进而产生故障。 3.3.3高压控制油泄露原因。造成高压控制油泄露的原因主要是因为系统的密闭功能失效。一般液压系统的密闭件都要求耐腐蚀、耐高温,然而因橡胶密闭件质量不合格而造成的密闭功能失效的现象还时有发生,这就成为高压控制油泄露的主要原因。 4电厂发电机故障的预防措施发电机故障的诊断与预防是发电机维护工作的重要内容,因此采取合适的发电机故障预防措施至关重要。本文对预防线圈故障、电气故障、液压故障应该采取的措施分别进行了分析。 4.1线圈故障预防措施

汽油发电机常见故障汇总及解决方法

汽油机点火不着的原因具体有哪些方面? 汽油机要实现正常启动,必须具备三个条件:一、配气系统正常;二、供油系统正常;三、点火系统正常;这三个条件缺一不可。分析发动机不能启动故障,就从这三个方面进行逐一排查,定能事半功倍。当然在判断正常与非正常时,需要有一定经验积淀。工作过程中,发动机自行熄火后,不能启动。检查步骤是:1、握住起动手柄,慢慢拉转轴,感受压缩行程时的阻碍力,若阻力大则汽缸压缩力正常,初定配气系统正常,2、拆下火花塞后,重新装入火花塞冒中,并使火花塞搭铁,打开,迅速拉动起动手柄,观察火花塞跳火(俗称跳火试验)情况,若火花正常,则初定点火系统正常。问题可能出现在燃油供给系统,燃油供给系统故障有二种情况:其一:油流不畅或无油。主要原因有:①、油箱中无油;②、油箱盖小孔堵塞;③、油箱底部滤网堵塞;④、化油器开关油道堵塞;⑤、浮子室卡滞;⑥、主量孔堵塞。其二:油流通畅。主要原因有:①、燃油中有水;②、气缸内燃油过多;③、混合汽通道漏气。需要特别提醒的是,搁置较长时间的起动时,除作上述检查外,还要注意检查开关位置和风门的开度,以及燃油质量问题。安装有机油传感器的发动机首先检查箱内机油是否足够,传感器是否搭铁或损坏。若燃油供给系正常,气缸压缩正常,则故障在点火系。故障原因有:①、电极度脏污、积炭;②、火花塞绝缘体损坏;③、火花塞间隙不对;④、高压线漏电;⑤、火花塞损坏;⑥、点火线圈损坏;⑦、不够。点火系故障判断方法是:做火花塞跳火试验,观察有无火花或火花强弱,若无火花,拆下火花塞冒,用高压线直接跳火试验,若火花正常,故障在火花塞及火花塞冒。再将火花塞放置机体上,用高压线接触火花塞尾部进行跳火试验,若跳火正常,则火花塞冒损坏;若跳火微弱,或不跳火,则火花塞可能:①、火花塞积炭;②、火花塞电极间隙过大或过小;③、火花塞绝缘损坏;若高压线无电火花,断开点火器与点火开关的联接线,再作跳火试验,若跳火正常,则点火开关搭铁,清除搭铁点即可正常启动。若仍不跳火,可拆点火器上的熄火搭铁线,再跳火试验,若跳火正常,则熄火搭铁线有搭铁现象;若跳火微弱或不跳火则点火器损坏或磁场变弱。若燃油供给正常,点火系正常。则故障在配气系统。配气系统故障有两种现象:其一,气缸无压缩拉动曲轴无转动阻力。压缩过程漏气,可能产生的原因有:①、汽门密封不严漏气;②、气门发卡;③、汽缸垫损坏;④、气缸头螺丝松动;⑤、花塞松动;⑥、活塞环焦结;⑦、活塞环磨损;⑧、磨损;⑨、活塞磨损;⑩、过小或无间隙。其二,压缩正常。可能产生的原因有:①、启动负荷大,启动转速不够;②、进气或排气门推杆脱出;③进排气道堵塞;④、气门间隙过大。还应注意别人拆装过曲轴箱盖的发动机,应检查配气正时,确保万无一失。自行熄火的发动机,当检查确认配气正时、压缩良好、无进排气堵塞。然油供给正常,化油器雾化可靠。火共塞跳火也正常,但仍不能启动时,这时唯一应检查的部位是--飞轮键,若飞轮键被剪切就会使飞轮与曲轴正常装配位置发生改变,使飞轮上的相对曲轴的定位发生改变,最终造成点火不正时,故发动机不能启动,这一故障须拆卸飞轮才能检查。本人在工作中遇到二例。发动机工作中自行熄火,手拉起动盘不能

柴油发电机常见问题及解决措施

柴油发电机常见问题及解决措施 人类的生活越来越离不开电力支持,随着科技进步,出现了越来越多的供电方式。按其能量来源大致分为核能发电、水力势能发电、火力发电、风力发电和太阳能发电。在大型发电站的支持下,城市才能正常运作。但是城市对电的供应需求也越来越大,尤其是在夏季,用电高峰期经常会出现供电不足的现象。而医院、政府机关等单位一旦断电将产生极大的负面后果。除此之外,断电对大型企业会造成非常大的经济损失。所以现在越来越多的单位都拥有自己的备用电源。作为最常用的备用电力设备,柴油发电机组的维护和运行问题逐渐得到人们的重视。本文就多年使用柴油发电机设备的经验,对其进行维护、故障诊断及管理进行阐述。 柴油发电机组共有六大系统,分别是机油润滑系统、燃油系统、控制保护系统、冷却散热系统、排气系统和起动系统。其中问题主要集中在启动系统、冷却系统和燃油系统。 一、启动系统问题 由于柴油发电机是一般情况下是备用电源,因此柴油发电机常处于待机状态,运行状态较短暂。但正是由于是应急电源,其应急启动能力尤为关键,这就要求启动系统不能有问题。而启动的关键在于蓄电池,蓄电池是发动机启动时的唯一电源,对蓄电池要进行悉心的维护。要让蓄电池达到额定电压,就要求在平时对蓄电池的电压进行监控,对蓄电池进行充电时,到达额定电压后停止充电,若电压低于额定电压则自动进行充电。这需要带蓄电池电压监控功能的自动充电设备。 维护保养蓄电池要关注蓄电池内部成分比例,如果内部水、酸损失没有得到及时补充,或电解液量达不到规定液面高度,就会使蓄电池的性能大幅降低。若补充电解液时过量,则多于的电解液易腐蚀接线柱,处理的方法是打磨掉腐蚀,重新加固螺丝,以降低电阻。

风电场电气设备中风力发电机的运行维护 王玲

风电场电气设备中风力发电机的运行维护王玲 发表时间:2018-05-15T09:24:17.330Z 来源:《电力设备》2017年第34期作者:王玲 [导读] 摘要:目前,随着社会主义市场经济的不断发展,国家的综合国力得到有效的提高,但也造成了国家资源的大力开发,为了避免资源的浪费,实现可持续发展战略,我国开始不断发展可再生资源的研究,其中一项重要的资源利用就是风力,利用风力进行风力发电。 (中核甘肃风力发电有限公司甘肃兰州 735100) 摘要:目前,随着社会主义市场经济的不断发展,国家的综合国力得到有效的提高,但也造成了国家资源的大力开发,为了避免资源的浪费,实现可持续发展战略,我国开始不断发展可再生资源的研究,其中一项重要的资源利用就是风力,利用风力进行风力发电。在这一过程中,比较突出的风力工程发展就是风电场的建立,通过风电场来实现风力发电,有效地节约了资源。而下面本文将具体介绍风电场电气设备中风力发电机的运行维护问题。 关键词:风电场;电气设备;风力发电机;运行维护;分析研究 现今,有效地实现风能、机械能、电能之间互相转化的一项设备就是风力发电机,风力发电机主要在风电场中起着重要作用,关乎着风电场的经济效益和工程质量。基于此,风力发电机的运行维护工作就至关重要,需要相关人员重视起来。而在风电场电气设备的使用过程中,风力发电机的运行维护需要一定的方法,和一定的维护技术,需要维护人员提高自己的专业素养,提高维护技术。只有做好风力发电机的运行维护工作,才有可能保证风电场电气设备的正常运行,促进我国风力发电事业的发展。针对于此,下面本文将具体介绍风力发电机的重要性,并提出一些对风力发电机进行维护的建议。 一、风力电气设备发展原因及运行方式 随着经济的发展,人们的日常生活水平得到了大幅度的改善,人民群众的幸福度指数也大幅度上升,在此过程中,电力发展则起着重要的推动作用的,电力是社会发展与建设的基础桥梁。但随着社会的不断发展,电力资源不能紧跟时代发展的脚步,无法满足人们日益增长的电力需求和日常生活需求,在这样的大背景推动下,国家和相关技术人员开始寻找解决的办法,通过实践可知可以通过风力、水力、太阳能等可再生能源进行发电,风电场电气设备就在这种情况下应运而生,通过风电场中的风力发电机,将风能、机械能、电能三者有效地结合在一起,实现风力发电,有效地促进了我国电力资源开发。而风力发电机通常被建立在距城市较远的地方,通过多个CPU并列工作,以及先进的风力发电方式、计算机远程控制来实现风力发电机的运行。同时,以这种方式可以有效地减少人力资源的浪费和自然资源的浪费,加快我国电力资源开发十元的发展,促进风电场失业的经济效益,提高工作效率和工作质量。 二、风力电器设备中风力发电机出现故障的主要原因 任何一种机械设备都会发生故障,下面我们就风力发电机组在工作过程中有可能发生的故障进行简要的分析:由于发电机组受风能的影响,会长时间的工作,在保证电力生产的同时,其零部件设备会因为连续长时间的工作出现磨损情况,例如螺丝松动、齿轮磨损等等,这些都是正常的消耗.但是如果不及时的养护和处理,就会造成发电机组出现故障,影响其正常工作。首先,发电机组中叶片的功能是将风能通过旋转转化为机械能,然后再通过发电机转化为电能。为了使叶片能够更好地旋转,在对叶片的设计上采取了厚度和弦长逐渐递加的设计,这是因为叶片尖部旋转速度高、扫风面积达;叶片根部厚是为了结构更稳定,遇到强风不会发生折断。常见的叶片故障有叶片的折断、弯曲等,这些都是由于自然因素和长期损耗造成的。、其次,风力发电机组中的变流器容易发生故障,变流器是发电机组中的一个重要组成部分,直驱式风力发电机和双馈式风力发电机都离不开变流器。所以,变流器的安装位置温度过高、积聚灰尘、电磁干扰时都会出现故障问题,影响风力发电机的使用。此外,风力发电机的发电机如果缺少密闭的保护措施,旋转离心力过大时,发电机的运行速率就会加快,造成发电机出现故障,造成发电机内部叶片破损、断裂,影响整个风力发电机的使用。 三、风电场电气设备中风力发电机的运行维护 1.风力发电机的定期检修工作维护 风电场电气设备中,进行风力发电机的定期维护检测工作,可使工作中的设备始终处于良好状态,并延长设备的使用周期。在风力发电厂的定期检修维护工作中,要划出重点维护内容,包括:风电场电气设备中风力发电机连接点之间的螺栓力矩检测,各个传动传动部件间的润滑程度,以及测试各项重点功能。正常运行中的风力发电机,由于长期的处于工作状态其各个连接部件之间的螺栓经过长期的工作震动,极易出现螺栓松动与脱落现象,因此为了要防止螺栓脱落后,避免其在受力不均状态下被剪切,就必须检测各个连接部件的螺栓力矩。例:设风力发电机处于低于5摄氏度的环境中,为便于固定应使其力矩下降到额定力矩的80%,此外,再次检查的时间应是其周边温度高于5摄氏度时。一般对螺栓固定检测维护工作,是在无风或风小的夏天进行,这主要是为躲避风力发电机所处的高风力阶段。 2.日常排障维护工作 在风力发电机日常运行维护中,要观察发电及以内的安全平台和梯子是否处于安全状态,螺栓是否出现松动现象,另外在控制监控柜内部,有无烧焦糊味传出,发电机电缆位置是否出现偏移,注意其夹板有无松动。在风力发电机日常维护中注意还要注意“听”,对控制柜维护检查时注意听有无放电声音,若控制柜内部传出声音,极可能出现接线松动和接触不良。此外听偏航时声音,有无杂音和是否正常。而后听风力发电机轴承是否有异响传出,齿轮处,砸盘与闸垫之间,还有叶片切风声音是否正常。 3.提高风力发电机的运行维护技术 当前,现代化技术发展迅速,我们正是处于一种信息化的时代,那我们就要紧跟时代的潮流,努力创新风力发电机的运行维护技术,提高维修人员的专业素养。所以,在风力发电机的维护上,相关维护人员要注意从细节入手,观察风力发电厂俄其它设备的连接是否牢固、电缆线是否松动、老化、旋转部件及转动部件间有无磨损或者失效现象等。此外,风力发电机的齿轮箱和偏航减速齿轮箱上主要用稀油润滑方式,对于这部分的维护,主要是采用采样化验和补加润滑油的方式,确保齿轮箱以及偏航减速齿轮箱上有足够的润滑油。对于发电机的偏航轴承、发电机轴承、偏航齿轮等部位,则一般使用甘油润滑的方式。只有不断提高风力发电机的维护技术,风电场电气设备才能有效得到保护,才能提高风电场工作的质量。 4.完善检查管理制度 现今,任何事情都需要制度的约束,对于一个上市公司,制度更是至关重要,是企业运转的前提,也时企业发展的约束。所以,针对风电场电气设备的维护来说,更加需要相关检修管理制度的约束,以此来提高风力发电机的维修力度和维修质量。所以,在风力发电机维护时,要注意要定期对风力发电机的线路和元件进行检测,不断完善监测方法和检测制度,力争达到实现检修时间、检修项目、检修结果

相关文档
相关文档 最新文档