文档库 最新最全的文档下载
当前位置:文档库 › 基于八叉树的复杂地质体块段模型剖切方法

基于八叉树的复杂地质体块段模型剖切方法

基于八叉树的复杂地质体块段模型剖切方法
基于八叉树的复杂地质体块段模型剖切方法

工程地质知识点汇总

简答题汇总 1、工程地质常用的研究方法主要有: A、自然历史分析法;b、数学力学分析法;c、模型模拟试验法;d、工程地质类比法等。 2、岩石力学、土力学与工程地质学有何关系: 岩石力学和土力学与工程地质学有着十分密切的关系,工程地质学中的大量计算问题,实际上就是岩石力学和土力学中所研究课题,因此在广义的工程地质学概念中,甚至将岩石力学、土力学也包含进去,土力学和岩石力学是从力学的观点研究土体和岩体。它们属力学范畴的分支。 3、滑坡有哪些常用治理方法: 抗滑工程(挡墙、抗滑桩、锚杆、锚索、支撑)、排水工程、削坡减荷、防冲护坡、土质改良、防御绕避等。 4、水对岩土体稳定性有何影响: (1)降低岩土体强度性能 (2)静水压力 (3)动水压力 (4)孔隙水压力抵消有效应力 (5)地表水的冲刷、侵蚀作用 (6)地下水引起的地质病害、地基失稳(岩溶塌陷、地震液化、岩土的胀缩、土体盐渍化、黄土湿陷等)。 5、工程地质工作的步骤及内容: (1)收集已有资料 (2)现场工程地质勘察 (3)原位测试 (4)室内实验 (5)计算模拟研究 (6)工程地质制图成果 (7)工程地质报告 6、斜坡形成后,坡体应力分布具有以下的特征: ①无论什么样的天然应力场,斜坡面附近的主应力迹线均明显偏转。表现为愈接近坡面,最大主应力愈与之平行,而最小主应力与之近乎正交,向坡体内逐渐恢复初始状态。 ②由于应力分异结果,在坡面附近产生应力集中带。不同部位应力状态是不同的。在坡脚附近,最大主应力(表现为切向应力)显著增高,而最小主应力(表现为径向应力)显著降低,甚至可能为负值。由于应力差大,于是形成了最大剪应力增高带,最易发生剪切破坏。在坡肩附近,在一定条件下坡面的径向应力和坡顶的切向应力可转化为拉应力(应力值为负值),形成一张力带。当斜坡越陡此范围越大。因此坡肩附近最易拉裂破坏。 ③由于主应力偏转,坡体内的最大剪应力迹线也发生变化。由原来的直线变为凹向坡面的圆弧状。 ④坡面处的径向应力实际为零,所以坡面处于二向应力状态。

八叉树颜色量化

使用八叉树算法实现真彩色(24Bits)转256色.要实现此功能,主要就是从真彩色中查找出最能代表整张图像的256种颜色,建立调色板.八叉树就是为了找出这256种颜色. 1.) 建立八叉树 八叉树节点的特性就是每个节点最多有8个字节点,编号为0~7 . 以RGB值建立八叉树,首先建立根节点(Root),然后分别以RGB的每一位分别组成一个0~7的值,依次插入树中。以RGB(123,54,78)为例,

以此类推,将所有的RGB值逐层插入到八叉树中,在每个节点上,记录所有经过的节点的RGB值的总和,已及RGB颜色个数。八叉树节点结构如下: typedef struct tagNode { DWORD dwCounter ; // 经过该节点的个数 DWORD dwRedSum ; // R分量的总和 DWORD dwGreenSum ; // G 分量的总和 DWORD dwBlueSum ; // B 分量的总和 BOOL bLeafNode ; // 是否为叶子节点.

tagNode * psChild[8]; // 分别指向该节点编号为 0~7的8个子节点. }SNode ; 插入的过程中,如果节点不存在,则需要创建新的节点,然后增加节点计数以及RGB各分量的总和.当在插入时,发现节点已经存在,且是叶子节点,则停止该颜色后续层数节点的插入。插入完一个颜色之后,如果叶子节点数超过了我们要得到的颜色数(256色需要得到256种颜色),这时候就需要合并一些叶子节点了,使的叶子节点的个数不超过我们要得到的颜色数。 由于越底层的节点,数据的敏感度越低,所以,我们将从最底层的节点开始合并。按节点计数值小的优先合并策略,将其字节点的所有RGB分量以及节点计数全部记录到该节点中,并删除其所有子节点。依此进行,直到合并后的叶子数符合要求为止。 2.) 提取调色板 按照上述的步骤插入完所有的颜色之后,便建立起一颗叶子节点不超过256的八叉树。此时,取出叶子节点中的RGB分量的平均值(分量总和/ 节点计数),即是得到的调色板颜色值。3.) 匹配调色板索引 所谓匹配调色板索引,就是根据原始的RGB值,在调色板中查找出最接近的颜色的索引。对每个RGB颜色,分别对调色板数据求各分量的差值的平方和,求的的最小值对应的调色板颜色的索引,即是该RGB颜色匹配到的调色板索引

某水利水电工程水工模型试验报告

某水利水电工程水工模型试验报告115349763.doc 目录 .................................................................... ...................................................... 1 1. 概述 1.1 工程简 况 ..................................................................... .. (1) 1.2 试验资 料 ..................................................................... .. (1) 1.3 试验目的及研究内 容 ..................................................................... (2) 2 模型试验设计和制 作 ..................................................................... .. (5) 2.1 模型试验主要依 据 ..................................................................... . (5) 2.2 模型要 求 ..................................................................... .. (5)

2.3 模型量测仪器及设 备 ..................................................................... (6) 3. 设计方案试验成 果 ..................................................................... .. (7) 3.1 泄流能 力 ..................................................................... .. (9) 3.1.1 泄洪放空洞泄流能力...................................................................... .. (9) 3.1.2 溢洪道泄流能力...................................................................... .. (11) 3.2 泄洪放空洞水力特性简 述 ..................................................................... .. (13) 3.3 溢洪道水力特性简 述 ..................................................................... . (13) 4. 优化方案 I ...................................................................... . (14)

地质说明书管理规定

地质说明书管理规定 (暂行) 地质说明书是矿井生产重要的技术基础资料,它直接关系到采掘工程的合理布局,日常生产的合理安排,煤炭资源的合理开采和矿井的安全生产。为了使之更好的配合和服务于生产,特制定本办法: 一、一般要求: (一)各矿地测部门所提供的地质说明书的编制格式要符合集团公司下发的统一标准,正式打印。并依据技术程序,有相关人员签字。说明书打印装订整齐美观,无错漏字,文字通顺,表达准确文图一致,附图内容齐全,平剖面图一致,图纸色泽均匀,注字盖印或微机制图。 (二)技术部门所需的采区地质说明书、工作面回采和掘进地质说明书及各类巷道的掘进地质说明书,应根据矿井生产接续安排,提前下达由总工程师签字的编制委托书,其委托编制时间应符合以下要求: 1、采区设计所需地质说明书至少应在设计前二年通知,在正式设计前三个月提交。 2、回采工作面所需地质说明书,应在采面掘出后五天内提交。 3、掘进各类巷道所需的地质说明书应提前一上月通知,在设计前十五天交付。 地测科必须按委托书要求的时间及时提供。 (三)地质说明书编写时,除将根据技术部门设计要求所需的巷道、峒室绘制在煤层底板等高线图上外,还应将工作面四邻100m范围内查明的因工作面掘进或回采而影响的地面建筑物、井下巷道、采空区以及各类保护煤柱等绘制在图上,并在说明书文字中予以说明,需采取措施的应叙述清楚。

二、地质说明编制前,地测科应组织地质、水文、测量、通风各专业进行会审,重点查明以下情况: 1、区域内地面建筑物、铁路、公路、河流、水库、大坝及积水坑;对新生产的建筑物和积水塌陷坑应及时测绘,并填到采掘工程平面图上;对需留设的建筑物、巷道和边界保护煤柱进行检查、校核。 2、区域内四周和上覆煤层的采掘状况,揭露的地质构造、煤层及顶底板、陷落柱及岩浆侵入体情况。 3、分析区域内及附近对采、掘有水害威胁的巷道及采空区,重点是掘进工作面上方20m内,回采工作面上方40m内或采掘工作面四周20m以 内有积水(黄泥浆)的巷道和采空区。 4、排查区域内已有的地面钻孔情况,分析对采掘可能造成的影响。 5、区域内岩浆岩侵入、瓦斯、煤尘及自燃发火情况。 三、地质说明书的内容要求 (一)、采区地质说明书 文字部分: 1、简述采区位置、范围、四邻关系,上下限标高及埋深,井上下对照关系、地面高程。 2、简述采区范围内已有的勘探钻孔孔号,见煤及构造情况,水文情况,终孔层位及深度,封孔结论,以及对采掘可能造成的影响。 3、概述相邻采区实见地质及水文地质情况。 4、详细叙述采区内煤岩层产状及变化情况,断层及褶皱的产状,分布范围及控制程度,对开采可能造成的影响。 5、详述区内可采煤层的赋存情况,煤层厚度、结构及变化情况,可采范围和可采性预测,评价煤层的稳定性。煤层物理特征及工业指标情况。

地质图绘图一般规定

地质图绘图一般规定 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

主题内容与适用范围 1 主题内容 本规程规定了区域地质及矿区地质图件制作的要求、一般规定以及作业程序。 2 适用范围 本规程适用于区域地质调查、矿产详查及勘探矿区各类地质图件制作的技术依据之一。其他地质图件可参照执行。 3 引用标准和规范 DZ/T 0156-95 区域地质及矿区地质图清绘规程 DZ/T 0157-95 1:50 000地质图地理底图编绘规范 DZ/T 0159-95 1:500 000 1:1 000 000省(市、区)地质图地理底图编绘规范 DZ/T 0156-95 1:250 000地质图地理底图编绘规范 1:50 000区域地质矿产调查工作图式图例(1983年) 中华人民共和国地质矿产部 地质勘查技术管理规范补充规定(测绘、地质绘图)(1991) 中国人民武装警察部队黄金指挥部 金矿勘查综合图件编绘指南中国人民武装警察部队黄金第三总队

第一章矢量化的一般规程 对底图的质量要求 一般地质图件原稿图应符合下列要求: 1. 数学基础(直角坐标网、经纬网、内廓及各类控制点)精度必须符合规定要求; 2. 图面平整、内容清晰、所附资料齐全; 3. 国界、省(市、自治区)界等按国家有关规定进行了审查并有文字依据; 4. 相邻图幅各要素接边误差符合要求。 矢量化前准备工作 1. 矢量化前必须详细阅读底图(原图)和有关规范图式图例,了解各要素的清绘(矢量化)方法,做到心中有数。 2. 定作业计划。作业计划可按要素拟定,也可按每日工作量具体划分,以便有条不紊的工作。 3. 底图是否清绘准确,发现疑难问题,必须在清绘前向有关人员问清弄懂,自己不能擅自改动。 矢量化的质量要求 1. 原图各要素清绘符合规定要求,依比例尺的符号不得变形,不依比例尺的中心点位不得超差。 2. 上各项内容不得漏掉或有差错。 3. 国界及行政区划界线,严格按照可靠资料绘制。如有国界线的图,必须上级批准,并附有正式审批文件,方可绘制印刷。 4. 必须尊重原图,不得随意改动原划线位置,必须保持各要素的几何精度。正确处理各要素之间的相互关系。 5. 清绘工作中应采用各种有效的方法和技术,努力提高工作质量和效率。 6. 误差及基本参数符合要求

八叉树三维数据结构

(一)基本原理 用八叉树来表示三维形体,并研究在这种表示下的各种操作及应用是在进入80年代后才比较全面地开展起来的。这种方法,既可以看成是四叉树方法在三维空间的推广,也可以认为是用三维体素阵列表示形体方法的一种改进。 八叉树的逻辑结构如下: 假设要表示的形体V可以放在一个充分大的正方体C内,C的边长为2 n,形体V C,它的八叉树可以用以下的递归方法来定义: 八叉树的每个节点与C的一个子立方体对应,树根与C本身相对应,如果V=C,那么V 的八叉树仅有树根,如果V≠C,则将C等分为八个子立方体,每个子立方体与树根的一个子节点相对应。只要某个子立方体不是完全空白或完全为V所占据,就要被八等分(图2-5-1),从而对应的节点也就有了八个子节点。这样的递归判断、分割一直要进行到节点所对应的立方体或是完全空白,或是完全为V占据,或是其大小已是预先定义的体素大小,并且对它与V之交作一定的“舍入”,使体素或认为是空白的,或认为是V占据的。 如此所生成的八叉树上的节点可分为三类: 灰节点,它对应的立方体部分地为V所占据; 白节点,它所对应的立方体中无V的内容; 黑节点,它所对应的立方体全为V所占据。 后两类又称为叶结点。形体V关于C的八叉树的逻辑结构是这样的:它是一颗树,其上的节点要么是叶节点,要么就是有八个子节点的灰节点。根节点与C相对应,其它节点与C 的某个子立方体相对应。 因为八叉树的结构与四叉树的结构是如此的相似,所以八叉树的存贮结构方式可以完全沿用四叉树的有关方法。因而,根据不同的存贮方式,八叉树也可以分别称为常规的、线性的、一对八的八叉树等等。 另外,由于这种方法充分利用了形体在空上的相关性,因此,一般来说,它所占用的存贮空间要比三维体素阵列的少。但是实际上它还是使用了相当多的存贮,这并不是八叉树的主要优点。这一方法的主要优点在于可以非常方便地实现有广泛用途的集合运算(例如可以求两个物体的并、交、差等运算),而这些恰是其它表示方法比较难以处理或者需要耗费许多计算资源的地方。不仅如此,由于这种方法的有序性及分层性,因而对显示精度和速度的平衡、隐线和隐面的消除等,带来了很大的方便,特别有用。 (二)八叉树的存贮结构 八叉树有三种不同的存贮结构,分别是规则方式、线性方式以及一对八方式。相应的八叉树也分别称为规则八叉树、线性八叉树以及一对八式八叉树。不同的存贮结构的空间利用率及运算操作的方便性是不同的。分析表明,一对八式八叉树优点更多一些。 1、规则八叉树 规则八叉树的存贮结构用一个有九个字段的记录来表示树中的每个结点。其中一个字段用来描述该结点的特性(在目前假定下,只要描述它是灰、白、黑三类结点中哪一类即可),其

如何看地质图地质图

感谢下载 地质图 一、地质图的种类和基本内容 用规定的符号、线条、色彩来反映一个地区地质条件和地质历史发展的图件,叫地质图。它是依据野外探明和收集的各种地质勘测资料,按一定比例投影在地形底图上编制而成的,是地质勘察工作的主要成果之一。 (一)地质图的种类 1、普通地质图 以一定比例尺的地形图为底图,反映一个地区的地形、地层岩性、地质构造、地壳运动及地质发展历史的基本图件,称为普通地质图,简称地质图。在一张普通地质图上,除了地质平面图(主图)外,一般还有一个或两个地质剖面图和综合地层柱状图,普通地质图是编制其它专门性地质图的基本图件。 按工作的详细程度和工作阶段不同,地质图可分为大比例尺的(>1:25000)、中比例尺的〔1: 5000?1: 10万〕、小比例尺的(1 : 20万?1: 100万)。在工程建设中,一般是大比例尺的地质图。 缺地质图 2、地貌及第四纪地质图 以一定比例尺地地形图为底图,主要反映一个地区的第四纪沉积层的成因类型、岩性及其形成时代、地貌单元的类型和形态特征的一种专门性地质图,称为地貌及第四纪地质图。 3、 以一定比例尺地地形图为底图,反映一个地区总的水文地质条件或某一个水文地质条件及 地下水的形成、分布规律的地质图件,称为水文地质图。 水文地质图 4、工程地质图

工程地质图是各种工程建筑物专用的地质图,如房屋建筑工程地质图、水库坝址工程地质图、铁路工程地质图等。工程地质图一般是以普通地质图为基础,只是增添了各种与工程有关的工程地质内容。如在地下洞室纵断面工程地质图上,要表示出围岩的类别、地下水量、影响地下洞室稳定性的各种地质因素等。 丄号堆庶風IS (二)地质图的基本内容 1、平面地质图

水利水电工程地质三维模型的研究分析

水利水电工程地质三维模型的研究分析 发表时间:2016-09-09T15:37:21.973Z 来源:《建筑建材装饰》2015年10月上作者:吐尔逊江 [导读] 笔者通过对水利水电工程地质三维模型的研究进行分析,提出意见和建议,以期促进我国水利水电工程的快速发展。 (新疆水利水电勘测设计研究院地质勘测研究所,新疆乌鲁木齐830000) 摘要:近年来,随着社会经济的快速发展,我国水利水电工程建设也取得了相应的进展。传统的工程地质资料和地质问题的分析方法已经不能满足当今社会时代背景下我国水利水电工程的发展需要。地质工程师和设计人员要改变传统的二维静态模式,将三维模型应用于水利水电工程地质分析和研究中,以确保我国水利水电工程地质分析的可靠性。笔者通过对水利水电工程地质三维模型的研究进行分析,提出意见和建议,以期促进我国水利水电工程的快速发展。 关键词:水利水电工程;三维模型;研究分析 前言 随着社会的发展,三维模型在我国社会发展过程中的某些领域已经有所应用。地质勘测人员要重视我国水利水电工程施工前的地质勘测,获得相应的建模数据,结合我国水利水电工程的实际地质情况,对相关数据进行更新,以提高水利水电工程地质三维模型的质量和效率。将新的理念和方法应用于我国水利水电工程地质三维模型的建设过程中,实现三维模型的自动更新。 1工程地质三维模型现状 由于水利水电工程的特殊性和施工过程中的复杂性,目前,工程地质三维模型在我国水利水电工程中并没有得到普遍应用。近年来,地质三维模型一般被应用于石油和地质矿产的勘测和分析,从而实现资源开采质量和效率的提升。利用地质三维模型无论是进行石油和地质矿产的绘图还是设计,都能满足相应的精度要求,因此其实现了在石油和地矿领域的开发和应用。但是将三维模型应用于水利水电工程中,却相对比较复杂。水利水电工程的施工要求相对比较高,特别重视施工过程中的专业性和精确度。地质构造的复杂性限制了其在水利水电工程中的应用。由于基础设施的制约,工程地质三维模型并没有在水利水电工程施工中得到普遍的应用。 2工程地质三维模型建立方法及选择 结合国内外研究现状进行分析,工程地质三维模型的建立方法主要包括剖面成面法、直接点面法和拓扑分析法。剖面成面法是指在大量地质剖面的基础上,应用曲面构造法来达到相应的效果。国外的一些三维地质的相关软件都是通过这种方法来设计的。直接点面法的难度相对较大。它是通过将原始的线状数据进行相应的分层,结合各层面的相关标高,利用曲面构造法来达到三维设计效果。拓扑分析法是通过对各个层面离散点的空间拓扑关系进行分析,来对地质体进行构造。由于水利水电工程地质条件的限制,该种方法并没有被实践。 设计人员和施工人员要结合水利水电工程的实际情况,选择合适的方法进行三维模型的构建。与其他方法相比,用剖面成面法进行三维模型的建立相对比较简单,但是工作量比较大。将此种方法应用于水利水电工程设计过程中,不利于施工成本的控制和施工效率的提高。直接点面法无论是在理论上还是实践上都具有可行性。目前,该种方法已经在我国部分水利水电工程建设过程中进行了实践,并取得了成功。将拓扑分析法应用于工程地质三维模型的建立中相对比较复杂,由于理论的不完善性,尚没有投入实践。 3基本三维面的建立 基本三维面的建立包括地形三维面的建立和地层三维面的建立。 地形三维面建设过程中涉及到的相关因素比较多。它通过相关数据的测量获得三维离散点数据,然后通过三角剖分法将离散点转换成三角形网面。勘测人员和技术人员在进行计算的过程中,对三角网格的生成进行假定。三角网格对若干个顶点进行连接,再加入新的节点,然后将这些有新节点的三角形进行删除,形成空腔,将空腔节点与新节点进行连接,形成新的三角网格,直至所有的节点都加入。 地层三维面的建立由于技术水平的限制,需要进行相关的插值。设计人员和技术人员要认识到将三维点插值技术应用于地层三维面建立中的重要作用,并结合相关的方法进行插值。比如,相关操作人员可以采取距离反比法,以达到地层三维面的建立效果。在对三维网格结点的高程值进行计算的过程中,所有数据点的权重的和为1,权重越大,某数据点到该节点的距离越近。将距离反比法应用于地质三维面的建立中,是建立在相关理论基础上的。工程师在实际的操作过程中要结合具体的地质情况进行应用,以确保基本三维面建立的效率和准确性。 4三维面的处理 在地质三维面的处理过程中,(1)工程师要认识到边界范围的重要性,并在相关作图区域内对相关边界范围进行判断。然后结合边界范围的相关数值进行三维面的边界修剪。(2)在模型建立初期,相关负责人要对地形面和下控制面进行相应的控制。地质三维面要依据合理的施工顺序进行构建,避免建设不合理对三维模型造成影响。相关勘测人员和技术人员要结合水利水电工程施工的具体情况对地形进行勘测,确保上、下控制面处理的准确性。(3)在三维模型的建立过程中,地质工程师要认识到错动断层面的重要性。错动断层面是地层面的重要组成边界,它能够对地形分布进行直接切断。相关工程师和技术人员在三维面的构建过程中要认识到断层面的重要性,并将其应用于三维模型的构建过程中。(4)是对三维面趋势的模拟。它有利于对地质三维模型进行准确的构建。相关技术人员要通过相应的软件对模拟模型的算法进行构建。(5)三维面的折叠处理。技术人员在水利水电工程施工过程中要结合相关地质条件对其进行相应的处理,确保三维面的构建是通过折叠面实现的。技术人员在对三维面进行处理的过程中对三维方向进行选择,确保其与构建三维面的整体进行垂直。再根据三维方向角进行控制点坐标的旋转,然后对三维面进行构建,构建之后,再将其恢复到原来的位置。 5三维地质实体的建立 5.1地质单元体三维轮廓面的形成。由于地层面及构造面的不同,三维地质体能够被划分为不同的地质单元体。各个地质单元体的三维轮廓面是通过相关地层面和构造面在数据计算的基础上进行建构的。比如,建模者对该地质单元体的地形面或者基岩面进行选择,然后对小三角面和该顶面进行竖直方向的比较。然后通过相应处理后,再次进行比较。工程师和技术人员对该地质体的所有相关因素进行处理和构建,形成有许多三角面构成的三维轮廓面。 5.2对三维轮廓面进行处理,使其形成三维实体。这种计算方法适用于相对比较小的模型。如果模型比较大,对设备的要求会比较高。

中国水文地质图说明书

中国水文地质图说明书 前言 中国位于亚洲东部,太平洋西岸。地势西高东低,呈阶梯状展布。地貌形态多变,地质构造、区域水文地质条件复杂多样。 地下水的开发利用,在我国具有比较悠久的历史,但对其大规模的开采,还是始于20世纪50年代初期。当时随着国民经济建设的迅速发展,在全国范围开展了水文地质普查与勘探工作,对地下水的分布规律、赋存条件开始了较为全面的研究,并在此基础上开展了各种不同比例尺水文地质图件的编制。在50年代后期,地质部水文地持工程地质局和水文地质工程地质研究所完成了1 :300万比例尺《中国水文地质分区图》的编制;60年代进行了华北平原、松辽平原等较大的水文地质单元的编图及全国性1:1000万比例尺图件的编制;70年代末,地质部系统各省(区)水文地质队完成了全国大部分地区(除个别边远及高山地区外)1:20万比例尺的水文地质普查任务;1979年在全国地质系统的水文地质工作者及有关单位的共同努力下,编制和出版了《中华人民共和国水文地质图集》。此后,各省范围的综合性水文地质图幅和个别省、市的水文地质图集,也相继编制完成。 这次1:400万比例尺《中国水文地质图》的编制,是在上述工作的基础进行的。该图是全国1:400万比例尺水文地质图系的基础图幅。其编制的目的是为了全面总结、系统分析我国区域水文地质特征,研究我国全疆域的水文地质条件及地下水分布规律,为深入探索地下水形成、分布变化规律提供基础资料;对全国各不同区域地下水资源管理和环境保护提供依据;为国家经济展规划、基本建设部署提供区域性水文地质资料;并供有关院校教学参考及专业间学术交流。 关于编图资料:水文地质方面,主要是依据各省、区、市区域性水文地质资料、水文地质普查成果和中、小比例尺水文地质图件等实际资料;地质资料主要参照了1:400万比例尺《中华人民共和国地质图》,并应用1:150万比例尺《青藏高原地质图》对青藏高原地区进行了补充;基础底图资料源自中国地图出版社第9版1:400万比例尺《中华人民共和国地图》,另外,参考补充了全国性沙漠分布图和冰川冻土图中的有关资料。 图件的编制是在张宗祜所长的指导下,由焦淑琴、戴喜生两同志负责完成编稿,中国地图出版社李兆星同志负责地图编辑。图幅说明书曾由阎锡屿高级工程师审阅。在图件编制过程中秦毅苏主任参加过编制方案的讨论,董凤岐副所长参加了编制方案的拟定和编稿图件的审查。地矿部顾问委员会陈梦熊高级工程师和贾福海高级工程师、地矿部水文地质工程地质司辛奎德总工程师及水文地质工程地质研究所任福弘副所长等给予了各方面的指导。另外,在编稿后期,贾建芳同志协助过编稿底图修改稿的清绘,董华同志协助统计资料、制作总色样和校对工作。

地质图绘图规定 一般规定

主题内容与适用范围 1 主题内容 本规程规定了区域地质及矿区地质图件制作的要求、一般规定以及作业程序。 2 适用范围 本规程适用于区域地质调查、矿产详查及勘探矿区各类地质图件制作的技术依据之一。其他地质图件可参照执行。 3 引用标准和规范 DZ/T 0156-95 区域地质及矿区地质图清绘规程 DZ/T 0157-95 1:50 000地质图地理底图编绘规范 DZ/T 0159-95 1:500 000 1:1 000 000省(市、区)地质图地理底图编绘规范 DZ/T 0156-95 1:250 000地质图地理底图编绘规范 1:50 000区域地质矿产调查工作图式图例(1983年) 中华人民共和国地质矿产部 地质勘查技术管理规范补充规定(测绘、地质绘图)(1991) 中国人民武装警察部队黄金指挥部 金矿勘查综合图件编绘指南中国人民武装警察部队黄金第三总队

第一章矢量化的一般规程 对底图的质量要求 一般地质图件原稿图应符合下列要求: 1. 数学基础(直角坐标网、经纬网、内廓及各类控制点)精度必须符合规定要求; 2. 图面平整、内容清晰、所附资料齐全; 3. 国界、省(市、自治区)界等按国家有关规定进行了审查并有文字依据; 4. 相邻图幅各要素接边误差符合要求。 矢量化前准备工作 1. 矢量化前必须详细阅读底图(原图)和有关规范图式图例,了解各要素的清绘(矢量化)方法,做到心中有数。 2. 定作业计划。作业计划可按要素拟定,也可按每日工作量具体划分,以便有条不紊的工作。 3. 底图是否清绘准确,发现疑难问题,必须在清绘前向有关人员问清弄懂,自己不能擅自改动。 矢量化的质量要求 1. 原图各要素清绘符合规定要求,依比例尺的符号不得变形,不依比例尺的中心点位不得超差。 2. 上各项内容不得漏掉或有差错。 3. 国界及行政区划界线,严格按照可靠资料绘制。如有国界线的图,必须上级批准,并附有正式审批文件,方可绘制印刷。

PCL中八叉树理论

PCL中八叉树理论 建立空间索引在点云数据处理中已被广泛的应用,常见的空间索引一般 是自顶向下逐级划分空间的各种空间索引结构,比较有代表性的包括BSP树,KD树,R树,CELL树,八叉树等索引结构,其中就属KD树和八叉树在3D点云中的应用最为广泛,KD树的理论基础在上一篇推文中已经讲解,那么我们 知道PCL库中已经对KD树和八叉树的数据结构的建立和索引的方法进行的 实现,以方便在此基础上的其他点云的处理操作。 八叉树结构是由 Hunter 博士于1978年首次提出的一种数据模型。八 叉树结构通过对三维空间的几何实体进行体元剖分,每个体元具有相同的时 间和空间复杂度,通过循环递归的划分方法对大小为( 2 nx 2 n x 2 n ) 的三维空间的几何对象进行剖分,从而构成一个具有根节点的方向图。在八 叉树结构中如果被划分的体元具有相同的属性,则该体元构成一个叶节点; 否则继续对该体元剖分成8个子立方体,依次递剖分,对于( 2 n x 2 n x 2 n ) 大小的空间对象,最多剖分 n 次,如下图所示。 八叉树的存贮结构 八叉树有三种不同的存贮结构,分别是规则方式、线性方式以及一对八 方式。相应的八叉树也分别称为规则八叉树、线性八叉树以及一对八式八叉树。不同的存贮结构的空间利用率及运算操作的方便性是不同的。分析表明,一对八式八叉树优点更多一些。 规则八叉树 规则八叉树的存贮结构用一个有九个字段的记录来表示树中的每个结点。其中一个字段用来描述该结点的特性(在目前假定下,只要描述它是灰、白、黑三类结点中哪一类即可),其余的八个字段用来作为存放指向其八个子结 点的指针。这是最普遍使用的表示树形数据的存贮结构方式。

计算机图形学图形的几何变换的实现算法

实验二图形的几何变换的实现算法 班级 08 信计 学号 59 姓名 _____ 分数 _____ 一、 实验目的和要求: 1、 掌握而为图形的基本几何变换,如平移,旋转,缩放,对称,错切变换;< 2、 掌握OpenG 冲模型变换函数,实现简单的动画技术。 3、 学习使用OpenGL 生成基本图形。 4、 巩固所学理论知识,加深对二维变换的理解,加深理解利用变换矩阵可 由简单图形得到复杂图形。加深对变换矩阵算法的理解。 编制利用旋转变换绘制齿轮的程序。编程实现变换矩阵算法,绘制给出形体 的三视图。调试程序及分析运行结果。要求每位学生独立完成该实验,并上传实 验报告。 二、 实验原理和内容: .原理: 图像的几何变换包括:图像的空间平移、比例缩放、旋转、仿射变换和图像插值。 图像几何变换的实质:改变像素的空间位置,估算新空间位置上的像素值。 图像几何变换的一般表达式:[u,v ]=[X (x, y ),Y (x, y )],其中,[u,v ]为变换后图像 像素的笛卡尔坐标, [x, y ]为原始图像中像素的笛卡尔坐标。这样就得到了原始图像与变 换后图像的像素的对应关系。 平移变换:若图像像素点(x, y )平移到(x x 。,y ■ y 。),则变换函数为 u = X (x, y ) =x 沟, v 二丫(x, y ) = y ■ y 。,写成矩阵表达式为: 比例缩放:若图像坐标 (x,y )缩放到(S x ,s y )倍,则变换函数为: S x ,S y 分别为x 和y 坐标的缩放因子,其大于1表示放大, 小于1表示缩小。 旋转变换:将输入图像绕笛卡尔坐标系的原点逆时针旋转 v 角度,则变换后图像坐标为: u COST 内容: :u l :Sx k ;0 其中,x 0和y 0分别为x 和y 的坐标平移量。 其中,

水利工程实验技能

数值模型试验在水利工程中的应用摘要 关键词

一.引言 随着科学技术的发展,计算机科学技术的日益更新和在各领域的广泛应用,不仅在人们的生活、文化方面产生重大的变革,在工程实验方法中也有所改变,并展现出了突出的优点。试验方法主要包括原型观测试验和数值模型试验。物理模型是用一个较小尺寸的模型来尽可能精确的模拟原型的一种模型。物理模型的目的在于,通过一定的模型法则来模拟或者预测原型的行为状态。在自然科学系统的研究中有很多的建模方法。其中最重要的是物理模型和数学模型。物理模型可能是硬件模型或计算机模拟模型。数百年来,在原型结构设计、修改和建造过程中,模型也被列入工作计划内。船舶模型的作用是多种多样的,如在确定的货舱和压载舱的位置。力学模型是工业革命期间开始使用的,水力模型试验可追溯到十九世纪。近海工程模型对许多港口的发展、防波堤、系泊码头等非常有用。物理模型试验的主要益处之一是可以获得极有价值的信息,这种信息可以以极小的代价来预测原型成功性的概率。可以定性的对其进行观测。当原型的分析相当复杂的时候,引入物理模型就显得相当有必要。在其他情况下,型通常被用来验证简化假设所涉及(或内在)在大多数分析解决方案,包括高阶效应。但是,物理模型试验不能定量的对工程进行分析,因此,也就得不出精确解和从微观方面对工程作出深入的分析了解。着对于工程来说不仅可能造成资源的浪费,也可能因禅城较大的误差而出现工程事故。因此,又要在设计方法上有必要进行改进。 数值模型就是可以用数值或者能够定量计算而建立的模型,可以应用到生物学、天文学、医药学等等许多领域,同时,在水利工程方面应用也特别广泛。这种方法不仅能在计算机上进行模拟计算减少工程造价,而且还能够进行对多目标、多约束的工程问题进行很有效的优化。从而大大提高了我们对复杂问题的求解,在安全和经济的前提下进行优化分析。 二.数值模拟的步骤 数值模拟技术诞生于1953年Bruce G.H和PeacemanD.W模拟了一维气相不稳定径向和线形流。受当时计算机能力及解法限制,数值模拟技术只是初步应用于解一维一相问题。两相流动模拟诞生于1954年,West W J和Garvin W.W模拟了油藏不稳定两相流。在计算机上实现一个特定的计算,非常类似于履行一个物理实验。这时分析人员已跳出了数学方程的圈子来对待物理现象的发生,就像做一次物理实验。数值模拟实际上应该理解为用计算机来做实验。比如某一特定机翼的绕流,通过计算并将其计算结果在荧光屏上显示,可以看到流场的各种细节:如激波是否存在,它的位置、强度、流动的分离、表面的压力分布、受力大小及其随时间的变化等。通过上述方法,人们可以清楚地看到激波的运动、涡的生成与传播。总之数值模拟可以形象地再现流动情景,与做实验没有什么区别。 首先要建立反映问题(工程问题、物理问题等)本质的数学模型。具体说就是要建立反映问题各量之间的微分方程及相应的定解条件。这是数值模拟的出发点。没有正确完善的数学模型,数值模拟就无从谈起。牛顿性流体流动的数学模型就是著名的纳维—斯托克斯方程方程(简称方程)及其相应的定解条件。 数学模型建立之后,需要解决的问题是寻求高效率、高准确度的计算方法。由于人们的努力,目前已发展了许多数值计算方法。计算方法不仅包括微分方程的离散化方法及求解方法,还包括贴体坐标的建立,边界条件的处理等。这些过去被人们忽略或回避的问题,现在受到越来越多的重视和研究。

点数据的八叉树模型

点数据的八叉树模型 1、八叉树的原理 八叉树(Octree)又称为分层树结构,它将指定的三维空间区域分成8个卦限(Octants),且 在树上的每个非叶子节点处存储8个数据元素(体素)。每个元素称为体元,其对应的三维空 间称为体素。 假设要表示的形体V可以放在一个充分大的正方体C内,它的八叉树可以用以下的递归 方法来定义: 利用物体的最大和最小坐标值,围绕该物体定义一个平行六面体(包围盒),把它分解成8个子立方体,并对立方体依次编号为0, 1, 2,…7。八叉树的每个节点与C的一个子立方体 对应,树根与C本身相对应,如果V= C,那么V的八叉树仅有树根,如果V M C,则将C等分为八个子立方体,每个子立方体与树根的一个子节点相对应。只要某个子立方体不是完全空白 或完全为V所占据,就要被八等分(图1),从而对应的节点也就有了八个子节点。这样的递归判断、分割一直要进行到节点所对应的立方体或是完全空白,或是完全为V占据,或是其 大小已是预先定义的体素大小,并且对它与V之交作一定的“舍入”,使体素或认为是空白 的,或认为是V占据的。 图1立方体的八叉树分割 如此所生成的八叉树上的节点可分为三类: 灰节点,它对应的立方体部分地为V所占据; 白节点,它所对应的立方体中无V的内容; 黑节点,它所对应的立方体全为V所占据。 后两类又称为叶结点。因此,综上所述,形体V关于C的八叉树的逻辑结构是这样的:它是一颗树,其上的节点要么是叶节点,要么就是有八个子节点的灰节点,即若不为空 树的话,树中任一节点的子节点恰好只会有八个或零个,也就是子节点不会有零与八以外的 数目。根节点与C相对应,其它节点与C的某个子立方体相对应。 2、建立八叉树的步骤 (1)设定最大递归深度; (2)找出场景的最大尺寸,并以此尺寸建立第一个立方体; (3)依序将单位元元素丢入能被包含且没有子节点的立方体; (4)若没有达到最大递归深度,就进行细分八等份,再将该立方体所装的单位元元素全部 分担给八个子立方体; (5)若发现子立方体所分配到的单位元元素数量不为零且跟父立方体是一样的,则该子立 方体停止细分,因为跟据空间分割理论,细分的空间所得到的分配必定较少,若是一样

图形学种子填充算法

/种子填充算法 void CZhztchView::boundaryfill4(int x, int y, int boundarycolor, int newcolor) { int color; CClientDC dc(this); //获取客户区设备描述表 color=dc.GetPixel(x,y); if(color!=newcolor&&color!=boundarycolor) { dc.SetPixel(x,y,newcolor); boundaryfill4(x,y+1,boundarycolor,newcolor); boundaryfill4(x,y-1,boundarycolor,newcolor); boundaryfill4(x-1,y,boundarycolor,newcolor); boundaryfill4(x+1,y,boundarycolor,newcolor); } } ///////////////////////////////////////////////////////////////// /////////////// //扫描线填充算法 void CZhztchView::OnScanfill() {

RedrawWindow(); CDC* pDC=GetDC(); CPen newpen(PS_SOLID,3,RGB(255,0,0)); CPen *old=pDC->SelectObject(&newpen); spt[0]=CPoint(100,100); //绘制多边形区域 spt[1]=CPoint(300,100); spt[2]=CPoint(250,250); spt[3]=CPoint(100,250); spt[4]=CPoint(150,200); spt[5]=CPoint(90,180); spt[6]=CPoint(150,150); spt[7]=CPoint(100,100); pDC->Polyline(spt,8); //pDC->SelectObject(old); //ReleaseDC(pDC); // TODO: Add your command handler code here //CDC* pDC=GetDC(); CPen newpen2(PS_SOLID,1,RGB(0,255,0)); CPen *old2=pDC->SelectObject(&newpen2); int j,k,s = 0;

水工模型试验测量技术综述

水工模型试验测量技术综述 摘要:水工模型试验是解决工程实际问题,为理论研究和工程设计提供依据的重要手段。基础数据的准确度与精确度直接关系到试验成果的质量,因此试验中的测量技术非常关键。流速、流量、水位、压力、地形、泥沙含量等是模型试验中测量的主要数据,本文主要介绍了模型试验中这些数据的测量技术及存在的问题。 关键字:水工模型试验测量方法发展现状问题分析 引言 水工模型试验是根据相似原理,按照一定的相似比将需要研究的对象,如河流、水工建筑物等按一定比例缩小后,在缩小的模型中复演与原型相似的水流,进行水工建筑物各种水力学问题研究的实验技术,旨在定性或定量的揭示其运动规律或水力学特性,为理论研究和工程设计等提供依据。 自1870年弗劳德(Froude)首先按水流相似准则进行了船舶模型试验以来,随着水利事业的发展,水工模型试验水平在很大程度上有了提高,在理论设计、模型制作、试验测量、数据处理等方面都有了创新突破和发展。 模型试验中的数据测量对试验结果的质量起着至关重要的作用,数据的精确度和准确度直接关系到科研成果的质量。在水工模型试验中主要需要控制和测量的参数有流速、流量、水位、压力、地形、泥沙等,测量仪器的精度、范围、性能等决定着测量结果的准确性,因而优良的测量技术是模型试验的前提和保障。近年来随着激光技术、超声波技术、计算机技术及数字图像处理技术等先进技术的发展,模型试验测量技术有了较快的发展,但尚存在一些问题有待进一步研究,本文主要论述模型试验测量技术的发展及现在存在的一些问题。1.发展现状 1.1流速测量技术 流体的流速是流场最基本的物理量之一,对流体流动特性的认识很大程度上取决于流场的获得,而大多数描述流场的物理量都直接或间接与流速有关,如环量、涡量、流函数、流速势函数等等。在模型试验中流速的测量非常重要,随着技术的创新突破,流速的测量技术取得了较快的发展,从单点流速测量发展到多点测量,从单向到多向、从稳态向瞬态发展,从毕托管、旋浆流速仪、热线/热膜流速仪、电磁流速仪、超声波多普勒流速仪(ADV)、激

地质图说明书G.

×××地质图说明书 目录 绪论……………………………概述 第一章……………………………区域地质概况第二章…………………………....地层 第三章……………………………岩浆岩 第四章…………………………….变质岩 第五章…………………………….构造 第六章…………………………….矿产资源 第七章…………………………….地质灾害 第八章……………………………..构造发展史第九章……………………………..结束语

绪论 本工作地区为低山丘陵地段,主要河流有希力特河,敖尼尔河等,河流总体由西向东流动,第四纪河流冲积物沿河谷分布,形成该地区相对肥沃的土地,易于耕种。 本区的地质研究主要从地层,构造,岩浆岩,变质岩,矿产等方面进行,通过野外10条地质路线116个地质点的观察描述,完成了地质调查图件的编制工作。主要工作量:完成地质编图100km2;绘制1:25000地质剖面1条(位置见地质图);完成地层柱状图1份;相关图例1套。下面对该地区的地质内容分九章加以介绍。 第一章区域地质概况 在本区出露有岩浆岩,火山岩,变质岩以及奥陶系,侏罗系和第四系的地层。 主要地层单元包括:奥陶系上统裸河组,侏罗系中统塔木兰沟组、侏罗系上统满克头鄂博组,更新系上统大黑沟组以及全新统的现代河流冲洪积物。缺失泥盆系、志留系、石炭系、二叠系、白垩系。各时代地层厚度差别较大,该区内主要以侏罗系火山岩地层为最厚,厚度约1700m。其次为奥陶系的变质砂岩以及变质程度较低的板岩,厚度约为1000m,本区奥陶系和侏罗系出露面积最大。 本地区出露的侵入岩主要为海西期的花岗岩,主要分布在西部、西北部,岩体的展布与NE向断裂大致平行。除侵入岩之外在本区大范围分布侏罗系的火山岩,岩性主要有玄武质安山岩、火山角砾岩、含角砾凝灰岩、岩屑角砾岩、流纹岩、晶屑凝灰岩等。本地区的构造发育,主要为断裂构造,包括逆冲推覆构造,走滑断层,张性断裂等。在本地区变质岩的出露也相对广泛,主要由奥陶系裸河组的变质细砂岩与泥质粉砂质板岩组成。 相对于本区的矿产资源,几乎无矿化信息,无法研究其成矿可能性。 由于本地区的地层相对厚度及硬度的特性,其发生滑坡泥石流的可能性非常是小,但是断层的广泛分布以及火山口使得地震及地震引起的次生灾害发生的可能性很大。 下面将对上述内容进行详细的描述,并根据上述的地质概况进行了构造发展史的讨论。 第二章地层 本区出露的地层主要有奥陶系上统裸河组,侏罗系中、上统塔木兰沟组、满克头鄂博组,上新统大黑沟组以及全新统的现代河流冲洪积物。缺失泥盆系、志留系、石炭系、二叠系、白垩系。各时代地层厚度差别较大,该区内主要以侏罗系火山岩地层为最厚,厚度约3000m。其次为奥陶系的变质砂岩以及变质程度较低的板岩,厚度约为1000m,但奥陶系为本区出露面积最大的地层,在绝大部分地区均有出露。 第一节奥陶系 本区内出露的奥陶系为上统的裸河组,分为上、下两段,该组地层的厚度约为1000m 语在本区中部地区出露范围比较广,该组的岩性为变质砂岩、板岩,区域上与下伏地层Pt3Hgn 呈角度不整合接触。 一、裸河组下段(O3lh1)

相关文档