文档库 最新最全的文档下载
当前位置:文档库 › 各种语音编码占用带宽计算

各种语音编码占用带宽计算

各种语音编码占用带宽计算
各种语音编码占用带宽计算

1. 语音数据包封装的实现与CODEC 不论在呼叫控制信令上采用何种协议,语音包的传输基本上都基于RTP (real-time transport protocol RFC 1889 /RFC 3350)协议在网络上传输。

这是一种为传输实时媒体流而由IETF 制定的协议。

几乎所有的VoIP相关产品,都利用RTP收发语音信息。语音包的结构如下所示,在IP 层上封装后被送出到网络上,Payload 部分的信息量多少取决于所采用的编码方式。

一般说来,在VoIP 的世界里采用G.729 编码的较多,而在运营商提供的IP 电话服务中则是G.711较多0G.711是在ISDN网中也被使用的CODE,(音质较好,但与G.729相比信息量较多。而G.729则是一种压缩率高且音质也较好的CODEC 在传输一路语音信息时,G.711所需的带宽是64kbps,而G.729只需要8kbps。两者一般都以20msec间隔(这个间隔可变)发送数据包,因此我们可以推算出实际的包大小。

语音信息是一种模拟信号,而将语音转换成数据包首先需要将模拟信号转换为数字信号(数- 模转换)。相信大家对此都有所了解,将模拟式的语音信息用数字式传输的过程大致如下图所示。

现有的电话交换网中采用的编码方式是G.711 (PCM,在通话的两端必须采用同样的方式分别进行编码/解码操作才能实现语音通话,这里的编码/解码功能合称为CODEC(COder/DECode0r)

VoIP应用中常见的两种具有代表性的CODE如下:

G.711 (PCM方式:PCMk脉码调制:Pulse Code Modulation )

@ 采样率:8kHz

@ 信息量:64kbps/channel

@ 理论延迟:0.125msec

@ 品质:MOSS 4.10

G.729 (CS-ACEL方式:Conjugate Structure Algebraic CodeExcited Lin ear Prediction )

@ 采样率:8kHz

@ 信息量:8kbps/channel

@ 帧长:10msec

@ 理论延迟:15msec

@ 品质:MOSS 3.9

接下来就以这两种CODE为基础进行探讨。光使用CODE将语音信息数字化还不算是将语音数据包封装完成0

为了完成封包工作,VoIP 终端内置了被称为DSP(Digital Signal Processor )

的芯片0简单地说,就是对模拟信号编码后产生的大量数字信息进行实时处理的丄

芯片0

实际的封包过程,还需要使用RTP协议将语音数据包发送到网络上去。RTP包中,包括载荷类别(CODE的类别)、序列号(语音包的顺序)、时间戳(语音

包的发送间隔)等信息,接受方就以这些信息为基础将收到的数字信息还原为模拟

的语音信号。

2. 计算语音数据包的大小和所需带宽

实际的语音信息在IP 层上封装后的数据包格式如下。

IP Header(20Byte)+UDP Header(8Byte)+RTP Header(12Byte)+Payload (净载部分,可变长)

将语音信息封装为IP 包在 3 层以上就必然产生40Byte 的额外开销,那么使用G.711/G.729 CODEC分别以20msec周期封装语音信息包的话,所生成的包长度如下。

G.711 时

每秒送出的包为:1000/ 20msec = 50pps

一路语音信息所需的带宽64kbps = 50pps x Payload大小

Payload 大小 =64000/50= 1280bit = 160byte 语音包的长度为200byte。

G.729 时

每秒送出的包为:50pps

一路语音信息所需的带宽8kbps = 50pps x Payload大小Payload 大小= 8000/50

=160bit =20byte 语音包的长度为60byte。

在实际应用中具体应该使用哪种CODE呢?仅从语音通话业务的角度来看是用哪一种CODE都没有问题的。

但是,如果需要利用传真服务或是与VoIP 运营商互联的话,就必须使用G.711。而拥有多处分支机构的企业,用于分支间互联的往往不会是与LAN等同的

10/100Mbps的线路。多数分支甚至还在用128kbps的线路互联。

此时如果选择G.711 的话,光是语音信息就有可能把可用带宽消耗光。有些产品支持为不同的连接对象使用不同的CODE C利用这一功能,就可以做到在窄带连接上使用G.729,而在宽带连接上使用G.711。如果采用这类产品,为了统一运用管理策略,可以考虑使用“分支间采用G.729;同一LAN内采用G.711 ”的

设计。但如果有需要在分支间使用传真服务,则必须在分支间也使用G.711。

此外,在进行带宽计算时,还必须考虑二层上的开销。具体到采用以太网传输时,必须加上以太帧的开销。

以太网传输所需的额外开销包括

@前同步(Preamble): 7byte (为了通知帧发送开始而取同步的信号)

@ SFD:1byte (Start Frame Delimiter :数据帧开始部分)

@对端MAC地址:6byte

@ 源MAC地址:6byte

@ 协议:2byte (VLAN时包含于802.1q )

@802.1q 4byte (使用VLAN时)

@ FCS:4byte

下面再举两个实例。

实例 1 :以太帧带VLAN Tag

@ Preamble:7byte

@ SFD:1byte

@对端MAC地址:6byte

@ 源MAC M址:6byte

@ 802.1q:4byte (使用VLAN时)

@ FCS:4byte

根据实例1的计算可知,在使用VLAN功能的以太网上,每个三层的数据包需要加上28byte 的开销。

实例2:不带VLAN Tag的以太帧

@ Preamble:7byte

@ SFD:1byte

@对端MAC地址:6byte

@ 源MAC M址:6byte

@ 协议类别:2byte

@ FCS:4byte

根据实例2的计算可知,无VLAN环境下,每个3层包在以太网上需要的额外开销是26byte。

最后来简单计算一下不同CODE下所需的实际带宽。

计算的前提是RTP包送出间隔为20msec且2层上不使用VLAN此时每个包需要附加还必须加上40Byte (3层以上的开销)+26Byte(2层的开销)=66Byte的额外开销。而每一秒钟共产生50个包(50pps),因此除了净载的语音信息(64kbps)外开销部分所占用的带宽是66Byte x 8X 50=26.4kbps。

由此得出G.711 在实际传输中需要占用90.4kbps 的带宽,而在实际的网络设计中一般都是按照每路通话100kbps来进行估算的。G.729所占的带宽是34.4kbps,虽然加上额外开销后它所需的带宽仍远低于G.711,但考虑到消耗带宽中包头的

开销和净载分别占用的比例,不免令人觉得有些遗憾。

这样,就需要采用包头压缩等技术来进一步提高带宽的利用效率了

Codec BR NEB

G.711 64 Kbps 87.2 Kbps G.729 8 Kbps 31.2 Kbps G.723.1 6.4 Kbps 21.9 Kbps G.723.1 5.3 Kbps

20.8 Kbps G.726 32 Kbps 55.2 Kbps G.726 24 Kbps 47.2 Kbps G.728 16 Kbps 31.5 Kbps iLBC 15 Kbps 27.7 Kbps

BR = Bit rate

NEB = Nominal Ethernet Bandwidth (one direction)

根据我的使用经验,

8K 的G.729 加上IP 封装后达到32K,

为了防封杀,还有的用户使用IP Sec设备将语音做成VPN,这样G.729加上IP封装,再加上VPN 会达到60 多K 。

通信常识:波特率、数据传输速率与带宽的相互关系

通信常识:波特率、数据传输速率与带宽的 相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间内能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率范围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T 为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间内载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为: Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】 香农定理是在研究信号经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,它描述有限带宽、有随机热噪声信道的最

MHz与Mbps之间的关系

MHz与Mbps之间的关系 概念分析 随着网络的普及、综合布线的应用日趋广泛,传输等级也愈来愈高,从3类到4类再到5类,到目前已有6类布线产品投放市场。描述语定义这些等级的主要参数就是传输带宽(MHZ)。 与此同时,网络应用也层出不穷。传输介质从10Base5(粗缆)、10Base2(细缆)、 10BaseT(双绞线)、10BaseFL(光纤) 到100BaseTX(STP/UTP)、100BaseT4(4/5类UTP)、100BaseFX(光纤),到目前千兆快速网业已出现。用来描述这些应用得主要参数则是速率(Mbps)。 事实上,申农公式早已概括出带宽B和速率C 之间的关系: C=B*Log(1+SNR) 式中B为信道带宽,所谓带宽是指能够以适当保真度传输信号的频率范围,其单位似Hz,它是信道本身国有的,与所载信号无关。SNR为信噪比,它由系统的发收设备以及传输系统所处的电磁环境共同决定。而速率C是一个计算结果,它由B和SNR共同决定,其单位为bps,在概念上表征为每秒传输的二进制位数。 可见,给定信道,则带宽B也随之给定,改变信噪比SNR可得到不同的传输速率C 。MHz与Mbps有着一对多的关系,即同样带宽可以传输不同的位流速率。同时,Mbps是依赖于应用的;而MHz则与应用无关。 技术探讨 如果要给与打一个形象的比喻,那么汽车时速与引擎转速恰到好处。当给定旋转速度,在齿轮已知的情况下可以计算出汽车的速度。在这个类比当中,齿轮起了一个桥梁的作用。事实上,齿轮之于汽车和引擎就如编码系统之于速率和带宽。 编码是为计算机进行信息传输而被采用的。通过对信息进行编码,许多技术上的问题,比如同步、带宽受限等都可以得到解决。编码对于信息的可靠传输是至关重要的。 目前有两种基本的编码系列。第一种是每N位添加一个同步位,以使同步成为可能(如当N=1时,为Manchester编码;当N=4时,为4B5B编码),但这需要一个比原来更大的带宽。而且同步位越多,带宽需要越大。为了减小带宽,采用每7位添加一个同步位(即 7B8B 编码)的编码系统是可能的,但随之而来的是,当传输较长一串相同类型的位流时,同步就变得非常困难了。

WCDMA中3.84M码片速率的由来

wcdma 频率规划根据工信部规定,中国联通可用的频段是 1940MHz-1955MHz(上行) 2130MHz -2145MHz(下行) 上下行各15MHz。 WCDMA的频点称为UARFCN(UTRA Absolute Radio Frequency Channel Number,UTRA绝对频点号)。 2.1GHz频段上行频点号为9612~9888,下行频点号为10562~10838, 频点号除以5 就可以得到频点中心对应的频率值(以MHz为单位)。 每个频点间隔为200kHz,与GSM系统兼容。 当然每个频点的带宽远超过200kHz,这与CDMA的频点编号方式类似。 目前联通WCDMA系统下行第一频点号为10713(中心频率2142.6MHz),第二频点号 为10688,第三频点号为10663。 上行频点号分别为9763(中心频率1952.6MHz)、9738以及9713。 WCDMA 码片速率= 3.84MHz 扩频因子= 4 则符号速率= 960Kbps 码片速率 = 1秒钟传送的比特数 3.84M个 3gpp规定wcdma的UU口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个码片。因此1帧包含的比特数=2560*15=38400bit 因为1帧=10ms 所以码速率 =2560*15/10ms=2560*15/0.01s=2560*15*100=3840000=3.84*1000*1000 =3.84Mbit/S 因此 空口速率3.84Mb/S是由wcdma的帧结构所决定的。 3gpp规定wcdma的UU口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个 码片。 如此算来,2560*15/10ms即3840/ms换算成标准速率格式即3.84Mb/s。 我们知道wcdma是无线频带传输,即数字基带信号要经过调制变频到合适的频点上、在一 定的频带范围内来传输的。

网络带宽与下载速度之间的关系

网速与下载速度之间的关系 1. “位(bit)”和“字节(B)”之间的关系 位(bit):位是计算机中存储数据的最小单位,指二进制数中的一个位数,其值为“0”或“1”。 字节(byte):字节是计算机存储容量的基本单位,一个字节由8位二进制数组成。在计算机内部,一个字节可以表示一个数据,也可以表示一个英文字母,两个字节可以表示一个汉字。 1024个字节称为1K字节(1KB),1024K个字节称为1兆字节(1MB),1024M 个字节称为1吉字节(1GB)。 所以,字节和位之间的换算是8进制,即1B=8bit。 2.“网速”与“下载速度”之间的关系 网速:在计算机网络或者是网络运营商中,一般,宽带速率的单位用bps(或b/s)表示;bps表示比特每秒即表示每秒钟传输多少位信息,是bit per second的缩写。在实际所说的1M带宽的意思是1Mbps(是兆比特每秒Mbps不是兆字节每秒MBps)。 下载速度:下载速度指的是Byte/s。下载软件时常常看到诸如下载速度显示为128KBps(KB/s),103KB/s等宽带速率大小字样,这指的是(字节/秒),即Bps。 实际书写规范中B应表示Byte(字节),b应表示bit(比特),但在平时的实际生活中有的把bit和Byte都混写为b ,如把Mb/s和MB/s都混写为Mb/s,导致人们在实际计算中因单位的混淆而出错。 3. 计算光纤传输的真实速度 使用光纤连接网络具有传输速度快、衰减少等特点。以10M光纤为例计算一下它的下载速度是多少?一般情况下?“10M”指的是10240kbit/s(10.240Mb/s

即10M)。 换算成下载速度:10.240Mb/s=(10.240/8)MB/s=1.28 MB/s 在实际的情况中。理论值最高为1.28 MB/s。排除网络损耗以及线路衰减等原因因此真正的下载速度可能还不到1.28 MB/s 不过只要是1MB/s左右都算正常(实际网络损耗约为12%)。 4. 计算内网的传输速度 经常有人抱怨内网的传输的数度慢,那么真实情况下的10/100M网卡的速度应该有多快?网卡的100Mbps同样是以bit/s来定义的。 所以100Mb/S=102400Kbit/s=(102400/8)KByte/s=12800KByte/s 在理论上1秒钟可以传输12.8MB的速据考虑到干扰的因素每秒传输只要超过10MB就是正常了。现在出现了1000Mbps的网卡那么速度就是128MB/S 。 5.宽带上行与下行 上行速率:从你的电脑上传的速度,也就是别人从你的电脑进行通讯的速率。下行速率:你从网络主机下载的速度。

WCDMA考试试题复习资料

4月份WCDMA考试试题 一、填空题(30分) 1.无线环境中的衰落主要包括___阴影衰落___、___快衰落_ _、___空间衰落_ 。 阴影衰落:由障碍物阻挡造成,服从对数正态分布,慢衰落。 快衰落:移动台附近的散射体(地形,地物和移动体等)引起的多径传播信号在接收点相叠加,造成接收信号快速起伏的现象。 2. 假设机站天线的发射功率为43dBm,则对应____20_____W。公式要记住!! 3. 小区搜索分三步,第一步是利用PSCH信道的_PSC _获得时隙同步;第二步是利用SSCH 信道的_SSC _获得帧同步和主扰码组组号;第三步是利用_CPICH _信道获得该小区所使用的主扰码。 SCH:同步信道 PSCH:物理同步信道;SSCH:辅同步信道;CPICH:公共导频信道。 4. 对下行扰码而言,使用长扰码,范围从0到2^24-1,但为了加速小区搜索的过程,仅有8192 个码可以使用,分为512 个组,总共有 512 个主扰码。 手机扰码是每部手机唯一拥有的号码。 5. WCDMA系统带宽是 5MHZ ,码片速率为 3.84Mchips 。 一帧的时长为10ms,一帧有15个时隙,一个时隙有2560个码片,所以算出来是3.84Mchip/s . 6. 常见的覆盖问题有覆盖空洞、覆盖盲区、越区覆盖、导频污染、上下行不平衡等。 ★覆盖盲区:由于相邻两个基站站址相距较远(受障碍物的影响),导致其信号覆盖区不交叠,出现信号覆盖盲区。这种问题容易通过DT(路测)、CQT(呼叫质量测试)或用户投诉反映出来。 ★越区覆盖:如果基站的覆盖区域超过了规划预期的范围,就会在其他基站的覆盖区域内形成不连续的主导区域,形成越区覆盖。 ★导频污染:即在某一点存在过多的强导频却没有一个足够强的主导频的时候,即定义为导频污染。 ★上下行不平衡:指目标覆盖区域内,上下行对称业务出现下行覆盖良好而上行覆盖受限(如UE的发射功率达到最大仍不能满足上行BLER要求),或上行覆盖良好而下行覆盖受限(表现为下行专用信道码发射功率达到最大仍不能满足下行BLER要求)的情况。上下行覆盖不平衡的问题容易导致掉话。 7.多址技术有时分多址、频分多址和码分多址;双工技术有时分双工 和频分双工。 8、 WCDMA系统中,语音采用卷积编码,数据采用 Turbo 编码,信令采用的是卷积编码 9、 WCDMA容量是一个“软容量”,上行链路极限容量一般是受限于干扰,下行容量受限于功率。 10、WCDMA系统中,核心网CN与无线接入网UTRAN之间的接口定义为Iu接口。 Iu接口负责核心网(CN)和RNC(无线网络控制器)之间的信令交互。Iub是RNC和NODE-B之间的接口,

码片速率 解释

.符号速率 符号速率*扩频因子=码片速率,符号速率=码片速率/扩频因子 如: WCDMA, 码片速率= 3.84 MHz ,扩频因子=4 ,则符号速率=960kbps. CDMA 1X, 码片速率=1.2288MHz,扩频因子=64,则符号速率=19.2kbps. 符号速率=(业务速率+校验码)*信道编码*打孔率 如: WCDMA ,业务速率=384kbps,信道编码=1/3Turbo码,符号速率=960kbps CDMA 1X ,业务速率=9.6kbps,信道编码=1/3卷积码,符号速率=19.2kbps 2.码片(码元),码片速率,处理增益 系统通过扩频把比特转换成码片。 一个数据信号(如逻辑1或0)通常要用多个编码信号来进行编码,那么其中的一个编码信号就称为一个码片。 如果每个数据信号用10个码片传输,则码片速率是数据速率的10倍,处理增益等于10。 码片相当于模拟调制中的载波作用,是数字信号的载体。 常用的扩普形势是用一个伪随机噪声序列(PN序列)与窄带PSK信号相乘。PN序列通常用符号C来表示,一个PN序列是一个有序的由1和0构成的二元码流,其中的1和0由于不承载信息,因此不称为bit而称为chip(码片)。 要理解“码片”一词,先需要对扩频通信有所了解,我们的信息码,每一个数字都是携带了信息的,具有一定带宽。扩频通信就是用一串有规则的比信息码流频率高很多的码流来调制信息码,也就是说原来的“1”或“0”被一串码所代替。 由于这一串码才能表示一位信息,因此不能说成bit(bit是信息基本单位),所以找了个名词叫chip,这一串码的每一位码字就是一个chip,比如cdma的码片速率就是1.2288Mchip/s。(这个解释最易懂) 码片数率是指扩频调制之后的数据数率,用cps表示(chip per-second) 数据*信道码=chip,chip是最终在空口的物理信道上发送的数据速率单位 WCDMA的码片速率是3.84Mcps, c:chip,即码元。3.84Mcps:每秒3.84M个码元 码片速率是指经过扩频之后的速率,从MAC-d传过来的有效fp bit经过channel coding,帧均衡,速率匹配,复用到CCTrCH后,分成IQ两路,分别进行扩频和加扰的操作。扩频就是将有效bit与扩频码相乘,扩频操作会增加带宽的,扩频后的速率称为码片速率。因为10ms的TTI包含15个slot,每个slot有2560个chips,一算就可得出3.84Mchipps的码片速率 3.业务速率

带宽与信道容量与数据传输速率的关系

带宽与信道容量与数据传输速率的关系 2008-04-22 10:16:58| 分类:默认分类|举报|字号订阅 数据传输速率的定义 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为: S=1/T(bps) 其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是,那么信道的数据传输速率为1 000 000bps。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中: 1kbps=10^3 bps 1Mbps=10^6 bps 1Gbps=10^9 bps 带宽与数据传输速率 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则

与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率Rmax与通信信道带宽B(B=f,单位Hz)的关系可以写为: Rmax=(bps) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 奈奎斯特定理描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。香农定理则描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率Rmax 与信道带宽B、信噪比S/N的关系为: Rmax=(1+S/N) 式中,Rmax单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。

《数据通信基础》习题解析

第二周《数据通信基础》单元测验 一、选择题 1、通信链路的传信速率为4800b/s, 采用八电平传输,则其传码速率为() A.1600波特 B.600波特 C.4800波特 D.1200波特 解析: A、根据传信速率和传码速率在数值上的关系即可求出,有的同学常犯的错误是把关系弄反了,在数值上,传信速率一般是大于等于传码速率。 2、9600bit/s的线路上,进行一小时的连续传输,测试结果为有150比特的差错,问该数据通信系统的误码率是() A.8.68*10-6 B.8.68 *10-2 C. 4.34 *10-2 D.4.34*10-6 解析: D、先计算出一小时内总共传送的比特数,然后再计算出出错的150比特占整个的比例就可以了。 3、CRC循环冗余码中,若生成多项式对应的二进制序列是10011,则该生成多项式是() 解析: B 4、对于带宽为3kHz的无噪声信道,假设信道中每个码元信号的可能状态数为16,则该信道所能支持的最大数据传输率可达() A.48Kbps B.24Kbps C.12Kbps D.96Kbps 解析:B、题目中实际上要求的是无噪声情况下的信道容量,由奈氏定理可以得到该答案。 5、CDMA系统中使用的多路复用技术是() A.码分复用 B.频分复用 C.波分复用 D.时分复用 解析:A、CDMA是码分多址的英文缩写(Code Division Multiple Access),它是在数字技术的分支--扩频通信技术上发展起来的一种崭新而成熟的无线通信技术。CDMA技术的原理是基于扩频技术,即将需传送的具有一定信号带宽信息数据,用一个带宽远大于信号带宽的高速伪随机码(码片序列)进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。接收端使用完全相同的伪随机码(码片序列),与接收的带宽信号作相关处理,把宽带信号换成原来的数据。 6、波特率指的是() A.每秒传输的字节数 B.每秒钟传输信号码元的个数 C.每秒钟可能发生的信号变化的次数D每秒传输的比特 解析:B、单位是波特(Baud),在传输时通常用某种信号脉冲来表示一个0、1或几个0、1的组合。这种携带数据信息的信号脉冲称为信号码元。信号变化的次数不对,是因为连续传输多个相同的码元,信号不变。 7、下列因素中,不会影响信道数据传输速率的是() A.信噪比 B.调制速率 C.信号传播速度 D.带宽 解析:C、一方面,根据求信道容量的公式中可以判断出来;另外一方面,信号传播速度影响的是只是传播时延的大小。 8、假设一个CDMA 通信系统中,某站点被分配的码片序列为00011011,则当它发送了比特“0”的时候,实际在信道上传输的数据序列是() A. 11100100 B. 11100110 C. 11100101 D. 10000100 解析:A 因为在一个CDMA系统中,每个站点被指定一个唯一的m比特代码或码片序列(chip squence)。当发送比特1时,站点送出的是码片序列,若发送比特0时,站点送出的是该码片序列的反码。

通信常识:波特率、数据传输速率与带宽的相互关系

通信常识:波特率、数据传输速率与带宽的相互关系

通信常识:波特率、数据传输速率与带宽的 相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间内能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率范围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T 为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间内载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为: Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】

WCDMA的每个信道都是5M带宽吗

WCDMA 的每个信道都是5M带宽吗 wcdma 频率规划根据工信部规定,中国联通可用的频段是1940MHz-1955MHz(上行)、2130MHz -2145MHz(下行),上下行各15MHz。 WCDMA的频点称为UARFCN(UTRA Absolute Radio Frequency Channel Number,UTRA 绝对频点号)。 2.1GHz频段上行频点号为9612~9888,下行频点号为10562~10838,频点除以5就可以得到频点中心对应的频率值(以MHz为单位)。 每个频点间隔为200kHz,与GSM系统兼容。 当然每个频点的带宽远超过200kHz,这与CDMA的频点编号方式类似。 目前联通WCDMA系统下行第一频点号为10713(中心频率2142.6MHz),第二频点号为10688,第三频点号为10663。 上行频点号分别为9763(中心频率1952.6MHz)、9738以及9713。 WCDMA 码片速率= 3.84MHz 扩频因子= 4 则符号速率= 960Kbps 码片速率= 1秒钟传送的比特数 3.84M个

3gpp规定wcdma的UU口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个码片。因此1帧包含的比特数=2560*15=38400bit 因为1帧=10ms 所以码速率= 2560*15/10ms=2560*15/0.01s=2560*15*100=3840000=3.84*1000*1000=3.84Mbit/S 因此 空口速率3。84Mb/S是由wcdma的帧结构所决定的。3gpp规定wcdma的UU 口帧结构为帧长10ms,每帧15个时隙,每时隙有2560个码片。如此算来,2560*15/10ms 即3840/ms换算成标准速率格式即3.84Mb/s。 我们知道wcdma是无线频带传输,即数字基带信号要经过调制变频到合适的频点上、在一定的频带范围内来传输的。 在理想情况下传输一定基带带宽信号用和信号带宽相同的频带带宽就可以了。 实际上,由于形成频带带宽的带通滤波器不可能是理想的矩形,而是常用的钟型,就使得频带带宽要大于基带信号的带宽。 在WCDMA中采用升余弦滚降系数滤波器,滚降系数为0.22, 那么传速率为3.84Mb/s信号的所需带宽为B=3.84(1+0.22)=4.684Mb/s,考虑到频点间要留有一定的保护间隔200K,两头的两个一共是400K,

传输带宽计算方法

在视频监控系统中,对存储空间容量的大小需求是与画面质量的高低、及视频线路等都有很大关系。下面对视频存储空间大小与传输带宽的之间的计算方法做以介绍。 比特率是指每秒传送的比特(bit)数。单位为bps(BitPerSecond),比特率越高,传送的数据越大。比特率表示经过编码(压缩)后的音、视频数据每秒钟需要用多少个比特来表示,而比特就是二进制里面最小的单位,要么是0,要么是1。比特率与音、视频压缩的关系,简单的说就是比特率越高,音、视频的质量就越好,但编码后的文件就越大;如果比特率越少则情况刚好相反。 码流(DataRate)是指视频文件在单位时间内使用的数据流量,也叫码率,是视频编码中画面质量控制中最重要的部分。同样分辨率下,视频文件的码流越大,压缩比就越小,画面质量就越高。 上行带宽就是本地上传信息到网络上的带宽。上行速率是指用户电脑向网络发送信息时的数据传输速率,比如用FTP上传文件到网上去,影响上传速度的就是“上行速率”。 下行带宽就是从网络上下载信息的带宽。下行速率是指用户电脑从网络下载信息时的数据传输速率,比如从FTP服务器上文件下载到用户电脑,影响下传速度的就是“下行速率”。 不同的格式的比特率和码流的大小定义表: 传输带宽计算: 比特率大小×摄像机的路数=网络带宽至少大小; 注:监控点的带宽是要求上行的最小限度带宽(监控点将视频信息上传到监控中心);监控中心的带宽是要求下行的最小限度带宽(将监控点的视频信息下载到监控中心);例:电信2Mbps的ADSL宽带,理论上其上行带宽是 512kbps=64kb/s,其下行带宽是2Mbps=256kb/s

例:监控分布在5个不同的地方,各地方的摄像机的路数:n=10(20路)1个监控中心,远程监看及存储视频信息,存储时间为30天。不同视频格式的带宽及存储空间大小计算如下: 地方监控点: CIF视频格式每路摄像头的比特率为512Kbps,即每路摄像头所需的数据传输带宽为512Kbps,10路摄像机所需的数据传输带宽为: 512Kbps(视频格式的比特率)×10(摄像机的路 数)≈5120Kbps=5Mbps(上行带宽) 即:采用CIF视频格式各地方监控所需的网络上行带宽至少为5Mbps; D1视频格式每路摄像头的比特率为1.5Mbps,即每路摄像头所需的数据传输带宽为1.5Mbps,10路摄像机所需的数据传输带宽为: 1.5Mbps(视频格式的比特率)×10(摄像机的路数)=15Mbps(上行带宽) 即:采用D1视频格式各地方监控所需的网络上行带宽至少为15Mbps; 720P(100万像素)的视频格式每路摄像头的比特率为2Mbps,即每路摄像头所需的数据传输带宽为2Mbps,10路摄像机所需的数据传输带宽为: 2Mbps(视频格式的比特率)×10(摄像机的路数)=20Mbps(上行带宽) 即:采用720P的视频格式各地方监控所需的网络上行带宽至少为 20Mbps; 1080P(200万像素)的视频格式每路摄像头的比特率为4Mbps,即每路摄像头所需的数据传输带宽为4Mbps,10路摄像机所需的数据传输带宽为: 4Mbps(视频格式的比特率)×10(摄像机的路数)=40Mbps(上行带宽)

码片成型前后信号带宽速率关系

码片成型前后信号带宽、码片速率、滤波器截止频率的关系 设码片速率为P cps ,发送端采样速率为S1 Hz ,信号带宽为B Hz ,升余弦 滚降滤波器的滚降系数为α,归一化截止频率为w ,接受端采样速率为S2 Hz 。信号调制为BPSK 调制。 1. 信号带宽与码片速率的关系 升余弦成型滤波器频率传输特性如下:其中N f 为奈奎斯特带宽,N f =P/2, 奈奎斯特带宽就是码片速率的一半。 由上图可知,经过成型滤波器剩下信号带宽为; BW1=N f (1+α)=P/2*(1+α); 又由于信号经过BPSK 调制(频谱搬移将负的部分搬到正轴),因此信号的带宽: BW=2*BW1=P*(1+α); (1-1) 2. 码片速率和滤波器归一化截止频率关系 由上图可以看出,当f=N f 时,幅度为满幅的一半,可认为是截止频率。(从FDAtool 上可以看出来N f 就是截止频率),又因为归一化是对s f /2归一化)即: N f =(s f /2) *w=P/2 即可推导出: s f *w=P (1-2) N f 2N f (H f

通过方案中的信号格式可以验证以上公式: (1)协商信号 调制方式:BPSK; 码片成形:α=1升余弦成型; 表6.2.1 便携式小站与中心站业务信道协商信号扩频参数 协商信号 调制方式:BPSK; 码片成形:α=0.2升余弦成型; 表6.2.3 车载式小站与中心站业务信道协商信号扩频参数 以上两个表可验证公式: BW =P*(1+α); (2)小站接收信号带宽及滤波器设计归一化截止频率见下表:

Matlab仿真波形图: 仿真中,滚降系数为α=0.5,每个码片采4个点,令 f=4KHz,那么码片速率 s P为1KHz; 滤波成型后的波形 方波信号频谱图 成型波形频谱图 载波波形 BPSK调制信号频谱 f(1+α)=(1+α)*P/2=750Hz。 由第三、四张图可得,成型滤波后信号频谱为 N

网络带宽和下载速度的换算方法 为什么换算要除以8

网络带宽和下载速度的换算方法为什么换算要除以8 1.计算光纤传输的真实速度 使用光纤连接网络具有传输速度快。衰减少等特点。因此很多公司的网络出口都使用光纤。一般网络服务商声称光纤的速度为“5M”,那么他的下载真实速度是多少那?我们来计算一下,一般的情况下,“5M”实际上就是5000Kbit/s(按千进位计算)这就存在一个换算的问题。Byte和bit是不同的。1Byte=8bit.而我们常说的下载速度都指的是Byte/s 因此电信所说的“5M”经过还换算后就成为了(5000/8)KByte/s=625KByte/s这样我们平时下载速度最高就是625KByte/s常常表示625KB/S在实际的情况中。理论值最高为625KB/S。那么还要排除网络损耗以及线路衰减等原因因此真正的下载速度可能还不到600KB/S 不过只要是550KB/S以上都算正常 2.计算ADSL的真实速度 ADSL是大家经常使用的上网方式。那么电信和网通声称的“512K”ADSL下载速度是多少呢? 换算方法为512Kbit/s=(512/8)KByte/s=64KByte/s,考虑线路等损耗实际的下载速度在50KB/S以上就算正常了那么“1MB”那?大家算算吧答案是125KByte/s 3.计算内网的传输速度 经常有人抱怨内网的传输的数度慢那么真实情况下的10/100MBPS网卡的速度应该有多块呢? 网卡的100Mbps同样是以bit/s来定义的所以100Mb/S=100000KByte/s=(100000/8)KByte/s=12500KByte/s 在理论上1秒钟可以传输12.5MB的速据考虑到干扰的因素每秒传输只要超过10MB就是正常了现在出现了1000Mbps的网卡那么速度就是100MB/S 特别提示: (1)关于bit(比特)/second(秒)与Byte(字节)/s(秒)的换算说明:线路单位是bps,表示bit(比特)/second(秒),注意是小写字母b;用户在网上下载时显示的速率单位往往是Byte(字节)/s(秒),注意是大写字母B。字节和比特之间的关系为1Byte=8Bits;再加上IP包头、HTTP 包头等因网络传输协议增加的传输量,显示1KByte/s下载速率时,线路实际传输速率约10kbps。例如:下载显示是50KByte/s时,实际已经达到了500Kbps的速度。切记注意单位!!! (2)用户申请的宽带业务速率指技术上所能达到的最大理论速率值,用户上网时还受到用户电脑软硬件的配置、 所浏览网站的位置、对端网站带宽等情况的影响,故用户上网时的速率通常低于理论速率值。 (3)理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为103--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。4M(即4Mb/s)的宽带理论速率是:512KB/s,实际速率大约为200---440kB/s。 宽带网速计算方法

带宽、数据通信速率等关系.

数据传输速率、带宽、信道容量、信号传输速率关系 一、数据传输速率Rb 数据传输速率是描述数据传输系统的重要技术指标之一。 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T为传输1比特数据所花的时间。 数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bps。对于二进制数据,数据传输速率为:S=1/T(bps)其中,T为发送每一比特所需要的时间。 在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中: 1kbps=103bps 1Mbps=106kbps 1Gbps=109bps 二、信号传输速率 也称码元率、调制速率或波特率,表示单位时间内通过信道传输的码元个数,单位记做BAND。 三、带宽W: 1、在模拟信号系统领域: 信道可以不失真地传输信号的频率范围,每秒传输的信号周期数。带宽用来标识传输信号所占有的频率宽度,这个宽度由传输信号的最高频率和最低频率决定,两者之差就是带宽值,因此又被称为信号带宽或者载频带宽,单位为Hz。在信号传输系统中,系统输出信号从最大值衰减3dB的信号频率为截止频率,上下截止频率之间的频带称为通频带,用BW表示。 2、在数字系统领域: 四、信道容量: 信道在单位时间内可以传输的最大信号量,表示信道的传输能力。信道容量有时也表示为单位时间内可传输的二进制位的位数(称信道的

数据传输速率,位速率),以位/秒(b/s)形式予以表示,简记为bps。 五、数据传输率: 信道在单位时间内可以传输的最大比特数。信道容量和信道带宽具有正比的关系:带宽越大,容量越大。 六、波特率RB 电子通信领域,波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间内载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。调制速率,指的是信号被调制以后在单位时间内的变化,即单位时间内载波参数变化的次数。它是对符号传输速率的一种度量,1波特即指每秒传输1个符号。波特率(Baud rate)一般小于等于调制速率。 若数字传输系统,波特率又称码元速率。指每秒信号的变化次数。若数字传输系统所传输的数字序列恰为二进制序列,则等于每秒钟传送码元的数目,而在多电平中则不等同。单位为"波特",常用符号"Baud"表示,简写为"B"。 七、码元速率和数据传输速率的关系 码元速率和数据传输速率的关系式为: Rb=RB*。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 八、奈奎斯特定律 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。

网络技术中数据速率和带宽的关系

网络技术中数据速率和带宽的关系 数据传输速率 数据传输速率是描述数据传输系统的重要技术指标之一。数据传输速率在数值上等于每秒种传输构成数据代码的二进制比特数,单位为比特/秒(bit/second),记作bit/s或者bps。对于二进制数据,数据传输速率为:S=1/T (bps),其中,T为发送每一比特所需要的时间。例如,如果在通信信道上发送一比特0、1信号所需要的时间是0.001ms,那么信道的数据传输速率为1 000 000bps。在实际应用中,常用的数据传输速率单位有:kbps、Mbps和Gbps。其中:1kbps=103bps 1Mbps=106kbps 1Gbps=109bps 在现代网络技术中,人们总是以“带宽”来表示信道的数据传输速率,“带宽”与“速率”几乎成了同义词。信道带宽与数据传输速率的关系可以奈奎斯特(Nyquist)准则与香农(Shanon)定律描述。 奈奎斯特准则指出:如果间隔为π/ω(ω=2πf),通过理想通信信道传输的窄脉冲信号,则前后码元之间不产生相互窜扰。因此,对于二进制数据信号的最大数据传输速率R max与通信信道带宽B(B=单位Hz)的关系可以写为: R max=2B (bit/s) 对于二进制数据若信道带宽B=f=3000Hz,则最大数据传输速率为6000bps。 也就是在当信道的带宽为B(Hz)时,该信道的无码间干扰时的最高传输速率为2B(bit/s),也即系统的的最高频带利用率(单位频带内的传输速率)为2 .当发送端是传输码率超过了该基带信道的带宽的2倍时,将出现码间干扰,也就是信道的带宽限制了比特的传输速率。 奈奎斯特定理--描述了有限带宽、无噪声信道的最大数据传输速率与信道带宽的关系。 香农定理则--描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信噪比之间的关系。 香农定理指出:在有随机热噪声的信道上传输数据信号时,数据传输速率R max 与信道带宽B、信噪比S/N的关系为: R max=Blog2(1+S/N) (bit/s) 式中,R max单位为bps,带宽B单位为Hz,信噪比S/N通常以dB(分贝)数表示。若S/N=30(dB),那么信噪比根据公式:

《移动通信原理》复习题

《移动通信原理》期末复习题 一、判断题 1.数字移动通信系统要求调制技术使已调信号的频谱越宽越好,以便更好地抗衰落× 2.π/4-DQPSK是恒包络的调制技术,其优点是可采用成本低廉的非线性功放× 3.RAKE接收可以很好地克服移动通信中的多普勒频移× 4.FSK的解调由于其恒包络的特点不能采用包络检波× 5.MSK信号既可采用鉴频器解调,也可采用相干解调√ 6.MSK是相位连续且满足最小频差的调制指数为1的一种特殊形式的FSK × 7.MS移动到同一MSC的不同LA中,不需要进行位置登记× 8.CDMA系统中,只要邻站和本站处于同频工作状态,则此时均为软切换× 9.对于多载波系统,载波频率的偏移会导致子信道相互间产生干扰√ 10.GSM系统中,每一个用户在入网时分配公用的密钥Ki和唯一的IMSI × 11.在IS-95蜂窝移动通信系统中,前向是指手机发往基站的方向× 12.GSM网络中,BCCH信道和CCCH信道是不参与跳频的信道√ 13.处于通话状态中的MS从同一MSC下的某一BSC范围移动到另一BSC范围时,系统不必参与切换过程 × 14.蜂窝移动通信系统的最小区群的N值越大,其频率利用率将随之提高× 15.采用顶点激励方式的基站天线采用全向天线模式× 16.MS发,BS收的传输链路称为下行链路× 17.GSM900网络的双工间隔为50MHz × 18.GSM帧长为4.62ms,每帧8个时隙√ 19.移动通信网的信道一般分为控制信道和业务信道两大类√ 20.信号强度排列如下:直射波、反射波、绕射波、散射波√ 21.GSM中,BCCH既是上行信道,又是下行信道× 22.GSM中,MS与BS之间被定义为A接口,MSC与MSC之间被定义为Um接口× 23.WCDMA系统的空中接口带宽为5MHz,其码片速率为3.84Mc/s √ 24.DTX技术的采用可以使移动台具有更长的待机和通话时间√ 25.IMEI是用于国际唯一区分移动用户的号码× 26.GSM中鉴权和加密是两个独立的处理过程,两者间没有任何的关联× 27.扩频系统提高了系统的保密性、提升了系统的信噪比√ 28.IS-95蜂窝移动通信系统每个信道1.2288MHz,含有64个码道√ 29.TDD称为时分双工,收发信号在时间上分开互不干扰,广泛地用于IS-95系统× 30.一个BSC可以连接到多个MSC上,一个MSC也可以连接到多个BSC × 31.CDMA为干扰受限系统,当系统中增加一个通话用户时,所有用户的信噪比会下降√ 32.GSM通信系统中,SCH(同步信道)的作用包括帧同步和时隙同步√ 33.PCH为寻呼信道,当移动台申请开始一次通话时,利用它向基站发送请求× 34.TD-SCDMA的载频宽度是1.6MHz,其码片速率为1.28Mc/s √ 35.GSM网络中采用的是快跳频;((×)) 36.在同一MSC,不同BSC下的切换,系统不需要参与切换过程;((×)) 37.GSM网络中,BCCH信道不参与跳频;(√) 38.GSM网络中,每个频点间隔200kHz;(√) 39.切换过程中,目前移动网大都采用基站控制方式;((×)) 40.跳频可以改善瑞利衰落;(√) 41.采用顶点激励方式的基站天线是全向天线模式;((×)) 42.在GSM网络中,信道就是一个频道;((×)) 43.GSM网络,一个载频上最多可允许8个用户同时通信;(√) 44.MS发,BS收的传输链路称为下行链路;((×)) 45.GSM900网络的双工间隔为25MHz;((×))

带宽和位宽

带宽和位宽? 回答: 1.带宽和位宽的概念不同,带宽是指显卡传输数据的速度,单位是 “每秒多少字节(GByte/S)”;位宽是指显卡每一次传输数据的宽度,单位是“位(bit)”。如果用公路作比喻,带宽就是每秒过了多少辆车;位宽就是公路的宽度,能并排过几辆车。 2.带宽和位宽的性质不同,带宽是理论值,数据的实际传输速度 是不可能高于带宽的;而位宽是实际值。 3.带宽可以通过超频来提高,而位宽是固定不变的。 4.带宽的计算要看显存类型,一楼的朋友提供的公式用来计算SD 显存的带宽,如果是DDR显存,其带宽是相同SD显存的两倍。 5.带宽的确很重要,一般情况下,如果显存类型相同,128位64M 的性能优于64位128M,就是因为高位宽能带来高带宽。 位宽 显存位宽是显存在一个时钟周期内所能传送数据的位数,位数越大则瞬间所能传输的数据量越大,这是显存的重要参数之一。目前市场上的显存位宽有64位、128位和256位三种,人们习惯上叫的64位显卡、128位显卡和256位显卡就是指其相应的显存位宽。显存位宽越高,性能越好价格也就越高,因此256位宽的显存更多应用于高端显卡,而主流显卡基本都采用128位显存。 一般出现在同品牌上的显存位宽上,例如同为一款ATI RADEON9200但是在显存位宽上有所不同,有些为128bit、有些为64bit,而销售人员就经常把64bit当作128bit来卖,外观上几乎没有区别,有区别的就是在显存的个数上,而普通的消费者往往不能正确的辨识。在这里小编可以给大家介绍一种最基本的方法来比对,如果显卡上显存颗粒数为8颗,那么该显卡的位宽基本为128bit,如果显卡上显存颗粒数为4颗,则为64bit。以上方法只用于TSOP-II显存的辨认,而采用mBGA封装形式的显存通常都为128bit因为

相关文档
相关文档 最新文档