文档库 最新最全的文档下载
当前位置:文档库 › 必修4向量定义向量加法减法数乘向量坐标向量数量积向量模夹角

必修4向量定义向量加法减法数乘向量坐标向量数量积向量模夹角

必修4向量定义向量加法减法数乘向量坐标向量数量积向量模夹角
必修4向量定义向量加法减法数乘向量坐标向量数量积向量模夹角

第二章平面向量

本章内容介绍

向量这一概念是由物理学和工程技术抽象出来的,是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.

向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景.在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,学习平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容.能用向量语言和方法表述和解决数学和物理中的一些问题.

本节从物理上的力和位移出发,抽象出向量的概念,并说明了向量与数量的区别,然后介绍了向量的一些基本概念. (让学生对整章有个初步的、全面的了解.)

第1课时

§2.1 平面向量的实际背景及基本概念

教学目标:

1.了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、

单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.

2.通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.

3.通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.

学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.

教具:多媒体或实物投影仪,尺规

授课类型:新授课

教学思路:

一、情景设置:

如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否

追到老鼠?(画图)

结论:猫的速度再快也没用,因为方向错了.

分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、

有长短的量.

引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?A

B

C

D

1

2

二、新课学习:

(一)向量的概念:我们把既有大小又有方向的量叫向量

(二)请同学阅读课本后回答:(可制作成幻灯片)

1、数量与向量有何区别?

2、如何表示向量?

3、有向线段和线段有何区别和联系?分别可以表示向量的什么?

4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?

5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?

6、有一组向量,它们的方向相同或相反,这组向量有什么关系?

7、如果把一组平行向量的起点全部移到一点O ,这是它们是不是平行向量?这时各向

量的终点之间有什么关系?

(三)探究学习

1、数量与向量的区别:

数量只有大小,是一个代数量,可以进行代数运算、比较大小;

向量有方向,大小,双重性,不能比较大小.

2.向量的表示方法:

①用有向线段表示;

②用字母a、b

(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |.

3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.

向量与有向线段的区别:

(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量

就是相同的向量;

(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是

不同的有向线段.

4、零向量、单位向量概念:

①长度为0的向量叫零向量,记作0. 0的方向是任意的.

注意0与0的含义与书写区别.

②长度为1个单位长度的向量,叫单位向量.

说明:零向量、单位向量的定义都只是限制了大小.

5、平行向量定义: A(起点) B (终点)

a

①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.

说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.

6、相等向量定义:

长度相等且方向相同的向量叫相等向量.

说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;

(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段

.....

的起点无关

......

7、共线向量与平行向量关系:

平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的

......

起点无关)

......

说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.

(四)理解和巩固:

例1 书本86页例1.

例2判断:

(1)平行向量是否一定方向相同?(不一定)

(2)不相等的向量是否一定不平行?(不一定)

(3)与零向量相等的向量必定是什么向量?(零向量)

(4)与任意向量都平行的向量是什么向量?(零向量)

(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)

(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)

(7)共线向量一定在同一直线上吗?(不一定)

例3下列命题正确的是()

A.a与b共线,b与c共线,则a与c 也共线

B.任意两个相等的非零向量的始点与终点是一平行四边形

的四顶点

C.向量a与b不共线,则a与b都是非零向量

D.有相同起点的两个非零向量不平行

解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.

3

4

例4 如图,设O 是正六边形ABCDEF 的中心,分别写出图中与向量OA 、OB 、OC 相等的向量. 变式一:与向量长度相等的向量有多少个?(11个)

变式二:是否存在与向量长度相等、方向相反的向量?(存在)

变式三:与向量共线的向量有哪些?(FE DO CB ,,)

课堂练习:

1.判断下列命题是否正确,若不正确,请简述理由.

①向量AB 与CD 是共线向量,则A 、B 、C 、D 四点必在一直线上;

②单位向量都相等;

③任一向量与它的相反向量不相等;

④四边形ABCD 是平行四边形当且仅当AB =DC

⑤一个向量方向不确定当且仅当模为0;

⑥共线的向量,若起点不同,则终点一定不同.

解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量

AB 、AC 在同一直线上.

②不正确.单位向量模均相等且为1,但方向并不确定.

③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥

不正确.如图AC 与BC 共线,虽起点不同,但其终点却相同.

2.书本88页练习

三、小结 :

1、 描述向量的两个指标:模和方向.

2、 平行向量不是平面几何中的平行线段的简单类比.

3、 向量的图示,要标上箭头和始点、终点.

四、课后作业:

书本88页习题2.1第3、5题

5

第2课时

§2.2.1 向量的加法运算及其几何意义

教学目标:

1、 掌握向量的加法运算,并理解其几何意义;

2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;

3、 通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;

教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.

教学难点:理解向量加法的定义.

学 法:

数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移

的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.

教 具:多媒体或实物投影仪,尺规

授课类型:新授课

教学思路:

一、设置情景:

1、 复习:向量的定义以及有关概念

强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研

究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置

2、 情景设置:

(1)某人从A 到B ,再从B 按原方向到C ,

则两次的位移和:AC BC AB =+ (2)若上题改为从A 到B ,再从B 按反方向到C ,

则两次的位移和:AC BC AB =+

(3)某车从A 到B ,再从B 改变方向到C ,

则两次的位移和:AC BC AB =+ (4)船速为AB ,水速为BC ,则两速度和:AC BC AB =+

A B C

C A B A B C

A B

C

6 O A B a a a b b b 二、探索研究: 1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”) 如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a

探究:(1)两相向量的和仍是一个向量;

(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;

(3)当a 与b 同向时,则a +b 、a 、b 同向,

且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b

|,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;

若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.

(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到

n 个向量连加

3.例一、已知向量a 、b ,求作向量a +b

作法:在平面内取一点,作a OA = b AB =,则b a OB +=.

4.加法的交换律和平行四边形法则

问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同

从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)

2)向量加法的交换律:a +b =b +a a A B C a +b a +b a a b b

a b b aa

7 5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =

则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+

∴(a +b ) +c =a + (b +c )

从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.

三、应用举例:

例二(P94—95)略

练习:P95

四、小结

1、向量加法的几何意义;

2、交换律和结合律;

3、注意:|a +b | ≤ |a | + |b |,当且仅当方向相同时取等号.

五、课后作业:

P103第2、3题

六、板书设计(略)

七、备用习题

1、一艘船从A 点出发以h km /32的速度向垂直于对岸的方向行驶,船的实际航行的速

度的大小为h km /4,求水流的速度.

2、一艘船距对岸43km ,以h km /32的速度向垂直于对岸的方向行驶,到达对岸时,

船的实际航程为8km ,求河水的流速.

3、一艘船从A 点出发以1v 的速度向垂直于对岸的方向行驶,同时河水的流速为2v ,船

的实际航行的速度的大小为h km /4,方向与水流间的夹角是60?,求1v 和2v .

4、一艘船以5km/h 的速度在行驶,同时河水的流速为2km/h ,则船的实际航行速度大

小最大是______km/h ,最小是______km/h

5、已知两个力F 1,F 2的夹角是直角,且已知它们的合力F 与F 1的夹角是60?,|F|=10N

求F 1和F 2的大小.

6、用向量加法证明:两条对角线互相平分的四边形是平行四边形

8 第3课时

§2.2.2 向量的减法运算及其几何意义

教学目标:

1. 了解相反向量的概念;

2. 掌握向量的减法,会作两个向量的减向量,并理解其几何意义;

3. 通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.

教学重点:向量减法的概念和向量减法的作图法.

教学难点:减法运算时方向的确定.

学 法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量.

教 具:多媒体或实物投影仪,尺规

授课类型:新授课

教学思路:

一、 复习:向量加法的法则:三角形法则与平行四边形法则

向量加法的运算定律: 例:在四边形中,=++BA BA CB .

解:CD AD BA CB BA BA CB =++=++

二、 提出课题:向量的减法

1. 用“相反向量”定义向量的减法

(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a

(2) 规定:零向量的相反向量仍是零向量.-(-a ) = a.

任一向量与它的相反向量的和是零向量.a + (-a ) = 0

如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0

(3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差.

即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法.

2. 用加法的逆运算定义向量的减法:

向量的减法是向量加法的逆运算:

若b + x = a ,则x 叫做a 与b 的差,记作a - b

3. 求作差向量:已知向量a 、b ,求作向量

∵(a -b ) + b = a + (-b ) + b = a + 0 = a

作法:在平面内取一点O ,

A B D C O a

b B a b a -b

9 作OA = a , AB = b 则BA = a - b 即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量.

注意:1?AB 表示a - b .强调:差向量“箭头”指向被减数

2?用“相反向量”定义法作差向量,a - b = a + (-b )

显然,此法作图较繁,但最后作图可统一.

4. 探究:

1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b - a.

2)若a ∥b , 如何作出a - b ?

三、 例题:

例一、(P 97 例三)已知向量a 、b 、c 、d ,求作向量a -b 、c -d .

解:在平面上取一点O ,作OA = a , OB = b , OC = c , OD = d ,

作BA , DC , 则BA = a -b , DC = c -d

O A

B

a

B’ b

-b b B

a + (-

b )

a b A B C

b a d

c

D

O a -b A

A

B

B

B’ O a -b a a b b O A O B a -b

a -b

B A O -b

10

例二、平行四边形ABCD 中,=AB a ,=AD b , 用a 、b 表示向量AC 、DB .

解:由平行四边形法则得:

AC = a + b , DB = AD AB - = a -b

变式一:当a , b 满足什么条件时,a +b 与a -b 垂直?(|a | = |b |)

变式二:当a , b 满足什么条件时,|a +b | = |a -b |?(a , b 互相垂直)

变式三:a +b 与a -b 可能是相当向量吗?(不可能,∵ 对角线方向不同)

练习:P98

四、 小结:向量减法的定义、作图法|

五、 作业:P103第4、5题

六、 板书设计(略)

七、 备用习题:

1.在△ABC 中, BC =a , CA =b ,则AB 等于( )

A.a +b

B.-a +(-b )

C.a -b

D.b -a

2.O 为平行四边形ABCD 平面上的点,设OA =a , OB =b , OC =c , OD =d ,则

A.a +b +c +d =0

B.a -b +c -d =0

C.a +b -c -d =0

D.a -b -c +d =0

3.如图,在四边形ABCD 中,根据图示填空:

a +

b = ,b +

c = ,c -

d = ,a +b +c -d = .

4、如图所示,O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a 、b 、c 、

d 的方向(用箭头表示),使a +b =AB ,c -d =DC ,并画出b -c 和a +d .

A B

D C

第3题

11 2.3平面向量的基本定理及坐标表示

第4课时

§2.3.1 平面向量基本定理

教学目的:

(1)了解平面向量基本定理;

(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;

(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.

教学重点:平面向量基本定理.

教学难点:平面向量基本定理的理解与应用.

授课类型:新授课

教 具:多媒体、实物投影仪

教学过程:

一、 复习引入:

1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa

(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =

2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb

3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b

=λa .

二、讲解新课: 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面

内的任一向量a ,有且只有一对实数λ1,λ2使a

=λ11e +λ22e .

探究:

(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;

(2) 基底不惟一,关键是不共线;

(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;

12

(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量 三、讲解范例: 例1 已知向量1e ,2e 求作向量- 2.51e +32e . 例2 如图 ABCD 的两条对角线交于点M ,且AB =a ,

AD =b ,用a ,b MA ,MB ,MC 和MD 例3已知 ABCD 的两条对角线AC 与BD 交于E ,O 是任意

一点,求证:OA +OB +OC +OD =4OE

例4(1)如图,

OA ,OB 不共线,AP =t AB (t ∈R)用OA ,OB 表示OP .

(2)设OA 、

OB 不共线,点P 在O 、A 、B 所在的平面内,且(1)()OP t OA tOB t R =-+∈.求证:A 、B 、P 三点共线.

例5 已知 a =2e 1-3e 2,b = 2e 1+3e 2,其中e 1,e 2不共线,向量c =2e 1-9e 2,问是否存在这样的

实数,d a b λμλμ=+、使与c 共线.

四、课堂练习:

1.设e 1、e 2是同一平面内的两个向量,则有( )

A.e 1、e 2一定平行

B .e 1、e 2的模相等

C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )

D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R )

2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系

A.不共线 B .共线 C.相等 D.无法确定

3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( )

A.3 B .-3 C.0 D.2

4.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .

5.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填

共线或不共线).

五、小结(略)

13

六、课后作业(略):

七、板书设计(略)

八、课后记:

第5课时

§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算

教学目的:

(1)理解平面向量的坐标的概念;

(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线.

教学重点:平面向量的坐标运算

教学难点:向量的坐标表示的理解及运算的准确性.

授课类型:新授课

教 具:多媒体、实物投影仪

教学过程:

一、复习引入:

1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内

的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e

(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;

(2)基底不惟一,关键是不共线;

(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;

(4)基底给定时,分解形式惟一. λ1,λ2是被a

,1e ,2e 唯一确定的数量

二、讲解新课:

1.平面向量的坐标表示

如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为

基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得

yj xi a +=…………○

1 我们把),(y x 叫做向量a 的(直角)坐标,记作

),(y x a =…………○2

14

其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相.

等的向量的坐标也为.........),(y x .

特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.

如图,在直角坐标平面内,以原点O 为起点作a OA =, 则点A 的位置由a 唯一确定.

设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也

就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯

一表示.

2.平面向量的坐标运算

(1) 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,

b a -),(2121y y x x --=

两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.

设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++=

即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --=

(2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=

一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.

AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)

(3)若),(y x a =和实数λ,则),(y x a λλλ=.

实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.

设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=

15

三、讲解范例:

例1 已知A(x 1,y 1),B(x 2,y 2),求AB 的坐标.

例2 已知a =(2,1), b =(-3,4),求a +b ,a -b ,

3a +4b 的坐标.

例3 已知平面上三点的坐标分别为A(-2, 1), B(-1, 3), C(3, 4),求点D 的坐标使这

四点构成平行四边形四个顶点.

解:当平行四边形为ABCD 时,由DC AB =得D 1=(2, 2) 当平行四边形为ACDB 时,得D 2=(4, 6),当平行四边形为DACB 时,得D 3=(-6, 0)

例4已知三个力1F (3, 4), 2F (2, -5), 3F (x , y)的合力1F +2F +3F =0,求3F 的

坐标.

解:由题设1F +2F +3F =0 得:(3, 4)+ (2, -5)+(x , y)=(0, 0)

即:???=+-=++054023y x ∴?

??=-=15y x ∴3F (-5,1) 四、课堂练习:

1.若M(3, -2) N(-5, -1) 且 2

1=MP MN , 求P 点的坐标 2.若A(0, 1), B(1, 2), C(3, 4) , 则AB -2BC = .

3.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) , 求证:四边形ABCD 是梯

形.

五、小结(略)

六、课后作业(略)

七、板书设计(略)

八、课后记:

16

第6课时

§2.3.4 平面向量共线的坐标表示

教学目的:

(1)理解平面向量的坐标的概念;

(2)掌握平面向量的坐标运算;

(3)会根据向量的坐标,判断向量是否共线.

教学重点:平面向量的坐标运算

教学难点:向量的坐标表示的理解及运算的准确性

授课类型:新授课

教 具:多媒体、实物投影仪

教学过程:

一、复习引入:

1.平面向量的坐标表示

分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面

向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=

把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =

其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,

特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.

2.平面向量的坐标运算

若),(11y x a =,),(22y x b =,

则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.

若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=

二、讲解新课:

a ∥

b (b ≠0)的充要条件是x 1y 2-x 2y 1=0

设a =(x 1, y 1) ,b =(x 2, y 2) 其中b ≠a .

由a =λb 得, (x 1, y 1) =λ(x 2, y 2) ???==?21

21y y x x λλ 消去λ,x 1y 2-x 2y 1=0

17

探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ≠ ∴x 2, y 2中至少有

一个不为0

(2)充要条件不能写成2

211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ∥b (b ≠)0

1221=-=?

y x y x λ 三、讲解范例: 例1已知a =(4,2),b =(6, y),且a ∥b ,求y.

例2已知A(-1, -1), B(1,3), C(2,5),试判断A ,B ,C 三点之间的位置关系.

例3设点P 是线段P 1P 2上的一点, P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2).

(1) 当点P 是线段P 1P 2的中点时,求点P 的坐标;

(2) 当点P 是线段P 1P 2的一个三等分点时,求点P 的坐标.

例4若向量a =(-1,x)与b =(-x , 2)共线且方向相同,求x

解:∵a =(-1,x)与b =(-x , 2) 共线 ∴(-1)×2- x ?(-x )=0

∴x=±2 ∵a 与b 方向相同 ∴x=2

例5 已知A(-1, -1), B(1,3), C(1,5) ,D(2,7) ,向量与平行吗?直线AB

与平行于直线CD 吗?

解:∵=(1-(-1), 3-(-1))=(2, 4) , =(2-1,7-5)=(1,2)

又 ∵2×2-4×1=0 ∴∥CD

又 ∵ AC =(1-(-1), 5-(-1))=(2,6) ,AB =(2, 4),2×4-2×6≠0 ∴AC 与AB 不

平行

∴A ,B ,C 不共线 ∴AB 与CD 不重合 ∴AB ∥CD

四、课堂练习:

1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( )

A.6 B .5 C.7 D.8

2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为()

A.-3

B.-1

C.1

D.3

3.若=i+2j,=(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量).

与共线,则x、y的值可能分别为()

A.1,2

B.2,2

C.3,2

D.2,4

4.已知a=(4,2),b=(6,y),且a∥b,则y= .

5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.

6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x= .

五、小结(略)

六、课后作业(略)

七、板书设计(略)

八、课后记:

§2.4平面向量的数量积

第7课时

一、平面向量的数量积的物理背景及其含义

教学目的:

1.掌握平面向量的数量积及其几何意义;

2.掌握平面向量数量积的重要性质及运算律;

3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4.掌握向量垂直的条件.

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

授课类型:新授课

教具:多媒体、实物投影仪

内容分析:

本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:

18

19

平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运

算律.

教学过程:

一、复习引入:

1. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使

b =λa .

2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内

的任一向量a ,有且只有一对实数λ1,λ2使a

=λ11e +λ22e

3.平面向量的坐标表示

分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向

量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=

把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =

4.平面向量的坐标运算

若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.

若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=

5.a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0

6.线段的定比分点及λ

P 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,

使 P P

1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:

λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)

7. 定比分点坐标公式:

若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P 1=λ2PP ,则点P 的坐标为

λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比.

20

8. 点P 的位置与λ的范围的关系:

①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.

②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点.

9.线段定比分点坐标公式的向量形式:

在平面内任取一点O ,设1OP =a,

2OP =b, 可得OP =b a b a λ

λλλλ+++=++1111. 10.力做的功:W = |F |?|s |cos θ,θ是F 与s 的夹角.

二、讲解新课:

1.两个非零向量夹角的概念

已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的

夹角.

说明:(1)当θ=0时,a与b同向;

(2)当θ=π时,a与b反向;

(3)当θ=2

π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0?≤θ≤180?

2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量

|a ||b |cos θ叫a与b的数量积,记作a ?b ,即有a ?b = |a ||b |cos θ,

(0≤θ≤π).并规定0与任何向量的数量积为0.

?探究:两个向量的数量积与向量同实数积有很大区别

(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.

(2)两个向量的数量积称为内积,写成a ?b ;今后要学到两个向量的外积a ×b ,而a ?b 是

两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,

也不能用“×”代替.

(3)在实数中,若a ≠0,且a ?b =0,则b =0;但是在数量积中,若a ≠0,且a ?b =0,不能推出

b =0.因为其中cos θ有可能为0.

C

平面向量的数量积与应用举例专题训练

平面向量的数量积与应用举例专题训练 A组基础题组 1.已知向量a=(2,1),b=(1,m),c=(2,4),且(2a-5b)⊥c,则实数m=( ) A.- B.- C. D. 2.已知向量a=(1,0),|b|=,a与b的夹角为45°,若c=a+b,d=a-b,则c在d方向上的投影为( ) A. B.- C.1 D.-1 3.向量a,b满足|a+b|=2|a|,且(a-b)·a=0,则a,b的夹角的余弦值为( ) A.0 B. C. D. 4.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记 I1=·,I2=·,I3=·,则( ) A.I1

10.已知向量a=(cos x,sin x),b=(3,-∈[0,π]. (1)若a∥b,求x的值; (2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值. B组提升题组 1.已知a、b均为单位向量,且a·b=0.若|c-4a|+|c-3b|=5,则|c+a|的取值范围是( ) A.[3,] B.[3,5] C.[3,4] D.[,5] 2.非零向量m,n的夹角为,且满足|n|=λ|m|(λ>0),向量组x1,x2,x3由一个m和两个n排列而成,向量组 y1,y2,y3由两个m和一个n排列而成,若x1·y1+x2·y2+x3·y3的所有可能值中的最小值为4|m|2,则λ = . 3.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1). (1)求以线段AB,AC为邻边的平行四边形的两条对角线的长; (2)设实数t满足(-t)·=0,求t的值.

平面向量数量积教学反思

平面向量数量积教学反思 平面向量数量积教学反思 一、本节课的设想与基本流程:本节课主要是研究向量与向量的内积的问题,也就是向量的数量积。因为之前刚学习了向量的线性运算,所以我就直接从向量的线性运算引入了数量积这一概念,请同学来回答数量积的概念,在此过程中特别强调了夹角的概念,强调要共起点。这是学生容易出问题的地方,因此后面安排的例题就特意考察了这一问题;另外还强调了两个向量的数量积不是一个向量,而是一个数量,这也是它与之前的线性运算的区别;接下来,通过分析平面向量数量积的定义,体会平面向量的数量积的几何意义,从而使学生从代数和几何两个方面对数量积的“质变”特征有了更加充分的认识。 二、我的体会:通过本节课的教学,我有以下几点体会: (1)让学生经历数学知识的形成与应用过程高中数学教学应体现知识的来龙去脉,创设问题情景,建立数学模型,让学生经历数学知识的形成与应用,可以更好的理解数学概念、结论的形成过程,体会蕴含在其中的思想方法,增强学好数学的愿望和信心。对于抽象数学概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。 (2)鼓励学生自主探索、自主学习教师是学生学习的引导者、组织者,教师在教学中的作用必须以确定学生主体地位为前提,教学过程中要发扬民主,要鼓励学生质疑,提倡独立思考、动手实践、自主探索、阅读自学等学习方式。对于教学中问题情境的设计、教学过程的展开、练习的安排等,要尽可能地让所有学生都能主动参与,提出各自解决问题的方案,并引导学生在与他人的交流中选择合适的策略,使学生切实体会到自主探索数学的规律和问题解决是学好数学的有效途径。 (3)注重学生数学思维的培养本节通过特殊到一般进行观察归纳、合情推理,探求定义、性质和几何意义。在整个探求过程中,充分利用“旧知识”及“旧知识形成过程”,并利用它探求新知识。这样的过程,既是学生获得新知识的过程,更是培养学生能力的过程。我感觉不足的有:(1)教师应该如何准确的提出问题在教学中,教师提出的问题要具体、准确,而不应该模棱两可。(2)教师如何把握“收”与“放”的问题何时放手让学生思考,何时教师引导学生,何时教师讲授,这是个值得思考的问题。(3)教师要点拨到位在学生出现问题后,教师要及时点评加以总结,要重视思维的提升,提高学生的数学能力和素质。(4)课堂语言还需要进一步提炼。在教学中,提出的问题,分析引导的话应具体,明确,不能让学生不知道如何回答,当然有些问题我也考虑过该如何问,只是没有找到更合适的提问方法,这方面的能力有待加强。 以上就是本人的教学反思,只有不断地反思,不断地总结才能在今后的教学中取得更好的教学效果,尽快地提高自身的教学水平。 1 / 1

平面向量数量积运算专题附答案

. 平面向量数量积运算平面向量数量积的基本运算题型一DCBCEFABCDBAD,,=120°,点的边长为2,∠1 例(1)(2014·天津)已知菱形分别在边→→AFDFAEBCBEDC________. .若λ·上,的值为=3=,1=λ,则→→PBPAPAOPBAB) · (2)已知圆为切点,的半径为1,, 那么为该圆的两条切线,的最小值为,( 2 -43+2 +B.A.-2 3+2C.-4+D.22 -→→→→→OBOAOAABOA________. ·=|=1 变式训练(2015·湖北)已知向量3⊥,则,| 利用平面向量数量积求两向量夹角题型二 22babaababab与+(|,且2-(1)(2015·重庆例2 )若非零向量,则,)⊥(3满足||)=|3的夹 角为( ) ππ3πA. B. C. D.π424πabababab的夹角2-+与=|2,|,则|=32(2)若平面向量与平面向量,的夹角等于|3的余弦值等于( ) 1111A. B.- C. D.-262612121→→→→ABCOAOABACAB与)=(+,则上的三点,若2 变式训练(2014·课标全国Ⅰ)已知,,为圆2→AC的夹角为________. 教育资料. . 利用数量积求向量的模题型三 baababab等于+的夹角为|120°,则|=2,且例3 (1)已知平面向量|2和与,|||=1,) ( B.4 A.2 D.6 5 C.2ABCDADBCADCADBCPDC上的动点,则是腰=,∠1=90°,,=(2)已知直角梯形2中,,∥→→PAPB|的最小值为________. +3|1eeeebbe·.是平面单位向量,且若平面向量·满足变式训练3 (2015·浙江)已知,=beb|=,则=|·________. 112212 =12

(重点)平面向量数量积公式的应用(可编辑修改word版)

F D C A a B 1 O - A 1 b B 平面向量数量积公式的应用 向量的数量积是我们学习向量中的一种新的运算,它是两个向量之间的乘法关系,它们的积是数量,因此,数量积公式充分把向量与数结合在一起,为我们解题提供了一种新的思维方式。下面谈谈数量积公式在解题中的应用。 一、解决平面几何问题: 1. 长度问题 例 1:设 AC 是平行四边形 ABCD 的长对角线,从 C 引 AB 、AD 的垂线 CE 、CF ,垂足分别为 E 、F ,如图所示,求证: AB ? AE + AD ? AF = AC 2 。 B E 2. 垂直问题 例 2:如图所示,四边形 ADCB 是正方形,P 是对角线 DB 上一点,PFCE 是矩形,证明: PA ⊥ EF 。 3. 夹角问题 例 3:求等腰直角三角形两直角边上的中线所成的钝角。 二、解决三角问题: 1. 证明一些公式: 例 4: 对 于 任 意 实 数 , Y , 求 证 : cos(+ ) = cos cos - sin sin 。 X y A B P E D O F C x y A E O C D B x

2. 证明三角恒等式: 例 5:已知 、 为锐角, 且 3sin 2 + 2 s in 2 = 1 , A 5 3sin 2- 2 s in 2= 0 ,求证:+ 2= 。 2 A 6 A 4 A 7 e A 3 A 1 A 2 3. 求三角函数值: 2 例 6:求值: cos 7 + cos 4+ c os 6。 7 7 4. 解与三角形有关的问题: 例 7:在锐角△ABC 中,已知cos A + cos B - cos( A + B ) = 3 ,求角 C 的值。 2 三、证明等式: 一般来说,等式的证明都要进行恒等运算,但应用向量的有关知识和运算,并且简单明了。 例 8:设(x 2 + y 2 )(a 2 + b 2 ) = (ax + by )2 ( ab ≠ 0 ),求证: x = y a b

高中数学必修四之知识讲解_平面向量的数量积_基础

平面向量的数量积 【学习目标】 1.理解平面向量数量积的含义及其物理意义; 2.了解平面向量的数量积与向量投影的关系; 3.掌握数量积的坐标表示,会进行平面向量数量积的运算; 4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系; 【要点梳理】 要点一: 平面向量的数量积 1. 平面向量数量积(内积)的定义 已知两个非零向量a 与b ,它们的夹角是θ,则数量cos a b θ叫a 与b 的数量积,记作a b ?,即有 ()cos 0a b a b θθπ?=≤≤.并规定0与任何向量的数量积为0. 2.一向量在另一向量方向上的投影:cos b θ叫做向量b 在a 方向上的投影. 要点诠释: 1. 两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定. (2)两个向量的数量积称为内积,写成a b ?;今后要学到两个向量的外积a b ?,而a b ?是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替. (3)在实数中,若0a ≠,且0a b ?=,则0b =;但是在数量积中,若0a ≠,且0a b ?=,不能推出 0b =.因为其中cos θ有可能为0. 2. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0?时投影为b ;当θ=180?时投影为b -. 要点二:平面向量数量积的几何意义 数量积a b ?表示a 的长度||a 与b 在a 方向上的投影cos b θ的乘积,这是a b ?的几何意义.图(1)(2)(3)所示分别是两向量,a b 夹角为锐角、钝角、直角时向量b 在向量a 方向上的投影的情形,其中 1||cos OB b θ=,它的意义是,向量b 在向量a 方向上的投影是向量1OB 的数量,即11|| a OB OB a =? . 事实上,当θ为锐角时,由于cos 0θ>,所以10OB >;当θ为钝角时,由于cos 0θ<,所以10OB <; 当090θ=时,由于cos 0θ=,所以10OB =,此时O 与1B 重合;当0 0θ=时,由于cos 1θ=,所以

向量数量积的概念

第八章 向量的数量积与三角恒等变换 8.1 向量的数量积 8.1.1 向量数量积的概念 【课程标准】 了解向量数量积的概念,了解与数量积有关的投影,夹角,模的几何意义并能进行简单运算。 【核心素养】 逻辑推理,数学运算。 【导学流程】 一、基础感知 1.两个向量的夹角 给定两个非零向量,a b r r ,在平面内任选一点O ,作,OA a OB b ==u u u r r u u u r r ,则称[0,] π内的AOB ∠为向量a r 与向量b r 的 ,记作 。如图8-1-2,向量a r 与b r 的夹角为4 π ,即,a b <>=r r ;向量a r 与c r 的夹角为2 π ,则,a c <>=r r ;向量a r 与d u r 的夹角为 ,即,a d <>=r u r ;向量a r 与e r 的 夹角为 ,即,a e <>=r r . 练一练:已知等边三角形ABC ,D 为BC 的中点,求: ,,,,,,,AB AC BC AC BC CA DA BC <><><><>u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 根据向量夹角的定义可知: ,a b ≤<>≤r r . ,a b <>=r r . 当,2 a b π <>=r r 时,称向量a r 与向量b r ,记作 . 规定:零向量与任意向量垂直.

2.向量数量积的定义 一般地,当a r 与b r 都是非零向量时,称||||cos ,a b a b <>r r r r 为向量a r 与b r 的 .(也称为 ),记作 ,即 .由定义可 知,两个非零向量a r 与b r 的数量积是一个 . 两个非零向量的数量积即可以是 ,也可以是 ,还可以是 . 向量的数量积有如下性质: (1) (2) 当a r 与b r 至少有一个是零向量时,称它们的数量积为 ,即 . a r 与 b r 垂直的充要条件是 ,即 . 练一练:(1)已知5,4,,120a b a b ===?r r r r ,求a b ?r r ; (2)已知3,2,3a b a b ==?=r r r r ,求,a b <>r r . 由(2)可看出,如果,a b r r 都是非零向量,则cos ,a b <>=r r . 3.向量的投影与向量数量积的几何意义. 如图8-1-4所示,设非零向量AB a =u u u r r ,过,A B 分别作直线l 的垂线,垂 足分别为,A B '',则称向量A B ''u u u u r 为向量a r 在直线l 上的 或 .给 定平面上的一个非零向量b r ,设b r 所在的直线为l ,则a r 在直线l 上的投影称为a r 在向量b r 上的 .如图8-1-5中,向量a r 在b r 上的投影为 .

向量数量积专题(总)

平面向量的数量积 【知识点精讲】 一、平面向量的数量积 (1)已知两个非零向量a r 和b r ,记为OA a OB b ==u u u r r u u u r r ,,则)0(πθθ≤≤=∠AOB 叫做向量a r 与b r 的夹角,记作,a b <>r r ,并规定[],0,a b π<>∈r r 。如果a 与b 的夹角是2 π,就称a r 与b r 垂直,记为.a b ⊥r r (2)cos ,a b a b <>r r r r 叫做向量a r 与b r 的数量积(或内积),记作a b ?r r ,即b a ? cos ,a b a b <>r r r r . 规定:零向量与任一向量的数量积为0. 两个非零向量a r 与b r 垂直的充要条件是0.a b ?=r r 两个非零向量a r 与b r 平行的充要条件是.a b a b ?=±r r r r 二、平面向量数量积的几何意义 数量积a b ?r r 等于a r 的长度a r 与b r 在a r 方向上的投影cos b θr 的乘积,即cos a b a b θ ?=r r r r (b r 在a r 方向上的投影为cos a b b a θ?=r r r r );a r 在b r 方向上的投影为 cos .a b a b θ?=r r r r 三、平面向量数量积的重要性质 性质1 cos .e a a e a θ?=?=r r r r r 性质2 0.a b a b ⊥??=r r r r 性质3 当a r 与b r 同向时,a b a b ?=r r r r ;当a r 与b r 反向时,a b a b ?=-r r r r ;22a a a a ?==r r r r 或 a =r 性质4 cos (00)a b a b a b θ?=≠≠r r r r r r r r 且 性质5 a b a b ?≤r r r r 注:利用向量数量积的性质2可以解决有关垂直问题;利用性质3可以求向量长度;利用性质4可以求两向量夹角;利用性质5可解决不等式问题。 四、平面向量数量积满足的运算律 (1)a b b a ?=?r r r r (交换律);

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角; 2.平面向量数量积的运算 1第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度与相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义与性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A.-72 B.-12 C 、32 D 、52 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°、点E 与F 分别在线段BC 与DC 上,且u u u r BE =23u u u r BC ,u u u r DF =16 u u u r DC ,则u u u r AE ·u u u r AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得3(- 1+2m )-4(-2-m )=0,则m =-12,所以b =? ?????-121,所以a ·b =-1×????-12+2×1=52、 (2)取u u u r BA ,u u u r BC 为一组基底,则u u u r AE =u u u r BE -u u u r BA =23u u u r BC -u u u r BA ,u u u r AF =u u u r AB +u u u r BC +u u u r CF =-u u u r BA +u u u r BC +512u u u r BA =-712u u u r BA +u u u r BC ,∴u u u r AE ·u u u r AF =????23 u u u r BC -u u u r BA ·????-712 u u u r BA +u u u r BC =712|u u u r BA |2-2518u u u r BA · u u u r BC +23|u u u r BC |2=712×4-2518×2×1×12+23=2918、 [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系就是相等还就是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 平面向量的垂直问题 1第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 就是边长为2的等边三角形,已知向量a ,b 满足u u u r AB =2a ,u u u r AC =2a +b ,则下列结论正 确的就是( ) A.|b |=1 B.a ⊥b C.a ·b =1 D.(4a +b )⊥u u u r BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A.-92 B.0 C.3 D 、152 [解析] (1)在△ABC 中,由u u u r BC =u u u r AC -u u u r AB =2a +b -2a =b ,得|b |=2,A 错误.又u u u r AB =2a 且|u u u r AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B,C 错误.所以(4a +b )·u u u r BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥u u u r BC ,D 正确,故选D 、 (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0、∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6).

必修四4.平面向量的数量积(教案)

2、4 平面向量得数量积 教案A 第1课时 教学目标 一、知识与技能 1.掌握平面向量得数量积及其几何意义; 2.掌握平面向量数量积得重要性质及运算律; 3.了解用平面向量得数量积可以处理有关长度、角度与垂直得问题; 二、过程与方法 本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识. 三、情感、态度与价值观 通过问题得解决,培养学生观察问题、分析问题与解决问题得实际操作能力;培养学生得交流意识、合作精神;培养学生叙述表达自己解题思路与探索问题得能力. 教学重点、难点 教学重点:平面向量数量积得定义. 教学难点:平面向量数量积得定义及运算律得理解与平面向量数量积得应用、 教学关键:平面向量数量积得定义得理解. 教学方法 本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识. 学习方法 通过类比物理中功得定义,来推导数量积得运算. 教学准备 教师准备: 多媒体、尺规、 学生准备:练习本、尺规、 教学过程 一、创设情境,导入新课 在物理课中,我们学过功得概念,即如果一个物体在力F得作用下产生位移s,那么力F所做得功W可由下式计算: W=|F | | s|cosθ, 其中θ就是F与s得夹角.我们知道力与位移都就是向量,而功就是一个标量(数量). 故从力所做得功出发,我们就顺其自然地引入向量数量积得概念. 二、主题探究,合作交流 提出问题 ①a·b得运算结果就是向量还就是数量?它得名称就是什么? ②由所学知识可以知道,任何一种运算都有其相应得运算律,数量积就是一种向量得

专题二 培优点9 平面向量数量积的最值问题

培优点9 平面向量数量积的最值问题 平面向量部分,数量积是最重要的概念,求解平面向量数量积的最值、范围问题要深刻理解数量积的意义,从不同角度对数量积进行转化. 例 (1)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB →|AB →|+4AC → |AC →|,则PB →·PC → 的最大值等于( ) A .13 B .15 C .19 D .21 答案 A 解析 建立如图所示的平面直角坐标系,则B ????1t ,0,C (0,t ),AB →=????1t ,0,AC →=(0,t ), AP →=AB →|AB →|+4AC →| AC →|=t ????1t ,0+4t (0,t )=(1,4),∴P (1,4), PB →·PC →=????1t -1,-4· (-1,t -4) =17-????1t +4t ≤17-21t ·4t =13, 当且仅当t =12 时等号成立. ∴PB →·PC →的最大值等于13. (2)如图,已知P 是半径为2,圆心角为π3 的一段圆弧AB 上的一点,若AB →=2BC →,则PC →·P A →的最小值为________. 答案 5-213 解析 以圆心为坐标原点,平行于AB 的直径所在直线为x 轴,AB 的垂直平分线所在的直线为y 轴,建立平面直角坐标系(图略),则A (-1,3),C (2,3),

设P (2cos θ,2sin θ)????π3≤θ≤2π3, 则PC →·P A →=(2-2cos θ,3-2sin θ)·(-1-2cos θ,3-2sin θ)=5-2cos θ-43sin θ=5-213sin(θ+φ), 其中0

平面向量的数量积及其应用

06—平面向量的数量积及其应用 突破点(一) 平面向量的数量积 1.向量的夹角;2平面向量数量积的运算 1.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可. 2.根据定义计算数量积的两种思路 (1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算. (2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. [典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( ) A .-72 B .-12 (2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且BE =23BC ,DF =16 DC ,则AE ·AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题 意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =? ????-12,1,所以a ·b =-1×? ?? ??-12+2×1=52. (2)取BA ,BC 为一组基底,则AE =BE -BA =23 BC -BA ,AF =AB +BC +CF =-BA +BC +512BA =-712BA +BC ,∴AE ·AF =? ????23 BC -BA ·? ????-712 BA +BC =712 |BA |2-2518BA ·BC +23|BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918 [易错提醒] (1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”. 突破点(二) 平面向量数量积的应用 的关系 平面向量的垂直问题 1.第一,计算出这两个向量的坐标; 第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. 2.已知两个向量的垂直关系,求解相关参数的值 根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ) A .-92 B .0 C .3 [解析] (1)在△ABC 中,由BC =AC -AB =2a +b -2a =b ,得|b |=2,A 错误.又AB =2a 且|AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·BC =(4a +b )·b =4a ·b +|b |2 =4×(-1)+4=0,所以(4a +b )⊥BC ,D 正确,故选D. (2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,- 6).

人教版高中数学版必修4试题 2-4-2平面向量数量积的坐标表示

课时作业23 平面向量数量积的坐标表示、模、夹角 时间:45分钟 分值:100分 一、选择题(每小题6分,共计36分) 1.设a =(1,-2),b =(3,1),c =(-1,1),则(a +b )·(a -c )等于( ) A .11 B .5 C .-14 D .10 解析:a +b =(4,-1),a -c =(2,-3). ∴(a +b )·(a -c )=2×4+(-1)·(-3)=11. 答案:A 2.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,那么a ·b 的值为( ) A .1 B .2 C .3 D .4 解析:依题意得a +b =(3,k +2),由a +b 与a 共线,得3×k -1×(k +2)=0,解得k =1,所以a ·b =2+2k =4. 答案:D 3.设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB →|=2|AP →|,则点P 的坐标为( ) A .(3,1) B .(1,-1) C .(3,1)或(1,-1) D .无数多个 解析:设P (x ,y ),由|AB →|=2|AP →|得AB →=2AP →,或AB →=-2AP →, AB →=(2,2),AP →=(x -2,y ),

即(2,2)=2(x -2,y ),x =3,y =1,P (3,1); (2,2)=-2(x -2,y ),x =1,y =-1,P (1,-1). 故P (3,1)或(1,-1). 答案:C 4.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .2 5 C .8 D .8 2 解析:易得a ·b =2×(-1)+4×2=6,所以c =(2,4)-6(-1,2)=(8,-8),所以|c |=82+(-8)2=8 2. 答案:D 5.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( ) A.865 B .-865 C.1665 D .-1665 解析:设b =(x ,y ),则2a +b =(8+x,6+y )=(3,18),所以?? ? 8+x =3 6+y =18, 解得?? ? x =-5y =12 ,故b =(-5,12),所以cos a ,b =a ·b |a ||b |=16 65 .故选C. 答案:C 6.以原点O 及点A (5,2)为顶点作等腰直角三角形OAB ,使A =90°,则AB →的坐标为( )

专题03 “三法”解决平面向量数量积问题(第二篇)-2019年高考数学压轴题命题区间探究与突破(解析

一.方法综述 平面向量的数量积是高考考查的重点、热点,往往以选择题或填空题的形式出现.常常以平面图形为载体,借助于向量的坐标形式等考查数量积、夹角、垂直的条件等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.由于命题方式灵活多样,试题内容活泼、新颖,因此,在高考试卷中备受青睐,是一个稳定的高频考点.解决这类问题有三种基本方法:投影法、基底法和坐标法.“三法”的准确定位应是并举!即不应人为地、凭主观划分它们的优劣,而应具体问题具体分析. 本专题举例说明解答解决平面向量数量积问题的方法、技巧. 二.解题策略 类型一投影定义法 【例1】【2018届河南省中原名校高三上第一次考评】已知P是边长为2的正△ABC边BC上的动点,则·(+)=_________. 【答案】6 【解析】设BC的中点为D,则AD⊥BC, 【指点迷津】

1、数量积与投影的关系(数量积的几何定义): 向量,a b 数量积公式为cos a b a b θ?=,可变形为()cos a b a b θ?=?或() cos a b b a θ?=?,进而与向量投影找到联系 (1)数量积的投影定义:向量,a b 的数量积等于其中一个向量的模长乘以另一个向量在该向量上的投影,即a b a b b λ→?=?(记a b λ→为a 在b 上的投影) (2)投影的计算公式:由数量积的投影定义出发可知投影也可利用数量积和模长进行求解: a b a b b λ→?= 即数量积除以被投影向量的模长 2、数量积投影定义的适用范围:作为数量积的几何定义,通常适用于处理几何图形中的向量问题 (1)图形中出现与所求数量积相关的垂直条件,尤其是垂足确定的情况下(此时便于确定投影),例如:直角三角形,菱形对角线,三角形的外心(外心到三边投影为三边中点)学科&网 (2)从模长角度出发,在求数量积的范围中,如果所求数量积中的向量中有一个模长是定值,则可以考虑利用投影,从而将问题转化为寻找投影最大最小的问题 【举一反三】 已知圆M 为直角三角形ABC 的外接圆,OB 是斜边AC 上的高,且6,22AC OB ==,AO OC <,点P 为线段OA 的中点,若DE 是 M 中绕圆心M 运动的一条直径,则PD PE ?=_________ M C A O B P D E Q 【答案】-5 【解析】思路:本题的难点在于DE 是一条运动的直径,所以很难直接用定义求解.考虑到DE 为直径,所以延长EP 交圆M 于Q ,即可得DQ QE ⊥,则PD 在PE 上的投影向量为PQ .所求 PD PE PE PQ ?=-?,而由PE PQ ?联想到相交弦定理,从而PE PQ AP PC ?=?.考虑与已知条 件联系求出直径AC 上的各段线段长度.由射影定理可得:2 8AO CO OB ?==,且

平面向量数量积运算专题(附标准答案)

平面向量数量积运算 题型一 平面向量数量积的基本运算 例1 (1)(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________. (2)已知圆O 的半径为1,P A ,PB 为该圆的两条切线,A ,B 为切点,那么P A →·PB →的最小值为( ) A.-4+ 2 B.-3+ 2 C.-4+2 2 D.-3+2 2 变式训练1 (2015·湖北)已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________. 题型二 利用平面向量数量积求两向量夹角 例2 (1)(2015·重庆)若非零向量a ,b 满足|a |=22 3 |b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4 D.π (2)若平面向量a 与平面向量b 的夹角等于π 3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦 值等于( )

A.126 B.-126 C.112 D.-1 12 变式训练2 (2014·课标全国Ⅰ)已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB → 与 AC → 的夹角为________. 题型三 利用数量积求向量的模 例3 (1)已知平面向量a 和b ,|a |=1,|b |=2,且a 与b 的夹角为120°,则|2a +b |等于( ) A.2 B.4 C.2 5 D.6 (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB → |的最小值为________. 变式训练3 (2015·浙江)已知e 1,e 2是平面单位向量,且e 1·e 2=1 2.若平面向量b 满足b ·e 1=b ·e 2 =1,则|b |=________.

2018年一轮复习《平面向量的数量积及应用》教学教案

平面向量的数量积及应用 知识梳理: 平面向量的夹角及表示: (1).平面向量的夹角的定义 (2).范围: 表示方法: 当夹角为0或错误!未找到引用源。时,则称a与b ,记作: ; 当夹角为9错误!未找到引用源。时,则称a与b ,记作: ; 2.向量的数量积定义: 3.数量积几何意义与投影的概念: 4.数量积的性质:设a与b是非零向量,e是单位向量,错误!未找到引用源。是a与e的夹角, 则 ①错误!未找到引用源。= ;②a错误!未找到引用源。b时,a错误!未找到引用源。b错误!未找到引用源。③错误!未找到引用源。同向量,错误!未找到引用源。 ④错误!未找到引用源。反向量,错误!未找到引用源。⑤错误!未找到引用源。|错误!未找到引用源。=错误!未找到引用源。 特别地:错误!未找到引用源。=错误!未找到引用源。+错误!未找到引用源。+2a错误!未找到引用源。b 错误!未找到引用源。=错误!未找到引用源。+错误!未找到引用源。-2a 错误!未找到引用源。b (a+b)错误!未找到引用源。(a-b)=错误!未找到引用源。-错误!未找到引用源。 ⑥数量积的运算律: 交换律:;结合律:;分配律: ⑦数量积的坐标运算:; ⑧两向量垂直叛定:;

⑨两向量夹角公式: ; ⑩向量的模及两点间的距离: ; 二、题型探究 探究一:平面向量的数量积运算 例1:已知|a |=5,|b |=4,a 与b 的夹角为12错误!未找到引用源。,求: ○1错误!未找到引用源。 ○2错误!未找到引用源。 ○3错误!未找到引用源。-错误!未找到引用源。 ; ○4(2a-b )错误!未找到引用源。(a+3b ) (答案:-10;21;9;-48) 探究二、数量积的综合应用 例2:已知向量a 和b 的夹角是120°,且2||=a ,5||=b ,则a b a ?-)2(= 例3:已知平面上三个向量a 、b 、c 的模均为1,它们相互之间的夹角均为120°, (1)求证:)(b a -⊥c ; (2)若1||>++c b a k )(R k ∈,求k 的取值范围. 解:(1)∵ 1||||||===c b a ,且a 、b 、c 之间的夹角均为120°,

必修四 平面向量的数量积教案

平面向量的数量积 教案A 第1课时 教学目标 一、知识与技能 1.掌握平面向量的数量积及其几何意义; 2.掌握平面向量数量积的重要性质及运算律; 3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题; 二、过程与方法 本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识. 三、情感、态度与价值观 通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力. 教学重点、难点 教学重点:平面向量数量积的定义. 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用. 教学关键:平面向量数量积的定义的理解. 教学方法 本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识. 学习方法 通过类比物理中功的定义,来推导数量积的运算. 教学准备 教师准备:多媒体、尺规. 学生准备:练习本、尺规. 教学过程 一、创设情境,导入新课 在物理课中,我们学过功的概念,即如果一个物体在力F的作用下产生位移s,那么力F所做的功W 可由下式计算: W=|F||s|cosθ, 其中θ是F与s的夹角.我们知道力和位移都是向量,而功是一个标量(数量). 故从力所做的功出发,我们就顺其自然地引入向量数量积的概念. 二、主题探究,合作交流 提出问题 ①a·b的运算结果是向量还是数量?它的名称是什么? ②由所学知识可以知道,任何一种运算都有其相应的运算律,数量积是一种向量的乘法运算,它是否满足实数的乘法运算律? 师生活动:已知两个非零向量a与b,我们把数量|a||b|cosθ叫做a与b的数量积(或内积),记作a·b,即 a·b=|a||b|cosθ(0≤θ≤π). 其中θ是a与b的夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影.在教师与学生一起探究的活动中,应特别点拨引导学生注意:

平面向量的数量积及其应用定稿1

平面向量的数量积及其应用 【考试要点】 1.考查平面向量数量积的运算. 2.考查利用数量积求平面向量的夹角、模. 3.考查利用数量积判断两向量的垂直关系. 【复习指导】 本讲复习时,应紧扣平面向量数量积的定义,理解其运算法则和性质,重点解决平面向量的数量积的有关运算,利用数量积求解平面向量的夹角、模,以及两向量的垂直关系. 【教学过程】 活动一心动入境

(5)(a+b)2=a2+2a·b+b2. (6)(a-b)2=a2-2a·b+b2. 课前活动二[归纳反思] (1)若a·b>0,能否说明a和b的夹角为锐角? (2)若a·b<0,能否说明a和b的夹角为钝角? (3) 若向量a,b,c满足a·b=a·c(a≠0),是否能有b=c? (4)若向量a,b,c满足(a·b)c≠a(b·c),是否有(a·b)c=a(b·c)? (5) 正三角形ABC中,与的夹角应为多少度? 热身训练1.平面向量a与b的夹角为45°,a=(1,1),|b|=2,则|3a+b|等于() A.13+6 2 B.25 C.30 D.34 2.已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m=________. 3.已知|a|=5,|b|=4,a与b的夹角θ=120°,则向量b在向量a方向上的投影为________. 4.已知e1,e2是互相垂直的单位向量,若3e1-e2与e1+λe2的夹角为60°,则实数λ的值是________. 考点一平面向量的数量积及在平面几何中的应用 探究实践1 【例1】如图,在△ABC中,AB=3,AC=5,∠BAC =60°,D,E分别是AB,AC的中点,连接CD,BE 交于点F,连接AF,取CF的中点G,连接BG,则AF → ·BG → =________. (2)在直角梯形ABCD中,∠A=90°,AD∥BC,BC

相关文档
相关文档 最新文档