文档库 最新最全的文档下载
当前位置:文档库 › 【5A文】经典玻纤增强高分子复合材料井盖可行性分析报告

【5A文】经典玻纤增强高分子复合材料井盖可行性分析报告

【5A文】经典玻纤增强高分子复合材料井盖可行性分析报告
【5A文】经典玻纤增强高分子复合材料井盖可行性分析报告

【5A文】经典玻纤增强高分子复合材料井盖可行性分析报告

一、项目背景

(一)检查井盖及雨水箅子

检查井盖是通往地下设施的出入口顶部的封闭物,凡是安装自来水、排水、电信、电力、燃气、热力、消防、环卫等公用设施的地方就需要安装检查井,就需要井盖。井盖一般是沿公用设施铺设,每50m-100m距离就有一检查井,即需要一套井盖,因此用量极大。尤其是近年来,国家加大对基础设施投资的力度和城市化的发展,国家对公用设施的投入极大,城市改造和新建电线、电缆、光缆改露天为入地等,对井盖的需求量极大。

雨水箅子是用于排水的沟盖物,市区道路、广场以及小区住宅四周等大量使用。

(二)使用现状

检查井盖所用的材料,最初大部分是钢筋混泥土材质,由于其脆性大、易老化、易断裂等缺陷,逐步被铸铁、球墨铸铁材质所取代。现在铸铁(含球墨铸铁)井盖所占份额在90%以上,尤其是球墨铸铁井盖与铸铁材质相比,因其材质脆、易生锈、荷载能力均有所改善,因此,使用量越来越大。

雨水箅子的使用与井盖差不多,被盗情况更严重,在住宅小区使用,因生锈而更难看。

(三)存在的问题

由于铸铁井盖具有回收价值,有些不法份子见有利可图,将铸铁井盖偷盗、砸烂后卖给废品回收店。因井盖等被盗而造成车毁人亡的事故时有发生,由此引发出大量的诉讼案件令政府相关部门非常头痛,新闻媒体就此类事件进行过大量报道:20GG年GG月GG日《SZ晚报》“黑井吞噬四龄女”;

20GG年GG月GG日《YN晚报》“排水沟上露黑洞”;

20GG年GG月GG日《今晚报》“天津一夜之间3000只井盖不翼而飞”;

20GG年GG月GG日《人民网》“江苏窨井盖3年被盗6万只”;

20GG年GG月GG日《南方日报》“沙井频吃人不治愧对民,GZ市有关单位共商对策”;

20GG年GG月GG日《BJ晚报》“黑手让多少人成了残废,抓住偷井盖的贼”。

20GG年GG月GG日《BJ晨报》“两个月连丢80多块,大胆贼竟敢在天安门旁偷井盖”;

(四)需求与商机

1.需求

⑴因井盖缺失而形成的“城市陷阱”已成为百姓关心、政府领导烦心、受害者揪心的社会问题,人们迫切希望能有一种好的解决办法。多少年来为了解决井盖被盗问题,政府领导、企业家、科技人员通过不同技术途径采取各种办法,或制定管理办法,加强管理,或增加防盗装置,或采用新型材料。尤其是材质方面,研发了不少新型井盖,取得了一定效果,但仍然存在一些问题,均达不到理想效果。

铸铁井盖:加锁,防盗问题大有改进(有时有人将井盖扎碎之后盗走),且因锁生锈而影响开启;

高强水泥井盖:防盗,但承载能力差,易碎,造成另一形式的井盖缺失;

热塑性树脂再生再生井盖:防盗,但承载能力差,易产生高温蠕变;

玻璃钢井盖:防盗,但上表面不耐磨,造价太高。

⑵随着社会的发展,城市建设均强调绿色环保,因铸铁井盖及雨水箅子生锈而常常影响城市如公园、小区、高档住宅等的形象,有时候为了与环境协调,不得不刷上油漆,每隔一年半载再刷一次。

如果新型井盖的颜色与环境相协调或起点缀作用,其图案根据城市、小区特色,设计一种平面浮雕,能从井盖上折射出一种文化,这不正是现代城市文明所期待的

吗!

2.商机

无论是大城市、中小城市,还是经济较发达的村镇,只要有如自来水、路灯、排水、电信、燃气、热力、消防、环卫等公用设施的地方,就需要安装检查井。一般沿公用设施铺设,每50-100m距离就有一检查井,即需要一套井盖,一般一个50万人口的城市在发展中,每年对井盖的需求量约为1-2万套。

在住宅小区,除各种井盖外,每栋房子的四周均铺设雨水箅子,一般每栋房子有300~400块雨水箅子在城区用作排水的雨水箅子的量亦很大。

因此,巨大的市场给新型的具有美化环保的防盗艺术井盖及雨水箅子提供了巨大的商机。

二、行业和市场分析

(一)行业前景

复合材料在国际上是“ZY”产业,国内产业与国外产业相比有一定差距,但该类产品的市场前景广阔,因此,国内复合材料行业发展迅速。

(二)市场容量

检查井盖是通往地下设施的出入口,检查井盖是检查井顶部的封闭物,由支座和井盖组成。无论是大城市、中小城市,还是经济较发达的村镇,只要使用如自来水、排水、电信、电力、燃气、热力、消防、环卫等公用设施的地方,就需要安装一套井盖。一般是沿公用设施铺设每50m~100m距离就有一检查井,即需要一套井盖。近年来,随着国家加大对基础设施投资的力度和城市化的发展,国家对公用设施的投入极大,对井盖的需求量是巨大的。

据初步调查显示GZ市(市区不含郊区)大约已有10万套检查井盖,主要分布在:市自来水公司4万套左右、市政工程处3万套、市排水管理处1万套、市环卫局1万套、邮电、电信局1万套等。据估计,GD省县级(含县级)以上城市的

聚合物基复合材料的发展现状和最新进展

聚合物基复合材料的发展现状和最新进展 摘要聚合物基复合材料以聚合物为基体,玻璃纤维、碳纤维、芳纶等为增强材料复合而成。主要包括热固性复合材料和热塑性复合材料。本文先介绍聚合物基复合材料的最新性能研究,再简单介绍下最近几年的研究热点,最后从应用角度谈一谈聚合物基复合材料的发展现状和最近进展。 关键词聚合物基复合材料发展现状最近进展 一、引言 我国聚合物基复合材料的研究始于1958 年,第一个产品就是我们所熟知的玻璃钢。我国热塑性树脂基复合材料开始于20世纪80年代末期,近20年来取得了快速发展。迄今,我国已经成功将碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维增强高性能聚合物基复合材料实用化,其中高强度玻璃纤维增强复合材料已达到国际先进水平,形成了年产500t的规模[1]。随着科技的高速发展,传统聚合物基复合材料已不能满足使用需求,对高性能、耐高温、耐磨损、耐老化性能的研究不断深入。新型复合材料的出现也给该领域带来了更大的发展前景,进而在军事、航空航天、交通,乃至日常生活中的广泛运用也使得该领域具有巨大的发展空间和良好的市场前景[2]。 二、性能研究进展 常见的高性能耐高温聚合物材料有聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)、聚酰亚胺(PI)等。研究发现液晶材料能很好的提高PTFE的耐磨损性能,将PEEK与其它聚合物共混或采用碳纤

维(CF)、玻璃纤维(GF)、无机纳米粒子等复合增强,已成为制备摩擦学性能和力学性能更优异的PEEK复合材料的首选[3]。美国一家PI复合材料供应商,主要生产不含MDA型PI/碳纤维、玻璃纤维、石英纤维单向带、织物以及预制品。该公司开发的900HT材料的瓦约为426℃,使用温度最高816℃,可采用热压罐、模压以及某些液体模塑工艺加工[4]。该材料还具有十分优异的热氧化稳定性,因此尤其适用于制造在高温氧气环境中长期工作的发动机以及机身部件[5]。 聚合物基复合材料在自然环境下使用,性能会受到许多环境因子(如紫外辐射、臭氧、氧、水、温度、湿度、微生物、化学介质等)的影响。这些环境因子通过不同的机制作用于复合材料,导致其性能下降、状态改变、直至损坏变质,通常称之为“腐蚀”或“老化”[6]。环境因素对复合材料性能的影响主要是通过树脂基体、增强纤维以及树脂/纤维粘接界面的破坏而引起性能的改变。陈跃良等分析了湿热老化、化学侵蚀和大气老化对复合材料的作用机理及对其力学性能的影响[7],也提出了复合材料老化寿命预测方法。 对于大多数聚合物材料而言,阻燃性能不佳,加入阻燃剂往往是必须的。从阻燃剂发展趋势来看,以高效、价廉、无卤素、无污染为特征的无机类阻燃剂符合世界各国发展环保型材料,推进可持续发展战略的政策要求。无机阻燃剂可以单独使用,也可以与有机阻燃剂复配使用,产生协同效应,起到很好的阻燃效果,是目前阻燃剂发展的主流。而其中的氢氧化物阻燃剂被认为是最有发展前途的、环境友好的无机阻燃剂, 成为近几年各国研究的热点[8]。Kazuki等研究发现了含

聚合物基纳米复合材料研究进展

聚合物基纳米复合材料研究进展 摘要: 针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料的研究状况和存在的问题;系统地评述了纳米纸复合材料、光电纳米功能复合材料以及纳米智能复合材料等以改善功能的纳米功能复合材料的研究动态。 关键词 : 复合材料;纳米材料;聚合物;功能材料 引言 复合材料作为材料大家族中的重要一员,已经深入到人类社会的各个领域,为社会经济与现代科技的发展作出了重要贡献。复合材料科学与技术的发展经历了从天然复合材料到人工复合材料的历程,而人工复合材料的诞生更是材料科学与技术发展中具有里程碑意义的成就。20 世纪 50 年代以玻璃纤维增强树脂的复合材料(玻璃钢)和 20 世纪 70 年代以碳纤维增强树脂的复合材料(先进复合材料) 是两代具有代表性的复合材料。这两代材料首先在航空航天和国防领域得到青睐和应用,后来逐渐扩大到体育休闲、土木建筑、基础设施、现代交通、海洋工程和能源等诸多领域,使得复合材料的需求越来越强烈,作用越来越显著,应用领域越来越广泛,用量也越来越多,而相应的复合材料科学与技术也在不断地丰富和发展。随着纳米技术的出现和不断发展,纳米复合材料已经凸显了很多优异的性能,从一定意义上有力地推进了新一代高性能复合材料的发展。纳米化与复合化已经成为新材料研发和推动新材料进步的重要手段和发展方向。 纳米复合材料是指以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的颗粒、纤维、纳米管等为分散相,通过合适和特殊的制备工艺将纳米相均匀地分散在基体材料中,具有特殊性能的新型复合材料。本研究的重点是讨论聚合物基纳米复合材料的研究概况,系统介绍利用碳纳米管、石墨烯、碳纳米纸、纳米界面改性等提升和改善复合材料力学性能及物理性能的机理与作用。 1 纳米增强复合材料 纳米复合材料的性能依据其基体材料和纳米增强相种类的不同而差异巨大,因此提高力学性能是纳米复合材料研究领域中最具代表性的研究工作之一。纳米相对聚合物基体的力学性能改性主要包括强度、模量、形变能力、疲劳、松弛、蠕变、动态热机械性能等。 1.1 碳纳米管纳米复合材料 碳纳米管是由碳原子形成的石墨片层卷成的无缝、中空管体,可依据石墨片层的数量分为单壁碳纳米管和多壁碳纳米管。由于纳米中空管及螺旋度共同作用,碳纳米管具有极高的强度和理想的弹性,其弹性模量甚至可达1.3 TPa,与金刚石

大学专业介绍之材料类2(高分子材料与工程、材料科学与工程、复合材料与工程)

大学专业介绍之材料类2(高分子材料与工程 、材料科学与工程、复合材料与工程) 4.高分子材料与工程 培养德智体全面发展,具有良好的科学素养,掌握化学基本理论、基本知识和基本技能,经受过基础研究、应用研究、科技开发、科技管理等系统训练的高分子化学、高分子物理及高分子材料与加工方面的专门人才。系统地学习化学基础理论知识,接受严格基本技能训练。运用化学和物理的基本原理和方法,研究高分子材料的分子设计、合成、结构与性能关系,开发新材料及其应用。具有科研、开发、设计及工艺操作相结合的特点。 业务培养要求:本专业学生主要学习高聚物化学与物理的基本理论和高 1. 2. 3.掌握聚合物加工流变学、成型加工工艺和成型模具设计的基本理论 4.具有对高分子材料进行改性及加工工艺研究、设计和分析测试,并 5.

6.具有对高分子材料改性及加工过程进行技术经济分析和管理的初步 主干课程无机及分析化学、有机化学、物理(含物构)、仪器分析、化工原理、普通化学实验、无机化学实验、分析化学实验、有机化学实验、物理化学实验、仪器分析实验、化工原理实验、化工设备机械基础、化工仪表自动化、机械制图、高分子物理、高分子化学、高分子加工成型原理、高分子流变学、高分子化学实验、高分子物理实验等。 就业方向适宜到科研院所、高等院校从事科研、教学工作;适宜到与石油化工、化工、轻工、工程塑料、特种复合材料、耐高温高分子材料、高分子功能材料、粘合剂与涂料等相关的科研单位、企业、公司从事应用研究、科技开发、生产技术和管理工作。 5.材料科学与工程 材料科学与工程是研究金属材料、无机非金属材料、高分子材料和复合材料的组成、组织结构、制备成型工艺及服役性能之间规律的基本理论与工程应用的学科,是我国21世纪重点发展的专业之一。 培养目标 本专业培养具备宽厚的材料领域的基础知识与技能,能从事科研、技术开发、分析检测、工艺和设备设计、生产经营管理等方面的高级工程技术人才。 主要课程

高分子复合材料重点

高分子复合材料重点

“高分子复合材料”练习题 第1章绪论 2、简述复合材料的特性。 A 比强度和比模量,复合材料的突出特点是比强度与比模量高。 B 抗疲劳性能 C 减振性能 D 过载安全性 E 高温性能良好 F 具有可设计性 第2章基体材料 2、述不饱和聚酯树脂固化中交联剂的选择以及引发剂的结构特点; 交联剂的选择一般对交联剂有如下的要求:高沸点、低粘度,能溶解树脂呈均匀溶液,能溶解引发剂、促进剂及染料;无毒,反应活性大,能与树脂共聚成均匀的共聚物,共聚物反应能在室温或较低温度下进行。 引发剂的结构特点:引发剂一般为有机过氧化物4、简述酚醛树脂的种类及其常用固化剂; 酚醛树脂的种类:a.热固性酚醒树脂 b.热塑性酚醛树脂 c.其它类型酚醛树脂

(a)低压钡酚醛树脂。(b)硼酚醛树脂。(c)改性酚醛树脂。 常用固化剂:热固性塑料酚醛树脂一般采用酸类固化剂。常用的酸类固化剂有盐盐酸或磷酸,也可用对甲苯磺酸、苯酚磺酸或其它的磺酸。 5 简述热塑性树脂的特点及其常用产品; 热塑性树脂的特点:就是加热软化甚至熔融,冷却后硬化,这个过程是可以反复进行的,因此,热塑性树脂的加工成型是非常方便的。 常用的热塑性树脂:有聚乙烯、聚碳酸酌、聚甲醛、聚苯醚、聚矾、豪四氟乙烯等。 6、简述聚苯硫醚的结构及其物理特性。 聚苯硫醚是以硫化钠和对二氯苯为原料制备的,在其分子链中含有苯硫基,分子结构式为右方所 示。 聚苯硫醚为一种线型结构,当在空气中加热到345℃以上时,它就会发生部分交联。固化的聚合物是坚韧的,且是非常难溶的。聚苯疏醚具有优异的综合性能。表现为突出的热稳定性,优良的化学稳定性、耐蠕变性、刚性、电绝缘性及加工成型性。

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

高分子材料和复合材料导学案

高分子材料和复合材料 导学案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第三单元高分子材料和复合材料 编写:王飞审核:何一位作业等第:_______ 班级:________姓名:____________批改日期:_______ 【学习目标】 了解有机高分子材料的分类,认识塑料、纤维、橡胶、功能高分子材料的区别; 【课堂导学】 1、塑料的主要成分是,具有、、、、等优点;塑料按性能和用途可分为、、;按受热情况可分为、。 2、纤维可以分为那两大类: 3、区分不同纤维的常见方法是: 4、橡胶的分类: 5、天然橡胶的主要成分它为分子; 缺点是:;为了改变特性常常要经过处理;使得分子结构变为 6、常见的高分子材料有: 7、复合材料是指: 其优点是: 常见的复合材料有: 二、课堂探究 1.随着社会的发展,复合材料逐渐成为一类新的有前途的发展材料,目前,复合材料最主要的应用领域是( )。 A.高分子分离膜 B.人类的人工器官 c.宇宙航天工业 D.新型药物 2、下列塑料的合成,所发生的化学反应类型与另外三种不同的是() A 聚乙烯塑料 B 聚氯乙烯塑料 C 酚醛塑料 D 聚苯乙烯塑料 3、下列有关高分子化合物的叙述正确的是( )。 A.高分子化合物极难溶解 B.高分子化合物依靠分子间作用力结合,材料强度均较小 C.高分子均为长链状分子 D.高分子材料均为混合物 三、课堂笔记

【巩固反馈】 1.橡胶属于重要的工业原料。它是一种有机高分子化合物,具有良好的弹性,但强度较差。为了增加某些橡胶制品的强度,加工时往往需进行硫化处理,即将橡胶原料与硫黄在一定条件下反应。橡胶制品硫化程度越高,强度越大,弹性越差。下列橡胶制品中,加工时硫化程度较高的是() A.橡皮筋B.汽车外胎 C.普通气球 D.医用乳胶手套 2、物质不属于天然高分子化合物的是( ) A. 淀粉 B. 纤维素 C. 塑料 D. 蛋白质 3下列各物质属于高分子化合物的是( )。 A.葡萄糖 B.硬脂酸甘油酯 C.TNT I).酶 4下列原料或制成的产品中。若出现破损不可以进行热修补的是( )。 A.聚氯乙烯凉鞋 B.电木插座 C.聚丙烯材料 D.聚乙烯塑料膜 5离分子材料与一般金属材料相比,优越性是( )。 A.强度大 B.电绝缘性能好 C.不耐化学腐蚀 D.不耐热 6、材料科学、能源科学、信息科学是二十一世纪的三大支柱产业。在信息通信方面,能同时传输大量信息,且具有较强抗干扰能力的材料是( )。 A.光导纤维 B.塑料 C.合成橡胶 D.合成纤维 7、“空对空”响尾蛇导弹头部的“红外眼睛”,能分辨出0C的温差变化,它是由热敏陶瓷材料和热释电陶瓷材料做成的。下列叙述中不正确的是( )。 A.“红外眼睛”对热非常敏感 B.“红外眼睛”的热目标是敌机发动机或尾部喷口高温区 C.“红外眼睛”的电阻值随温度明显变化

功能高分子材料复合材料

第四课时§3.3.4 功能高分子材料复合材料 教学过程: 【引言】前面三节课,我们学习了传统意义上的有机高分子材料中的三大合成材料(塑料、合成纤维、合成橡胶),今天,我们来了解第四大合成材料(功能高分子材料)以及复合材料。 【板书】§3.3.4功能高分子材料复合材料 【过渡】何谓功能高分子材料?它的分类如何?它的性能和应用怎样?这些是我们这节课要弄清楚的。 【教师讲解】一、功能高分子材料: 1.功能高分子材料的定义:功能高分子材料是指既有传统高分子材料的机械性能,又有某些特殊功能的高分子材料。(它是一类性能特殊、使用量小、附加值高的高分子材料。是高分子材料渗透到电子、生物、能源等领域后开发涌现出的一种新型材料。)2.功能高分子材料的分类: 物理功能高分子材料如:导电材料、光敏性材料、液晶高分子材料 功能高分子材料分离功能高分子材料如:膜材料、吸附分离功能材料 化学功能高分子材料如:高分子试剂、高分子卤化剂3.日常生活中常见的几种功能高分子材料: 【投影】用高吸水性树脂制造的纸尿布高吸水性树脂 【教师讲解】(1)高吸水性树脂 高吸水性树脂是一种新型的功能高分子材料,它本身不溶于水或有机溶剂,与水接触时能在短时间内可吸收自身质量几百倍、上千倍,最高可达5300倍的水,即使挤压也很难脱水,被冠于“超级吸附剂”的桂冠,因此可用作农业、园林、苗木移植用保水剂。高吸水性树脂与苯、乙醇、三氯甲烷、四氯化碳、醋酸等化学试剂混合时,可使试剂脱水,却不与试剂发生化学反应。它吸收试剂中的水分后,变成一种凝胶状的物质。 【投影】 触摸屏导电橡胶按键

【教师讲解】(2)导电性材料 如果在高分子中加入各种导电物质,如铁粉、铜粉、石墨粉等,就可制成导电橡胶、导电塑料、导电涂料、导电胶粘剂等。 【投影】 人造心脏 【教师讲解】(3)医用高分子材料 a.性能:优异的生物相容性;很高的机械性能。 b.应用:制作人体的皮肤、骨骼、眼、喉、心、肺、肝、肾等各种人工器官。 【投影展示】 玻璃钢快船波音767飞机碳纤维网球拍 【过渡】不同的材料具有不同的性能,每种材料都有它的优缺点。如普通金属材料强度大,但易被腐蚀;普通陶瓷材料耐高温,但易碎裂;合成高分子材料强度大、密度小,但易老化。航天工业需要强度大、耐高温、密度小的材料。海洋工程需要耐高压、耐腐蚀的材料。有没有兼具它们优点的一种材料呢?复合材料的出现很好地回答了这个问题。 【板书】二、复合材料 【学生阅读】P108复合材料定义并回答。 【板书】1.复合材料的定义:复合材料是指两种或两种以上性质不同的材料组合而成的一种新型材料。其中一种材料作为基体,其他的材料作为增强剂。 【教师讲解】由于复合材料克服了单一材料的不足,一般具有强度高、质量轻、耐高温、耐腐蚀等优异性能,在综合性能上超过了任一单一材料,是材料科学领域的重大突破。【教师组织讨论】P109有一个“交流与讨论”栏目,请同学们举出实例来说明人们的日常生活越来越离不开复合材料。 【学生回答】日常生活中用的牙刷、塑料碗盆、地板、壁纸、人造心脏、人造骨、关节、网球拍、滑雪板、撑杆、弓箭…… 【教师组织练习】以上事实说明复合材料是人类赖以存在和发展的基础,那么,复合材料的组成怎样?请同学们阅读后完成下列练习:(投影) 1.复合材料是由基体材料和分散于其中的增强材料组成的。 2.钢筋混凝土中的混凝土是基体材料,分布于其中的钢筋是增强材料;石棉瓦用石棉作增

高分子基复合材料

高分子基复合材料 Polymer Matrix Composite Materials 课程编号:07370380 学分:2 学时:30 (其中:讲课学时:30 实验学时:0 上机学时:0) 先修课程:材料科学导论、高分子化学、大学物理 适用专业:高分子材料与工程、复合材料与工程 教材:《聚合物复合材料》黄丽主编,中国轻工业出版社,2012.01 第二版开课学院:材料科学与工程学院 一、课程的性质与任务 高分子基复合材料是建立在数学、物理学、化学等课程知识的基础上,为材料科学与工程专业学生开设的一门专业方向课,其性质为选修。 通过本课程的学习,旨在让学生获得复合材料的有关基本理论和基本知识,为拓宽学科方向和今后从事相关研究和工作奠定必要的基础。其主要任务是使学生具备下列知识和能力: 1.熟悉复合材料的常用基体材料和常用增强材料结构与性能; 2.初步掌握聚合物基、碳基、纤维增强复合材料的种类和基本性能; 3.能够根据实际要求合理设计材料,从微观或亚微观水平上选定合适的基体和 增强体或功能体; 4.依靠复合材料设计知识,确定合适的表面处理技术和成型工艺; 5.了解先进复合材料的发展概况。 二、课程的基本内容及要求 第1章绪论 1. 教学内容 (1).复合材料的发展史 (2).复合材料的定义、命名及分类 (3).复合材料的特性 (4).对高性能复合材料的期望及开发现状 2. 学习要求 (1).了解复合材料的发展简史 (2).掌握复合材料的概念、分类及命名规则 (3).理解复合材料的特性及发展趋势 3. 重难点 掌握复合材料的定义及特性既是本章的重点,也是难点

第2章基体材料 1. 教学内容 (1).概述 (2).聚合物基体 (3).金属基体 (4).陶瓷基体 (5).碳基体 2. 学习要求 (1).理解基体的概念 (2).掌握基体在复合材料材料中的作用及对复合材料性能的影响(3).了解复合材料中常用的基体类型 (4).掌握聚合物基体的特性 3. 重难点 (1).重点是熟悉复合材料中基体的类型及各类基体的特性(2).难点是掌握几种常用聚合物基体的制备原理和工艺 第3章复合材料的增强材料 1. 教学内容 (1).玻璃纤维 (2).碳纤维 (3).有机高分子纤维 (4).陶瓷纤维 (5).金属纤维 (6).晶须 (7).粉体增强材料 2. 学习要求 (1).理解增强材料在复合材料中的作用 (2).理解各类增强材料增强原理 (3).掌握常用增强材料的制备工艺 3. 重难点 (1).重点是理解各类型增强材料的增强机制和特点 (2).难点是掌握几种常用增强材料的制备工艺 第4章纤维复合材料及其制造方法 1. 教学内容 (1).聚合物基复合材料

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

高分子复合材料

高分子复合材料 高分子复合材料,从狭义上来说是指高分子与另外不同组成、不同形状、不同性质的物质复合而成的多相材料,大致可分为结构复合材料和功能复合材料两种。广义上的高分子复合材料则还包含了高分子共混体系,统称为“高分子合金”。当分散相为金属/无机物时,则称为有机/无机高分子复合材料;而当分散相为异种高分子材料时,则称为高分子共混物。自然界中有大量的高分子复合材料的例子,如树木、蜂巢、燕窝等。 高分子复合材料分为两大类:高分子结构复合材料和高分子功能复合材料。以前者为主。高分子结构复合材料包括两个组分:①增强剂。为具有高强度、高模量、耐温的纤维及织物,如玻璃纤维、氮化硅晶须、硼纤维及以上纤维的织物。②基体材料。主要是起粘合作用的胶粘剂,如不饱合聚酯树脂、环氧树脂、酚醛树脂、聚酰亚胺等热固性树脂及苯乙烯、聚丙烯等热塑性树脂,这种复合材料的比强度和比模量比金属还高,是国防、尖端技术方面不可缺少的材料。高分子功能复合材料也是由树脂类基体材料和具有某种特殊功能的材料构成,如某些电导、半导、磁性、发光、压电等性质的材料,与粘合剂复合而成,使之具有新的功能。如冰箱的磁性密封条即是这类复合材料。 高分子复合材料有以下优异特性:优异的附着力:高分子渗透形成分子之间的作用力,使其与修复部件形成范德华力和氢键链接。优异的机械性能:分析了机械设备在运行过程中所产生的各种复合力的要求,在材料的合成过程中实现了各种数据的均衡性,并具有良好的机械加工性能和延展性能。抗化学腐蚀性能:解决了大多数高温下的有机酸、无机酸及混合酸的腐蚀。材料的安全性:100%固体,材料没有挥发性;无毒无害,可以和皮肤直接接触。 所以它的应用范围比较广,已经形成工业化生产规模的高分子为通用高分子材料,称具有特殊用途与功能的为功能高分子。高分子是生命存在的形式,所有的生命体都可以看作是高分子的集合。树枝、兽皮、稻草等天然高分子材料是人类或者类似人类的远古智能生物最先使用的材料。在历史的长河中,纸、树胶、丝绸等从天然高分子加工而来的产品一直同人类文明的发展交织在一起。 例如,将水泥砂浆与聚合物等材料以适当比例配制而形成的聚合物水泥砂浆,因其材料组成中有热塑性高分子化合物,在固化剂作用下可形成不溶、不熔硬质的复合材料,此复合材料具有包括抗冲耐磨性能在内的许多优良力学性能。因此,选择合适的材料组成成分并确定其配合比,是实现材料优良性能的先决条件。 上海复鑫分析技术中心研发团队在长期实验室分析经验的积累中,一直坚持专注于成分分析领域,产品种类涵盖:塑料、橡胶、钢材、胶粘剂、涂料、油墨、清洗剂、水处理助剂、表面处理剂、金属加工液、建筑类添加剂、油田助剂、脱模剂、助焊剂等八大行业的四十余个品类。依托复旦大学、上海交大等高校的国家重点实验室作为技术平台,并通过与上海有机化学研究所、上海材料研究所等机构的紧密合作,不断挖掘一线市场需求,服务长三角、全国乃至东南亚和北欧的客户。

聚合物基纳米复合材料的结构与性能研究

聚合物基纳米复合材料的结构与性能研究 摘要:聚合物的结构与性能是材料科学研究的重点。通过改变或优化材料的结构,而得到性能更为优越的材料也一直是人们的研究方向,随着研究的不断深入,所采取的方法也越来越为多元化,其中,在高分子聚合物材料中引入纳米结构就是材料改型的一种办法。以下对聚合物基纳米复合材料的结构和性能的研究作一总结。分析了由插层复合法、溶胶一凝胶法和纳米微粒直接共混法制备的聚合物基纳米复合材料的结构和性能的紧密联系。 关键词:高分子聚合物;纳米材料;结构;性能 1、引言 1.1高分子聚合物材料概述[1] 材料是各门科学技术应用和发展的基础和载体。按照传统的分类,可将材料分为金属、半导体、陶瓷和有机高分子材料,而在科学技术迅速发展的今天,与其它材料相比,聚合物材料的研究与应用呈现非常快的增长趋势,有着广阔的发展前景。 聚合物材料作用和功能的发挥,与它的结构有着密切的关系。为了合成具有指定性能的高分子材料,人们总是从化学结构开始设想,为了改进高分子材料的某种性能,人们也总是首先从改变其结构入手。无数的事实表明:人们无时无刻不在利用高聚物结构与性能间的关系,根据需要选择高分子材料,改性高分子材料,创造高新的高分子材料。高聚物结构与性能间的关系是高分子材料设计的基础,同时也是确定高分子材料加工成型工艺的依据。 对于实际应用中的高分子材料或制品,有的时候它们的高级结构,如相态结构和聚集态结构,对高分子材料、尤其是高分子功能材料的影响更为明显,并且其使用性能直接决定于加工成形过程中的聚集态结构,因此对高分子聚集态结构的研究有着重要的理论意义和实际意义。了解高分子聚集态结构特征、形成条件及其与材料性能之间的关系,对于获得具有理想性能的材料是必不可少的,同时也可为新型高聚物材料的物理改性和材料设计提供科学的依据。 高分子聚合物的结构主要包括高分子链结构和聚集态结构。高分子链结构分为近程结构和远程结构,近程结构包括化学组成、单体单元的键合(键合方式、序列)、高分子的构型(结构单元空间排列)、单个高分子链的键接(交联与支化)。远程结构包括高分子的大小(分子量及其分布)、高分子链的尺寸(末端距、旋转半径)、高分子的形态(构象、柔性、刚性)。高分子的聚集态结构包括晶态、非晶态、取向态、液晶态、织态等。 高分子结构特点主要有五点:①链式结构②链的柔顺性③不均一性(多分散性)④聚集态结构的复杂性。⑤交联网状结构。聚集态结构是决定高分子材料使用性能的直接因素,交联程度对橡胶弹性体或热固性聚合物这类材料的力学性能有重要影响。除了一级结构,即分子链的化学结构,还有其高级结构,即高聚物在宏观上体现为若干高分子链以一定的规律堆集形成的状态,这种高分子链之间的排列和堆砌结构称为聚集态结构。高分子的链结构影响高分子的运动方式和堆砌方式,凝聚态结构将直接影响材料的力学、光学、热学、声学、电学等使用性能。经验证明:即使有同样链结构的同一种高聚物,由于加工成型条件不同,制品性能也有很大差别。例如:缓慢冷却的PET(涤纶片)是脆性的;迅速冷却,双轴拉伸的PET(涤纶薄膜)是韧性很好的材料。 对于高分子材料来讲,它具有密度小、强度高,易加工等优良性能,并且易于通过化学和物理方法进等行改性特性而拓展其应用范围。

高分子复合材料的性能特点

高分子复合材料的性能特点 陈金鹏 (河北工业大学材料科学与工程学院,材料物理与化学国家重点学科,天津)摘要:简单介绍了稀土/高分子复合材料,磁智能材料,聚合物基纳米复合材料,导电高分子复合材料,磁性纳米高分子复合材料等几种高分子复合材料的性能和特点,以及对它们的制作方法做了简单的介绍。 关键词:高分子复合材料,纳米材料,特性 The performance characteristics of polymer composite materials Chen jin peng (College of Materials Science and Engineering, Hebei University of Technology, Tianjin, China ) Abstract: Introduced several the performance and characteristics of the rare earth/polymer composite material l, magnetic intelligent materials, polymer nanocomposites, conductive polymer composite material, magnetic nano polymer composite macromolecule composite materials, and their production methods do briefly introduced. Key words:Polymer composite materials, Nano materials, characteristics 1.1稀土/高分子复合材料 在高分子材料科学发展过程中,兼备高分子材料质轻、高比强度、易加工、耐腐蚀的优点,同时又具有光、电、磁、声等性能的特种高分子复合材料备受推崇。稀土因其电子结构的特殊性而具有光、电、磁等特性,这些特性是人们制备稀土/高分子复合材料强烈的技术和应用的驱动力。在简单掺混型稀土/高分子复合材料的制备过程中,研

聚合物纳米复合材料

聚合物纳米复合材料的研究进展 摘要 关键字 Abstract 1.引言 纳米材料是指材料的显微组织中至少有一相的一维尺寸在1-100nm以内的材料。由于平均粒径小,表面原子多,比表面积大,表面能高,因而呈现出独特的小尺寸效应、表面效应、量子隧道等特性,具有许多材料所没有的性能。介于其超凡特性,纳米材料越来越得到广泛的关注。不少学者认为纳米材料将是21世纪最有前途的材料之一,尤其是聚合物纳米材料。本文就聚合物纳米复合材料的分类、制备、改性、应用及问题和未来展望展开叙述。 2.聚合物纳米复合材料定义与分类 2.1定义 聚合物纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,纳米单元可以是金属、无机物和高分子等。 2.2分类 根据组分不同,可分为: a)聚合物/聚合物纳米复合材料:由两种或两种以上的聚合物混在一起而其中有一纳米尺寸的聚合物分散于其它聚合物单体所构成的 复合材料。如第三代环氧树脂粘接剂,它是将预聚合的球状交联 橡胶粒子分散于环氧树脂中固化而成的。 b)聚合物/层状纳米无机物复合材料:是将层状的无机物以纳米尺度分散于聚合物中而形成的。通常采用插层法制备。目前用的最多 的是蒙脱土,蒙脱土是以片状晶体而构成的。 c)聚合物/无机纳米复合粒子复合材料:是将纳米级无机粒子填充到聚合物当中去的。由于小尺寸效应使材料具有光、电、声、磁等 功能,赋予材料良好的综合性能。 3.聚合物纳米复合材料制备 3.1插层复合法 插层复合法是目前制备聚合物纳米复合材料的主要方法。根据复合过程,插层复合法可分为两类,1)插层聚合法:原理是将聚合物单体分散,插层进入层状硅酸盐片层中,然后再原位聚合,利用聚合时放出的大量的热量克服硅酸盐片层间的库仑力,使其剥离,从而使硅酸盐片层与聚合物基体以纳米尺度相复合;2)熔体插层法:原理是将插层无机物与高聚物插入层状无机的层间,该方法优

高分子复合材料的研究现状与展望(最新篇)

高分子复合材料的研究现状与展望 高分子复合材料的研究现状与展望 研究领域的一个研究热点。复合材料可以发挥各种材料的优点,避其弱点,可充分利用和节约资源,因此科技界将复合材料作为一类新型材料来研究。例如玻璃钢,因质轻、坚硬,机械强度可与钢材相比,已成功用于印刷电路板、汽车车身、船体等领域。 复合材料与陶瓷、高聚物、金属并称为四大材料。其已成为衡量一个国家或地区的复合材料工业水平的标志之一,是国家安全和国民经济具有竞争优势的源泉。有关研究报道指出,到2020年,复合材料性能潜力可获得20%~25%的提升. 随着工业现代化的发展,设备的集群规模和自动化程度越来越高,同时针对设备的安全连续生产的要求也越来越高,传统的以金属修复方法为主的设备维护工艺技术已远远不能满足高新设备的维护需求,对此需要研发针对设备预防和现场解决的新技术和材料,为此诞生了包括高分子复合材料在内的更多新的维护技术和材料,满足新设备运行环境的维护需求。 1、高分子材料研究现状 高分子材料是以高分子化合物为基础的材料,由巨量原子以共价键结合形成相对分子量大、具有重复结构单元的有机化合物。高分子材料按来源分为天然高分子材料、合成高分子材料、半合成高分子材料。生活中的高分子材料很多,如蚕丝、棉、麻、毛、玻璃、橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等.

我国在高分子材料的开发和综合利用虽起步较晚,但高分子材料为我国的经济建设做出了重要的贡献,已建立了完善的高分子材料的研究、开发和生产体系,取得了进步。目前,我国应提高整体科研水平,致力于创新的高分子聚合反应和方法,开发出绿色功能和智能材料,满足工业和新技术的需求,提高人们生活质量。 高分子材料对我们未来的影响是不可预测的,随着科技的发展,高分子材料也可以具有其他材料的特性,成为最全面的材料,能满足人类在工业、医药、航天方面对新材料的需求,造福人类。 2、复合材料研究现状 复合材料中以纤维增强材料应用最广、用量最大。其特点是比强度和比模量大、比重小。例如碳纤维与环氧树脂复合的复合材料,其比强度、比模量比钢和铝合金的比强度、比模量大数倍,且具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能. 纤维增强材料的另一个特点是各向异性,可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,耐热性高,耐磨损,可作发动机风扇叶片。碳化硅纤维与陶瓷复合,使用温度可达1500℃,比超合金涡轮叶片的使用温度高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。

高分子复合材料现状及发展趋势

高分子复合材料现状及发展趋势 8090216 王健敏 摘要:本文概述了高分子复合材料近年来的最新发展状况以及未来的发展趋势。针对不同的高分子复合材料,文章分别简要概括了液晶高分子复合材料、纳米高分子复合材料以及导热高分子复合材料这三种目前发展最为迅猛的高分子复合材料各自的发展状况。通过相关文献所报导的对于复合机理或者是具体应用上的报导,可以得知高性能、高功能、合金化、精细化、智能化的高分子复合材料是未来材料发展的主要方向之一。 关键词:液晶高分子复合材料、纳米高分子复合材料、导电高分子复合材料 21世纪是科技迅猛发展的时代,随着科学技术的发展,人们对聚合物材料的应用性能的要求日益提高,仅由合成法制备新的聚合物越来越难以满足要求的应用性能,而高分子复合材料所表现出来的优异性能引起了科学家的极大关注。高性能、高功能、合金化、精细化、智能化的高分子复合材料将在21世纪发挥出巨大的作用和无限的生命力。目前,高分子复合材料主要有高分子液晶复合材料、高分子纳米复合材料等。另外由于导热高分子复合材料的用途广泛及应用价值巨大,因此将它单独列为一类。随着科学技术的发展,这几类高分子复合材料都得到了长足的发展,下面将分别介绍各种高分子复合材料的发展状况。 1、高分子液晶复合材料

自从1888年奥地利植物学家F. Reinitzer在合成苯甲酸胆甾醇时发现了液晶后[1] , 人们对液晶材料的探索就从未停止。在1966年Dopont 公司首次使用各向异性的向列态聚合物溶液制出商品纤维——Fi2bre B后,高分子液晶走向了工业化道路。至本世纪,高分子液晶的研究已成为高分子学科发展的一个重要方向。液晶高分子当前的发展趋势是:降低成本;发展液晶高分子原位材料;开发新的成型加工技术和新品种;发展功能液晶高分子材料。目前,关于热致液晶高分子的原位复合是液晶高分子复合领域的一大热点。 原位复合材料是以热塑性树脂为基体, 热致液晶高分子为增强剂, 利用热致液晶聚合物易于自发取向成纤维或带状结构的特点, 在共混熔融后拉伸或注射成型时, 体系中的分散相TLCP 在合适的应力作用下取向形成微纤结构, 由于刚性分子链有较长的松弛时间,在熔体冷却时能被有效地冻结或保存在T P 基体中, 从而形成一种自增强的微观复合材料, 即热致液晶原位复合材料[2]。热致液晶高分子( TLCP) 具有高强度、高模量和自增强性能, 杰出的耐高温和冷热交变性能, 优异的阻燃性、耐腐蚀性、耐磨性、阻隔性和成型加工性能, 线胀系数和摩擦系数小, 尺寸稳定性高, 抗辐射、耐微波、综合性能十分优异, 被誉为超级工程材料。 据相关报道,由于碳纳米管( CNT ) 具有卓越的力学、热学、电学等理化性能, 因而广泛用于高分子复合材料改性, 由于长径比较大,只需添加极少的CNT, 就可以显著改善高分子基体的性能[3],国内外学者对以各种聚合物为基体的CNT /聚合物纳米复合材料进行了广

高分子纳米复合材料的制备

高分子纳米复合材料的制备 摘要: 纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”[1, 2]。 关键词:高分子纳米复合材料,纳米单元,制备 由于纳米微粒尺寸小、比表面积大,表面原子数、表面能和表面张力随粒径的下降急剧增大,表现出小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特点,从而使纳米粒子出现了许多不同于常规固体的新奇特性,展示了广阔的应用前景;同时它也为常规的复合材料的研究增添了新的内容,含有纳米单元相的纳米复合材料[5]通常以实际应用为直接目标,是纳米材料工程的重要组成部分,正成为当前纳米材料发展的新动向,其中高分子纳米复合材料[6~10]由于高分子基体具有易加工、耐腐蚀等优异性能,且能抑止纳米单元的氧化和团聚,使体系具有较高的长效稳定性,能充分发挥纳米单元的特异性能,而尤受广大研究人员的重视。 高分子纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,所采用的纳米单元按成分分可以是金属,也可以是陶瓷、高分子等;按几何条件分可以是球状、片状、柱状纳米粒子,甚至是纳米丝、纳米管、纳米膜等;按相结构分可以是单相,也可以是多相,涉及的范围很广,广义上说多相高分子复合材料,只要其某一组成相至少有一维的尺寸处在纳米尺度范围(1 nm~100 nm)内,就可将其看为高分子纳米复合材料。对通常的纳米粒子/高分子复合材料按其复合的类型大致可分为三种:0-0复合,0-2 复合和0-3复合,纳米粒子在高分子基体中可以均匀分散,也可以非均匀分散;可能有序排布,也可能无序排布,甚至粒子聚集体形成分形结构;复合体系的主要几何参数包括纳米单元的自身几何参数,空间分布参数和体积分数,本文主要涉及后两种类型的高分子纳米复合材料。此外,还有1-3复合型,2-3复合型高分子纳米复合材料,高分子纳米多层膜复合材料,有机高分子介孔固体与异质纳米粒子组装的复合材料等等[1]。 纳米单元与高分子直接共混 此法是将制备好的纳米单元与高分子直接共混,可以是溶液形式、乳液形式,也可以是熔融形式共混。可用于直接共混的纳米单元的制备方法种类繁多[15~18],通常有两种形式的制备:从小到大的构筑式,即由原子、分子等前体出发制备;从大到小的粉碎式,即由常规块材前体出发制备(一般为了更好控制所制备的纳米单元的微观结构性能,常采用构筑式制备法)。总体上又可分为物理方法、化学方法和物理化学方法三种。 物理方法有物理粉碎法,采用超细磨制备纳米粒子,利用介质和物料间相互研磨和冲击,并附以助磨剂或大功率超声波粉碎,达到微粒的微细化;物理气相沉积法(PVD):在低压的惰性气体中加热欲蒸发的物质,使之气化,再在惰性气体中冷凝成纳米粒子,加热源可以是电阻加热、高频感应、电子束或激光等,不同的加热方法制备的纳米粒子的量、大小及分布等有差异;还有流动液

相关文档
相关文档 最新文档