文档库 最新最全的文档下载
当前位置:文档库 › 《信号与系统》实验指导书

《信号与系统》实验指导书

《信号与系统》实验指导书
《信号与系统》实验指导书

《信号与系统》实验指导书

张静亚周学礼

常熟理工学院物理与电子工程学院

2009年2月

实验一常用信号的产生及一阶系统的阶跃响应

一、实验目的

1. 了解常用信号的波形和特点。

2. 了解相应信号的参数。

3. 熟悉一阶系统的无源和有源模拟电路;

4.研究一阶系统时间常数T的变化对系统性能的影响;

5.研究一阶系统的零点对系统的响应及频率特性的影响。

二、实验设备

1.TKSX-1E型信号与系统实验平台

2. 计算机1台

3. TKUSB-1型多功能USB数据采集卡

三、实验内容

1.学习使用实验系统的函数信号发生器模块,并产生如下信号:

(1) 正弦信号f1(t),频率为100Hz,幅度为1;正弦信号f2(t),频率为10kHz,幅度

为2;

(2) 方波信号f3(t),周期为1ms,幅度为1;

(3) 锯齿波信号f4(t),周期为0.1ms,幅度为2.5;

2.学会使用虚拟示波器,通过虚拟示波器观察以上四个波形,读取信号的幅度和频率,并用坐标纸上记录信号的波形。

3.采用实验系统的数字频率计对以上周期信号进行频率测试,并将测试结果与虚拟示波器的读取值进行比较。

4.构建无零点一阶系统(无源、有源),测量系统单位阶跃响应, 并用坐标纸上记录信号的波形。

5.构建有零点一阶系统(无源、有源),测量系统单位阶跃响应, 并用坐标纸上记录信号的波形。

四、实验原理

1.描述信号的方法有多种,可以是数学表达式(时间的函数),也可以是函数图形(即为信号的波形)。对于各种信号可以分为周期信号和非周期信号;连续信号和离散信号等。

2.无零点的一阶系统

无零点一阶系统的有源和无源模拟电路图如图1-1的(a)和(b)所示。它们的传递函数均为+1G(S)=

0.2S 1

(a) (b) 图1-1 无零点一阶系统有源、无源电路图

3.有零点的一阶系统(|Z|<|P|)

图1-2的(a)和(b)分别为有零点一阶系统的有源和无源模拟电路图,他们的传递函数为:2++0.(S 1)G(S)=

0.2S 1

(a) (b)

图1-2 有零点(|Z|<|P|)一阶系统有源、无源电路图

4.有零点的一阶系统(|Z|>|P|)

图1-3的(a)和(b)分别为有零点一阶系统的有源和无源模拟电路图,他们的传递函数为:++0.1S 1G (S )=

S 1

(a)(b)

图1-3 有零点(|Z|<|P|)一阶系统有源、无源电路图

五、实验步骤

(一)常用信号观察

1.打开实验系统电源,打开函数信号发生器模块的电源。

2.连接多功能USB数据采集卡,打开虚拟示波器应用程序USB2086.EXE。

3.在函数信号发生器模块中选择波形,产生实验内容要求的四个信号,通过虚拟示波器观察以上四个波形,读取信号的幅度和频率,并用坐标纸上记录信号的波形。

(二)一阶系统的阶跃响应

1. 利用实验台上相关的单元组成图1-1(a)(或(b))所示的一阶系统模拟电路,系统输出端接示波器其中一通道。

2.“阶跃信号发生器”模块的“输出端1”与电路的输入端相连,电路的输出端接示波器另一通道。将“阶跃信号发生器”的输出调到“正输出”,按下“阶跃信号发生器”的按钮,调节“阶跃信号发生器”的可调电位器,使之输出电压幅值为1V。

3.观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。

4.将“函数信号发生器”选在“方波”,频率为“f1”,调节幅度电位器和频率电位器使输出信号幅度为1V、频率为20Hz。

5.将“函数信号发生器”的输出端接到单元电路的输入端,将示波器接到电路的输出端,观察波形。

六、实验报告

1.根据实验测量的数据,绘制各个信号的波形图,并写出相应的数学函数表达式。

2. 根据测得的一阶系统阶跃响应曲线,测出其时间常数;

七、实验思考题

简述根据一阶系统阶跃响应曲线确定系统的时间常数T的两种常用的方法。

实验二 系统的零输入、零状态及完全响应

一、实验目的

1.通过实验,进一步了解系统的零输入响应、零状态响应和完全响应的原理。 2.掌握用简单的R-C 一阶电路观测零输入响应、零状态响应和完全响应的实验方法。

二、实验设备

1.TKSX-1E 型 信号与系统实验平台 2.计算机1台

https://www.wendangku.net/doc/0816296857.html,USB-1型多功能USB 数据采集卡

三、实验内容

1.设计一个能观测零输入响应、零状态响应和完全响应的电路图(参考图2-1)。 2.分别观测该电路的零输入响应、零状态响应和完全响应的动态曲线。

四、实验原理

1.零输入响应、零状态响应和完全响应的模拟电路如图2-1所示。

图2-1 零输入响应、零状态响应和完全响应的电路图 2.合上图2-1中的开关K1、K3,则由回路可得

iR+Uc =E (1)

∵ i =C

dt

dU C

,则上式改为 =E

c U dt

c dU

RC

(2) 对上式取拉氏变换得:RCU C (S )-RCU C (0)+U C (S )=

S

15

∴RC

1S 5RC 1S 15S

15=1RCS (0)RCU 1)S(RCS 15(S)=U C C +++-+++?????? ??,其中5V (0)U C =

t RC

1

-t RC 1-e e 1(t)=15c

U 5+-???

? ?? (3) 式(3)等号右方的第二项为零输入响应,即由初始条件激励下的输出响应;第一项为零状态响应,它描述了初始条件为零(Uc (0)=0)时,电路在输入E=15V 作用下的输出响应,显然它们之和为电路的完全响应,图2-2所示的曲线表示这三种的响应过程。

图2-2零输入响应、零状态响应和完全响应曲线

其中:①---零输入响应 ②---零状态响应 ③----完全响应

五、实验步骤 (一)常用信号观察

1. 零输入响应

合上开关K2、K3,使+5V 直流电源对电容C 充电,当充电完毕后,断开开关K2,并合上开关K4,用示波器观测Uc (t )的变化。 2.零状态响应

先合上开关K4,使电容两端的电压放电完毕,断开开关K4,并合上开关K1、K3,用示波器观测15V 直流电压向电容C 的充电过程。 3.完全响应

先合上开关K4,使电容两端电压通过R-C 回路放电,一直到零为止。然后断开开关K4,并合上K2、K3,使5V 电源向电容充电,待充电完毕后,断开K2并合上K1,使15V 电源向电容充电,用示波器观测Uc (t )的完全响应。

六、实验报告

1.推导图2-1所示R-C电路在下列两种情况的电容两端电压Uc(t)的表达式。

=15V。

1) Uc(0)=0,输入U

i

=15V。

2) Uc(0)=5V,输入U

i

2.根据实验,分别画出该电路在零输入响应、零状态响应、完全响应下的响应曲线。

七、实验思考题

系统零输入响应的稳定性与零状态响应的稳定性是不是相同?

实验三 非正弦周期信号的分解与合成

一、实验目的

1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅里叶级数各项的频率与系数作比较。

2.观测分解后的基波和各次谐波的合成。 3.掌握信号的分解与合成的实现方法。

二、实验设备

1.TKSX-1E 型 信号与系统实验平台 2.计算机1台

https://www.wendangku.net/doc/0816296857.html,USB-1型多功能USB 数据采集卡

三、实验原理

1.任何电信号都是由各种不同频率、幅值和初相的正弦波迭加而成的。对周期信号由它的傅里叶级数展开式可知,各次谐波的频率为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率成份,每一频率成份的幅值相对大小是不同的。将被测方波信号加到分别调谐于其基波和各次奇谐波频率的电路上。从每一带通滤波器的输出端可以用示波器观察到相应频率的正弦波。本实验所用的被测信号是50Hz 的方波。 2.实验装置的结构图

图3-1实验结构图

图3-1中LPF 为低通滤波器,可分解出非正弦周期信号的直流分量。BPF 1~BPF 6为调谐在

基波和各次谐波上的带通滤波器,加法器用于信号的合成。 3.各种不同波形及其傅氏级数表达式 方波:

??

?

??++++ sin7ωt 71sin5ωt 51sin3ωt 31sin ωt π4Um U(t)=

三角波:

??

?

??-+- sin5ωt 251sin3ωt 91sin ωt π8Um U(t)=

2

半波

??

?

??+--+ cos4ωt 151cos ωt 31sin ωt 4π21π2Um U(t)=

全波

??

?

??+--- cos6ωt 351cos4ωt 151cos2ωt 3121π4Um U(t)=

矩形波

四、实验内容及步骤

1.调节函数信号发生器,使其输出50Hz 的方波信号,并将其接至信号分解实验模块的输入端,再细调函数信号发生器的输出频率,使该模块的基波50Hz 成分BPF 的输出幅度为最大。 2.带通滤波器的输出分别接至示波器,观测各次谐波的幅值,并列表记录。

3.将方波分解所得的基波、三次谐波分别接至加法器的相应输入端,观测加法器的输出波形,并记录。

4.在步骤3的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的合成波形,并记录。

5.分别将50Hz 矩形波和三角波的输出信号接至50Hz 电信号分解与合成模块的输入端,观测基波及各次谐波的频率和幅度,并记录。

6.将50Hz 矩形波和三角波的基波和谐波分量接至加法器相应的输入端,观测求和器的输出波形,并记录。

???

??++++ cos3ωt T 3τπsin 31cos2ωt T 2τπsin 21cos ωt T τπsin

π2Um T τUm U(t)=

五、实验报告

1.根据实验测量所得的数据,在同一坐标纸上绘制方波及其分解后所得的基波和各次谐波的波形,画出其频谱图。

2.将所得的基波和三次谐波及其合成波形一同绘制在同一坐标纸上。

3.将所得的基波、三次谐波、五次谐波及三者合成的波形一同绘制在同一坐标纸上,并把实验步骤3所观测到的合成波形也绘制在同一坐标纸上,进行比较。

六、实验思考题

1.什么样的周期性函数没有直流分量和余弦项;

2.分析理论合成的波形与实验观测到的合成波形之间误差产生的原因。

实验四信号的采样与恢复

一、实验目的

1.熟悉电信号的采样方法与过程及信号的恢复。

2.掌握信号采样与恢复的原理。

3.验证采样定理。

二、实验设备

1.TKSX-1E型信号与系统实验平台

2.计算机1台

https://www.wendangku.net/doc/0816296857.html,USB-1型多功能USB数据采集卡

三、实验内容

1.研究正弦信号和三角波信号被采样的过程以及采样后的离散化信号恢复为连续信号的波

形。

2.用采样定理分析实验结果。

四、实验原理

1.离散时间信号可以从离散信号源获得,也可以从连续时间信号经采样而获得。采样信号

f

(t)可以看成连续信号f(t)和一组开关函数S(t)的乘积。S(t)是一组周期性窄脉s

冲。由对采样信号进行傅立叶级数分析可知,采样信号的频谱包括了原连续信号以及无限多

个经过平移的原信号频谱。平移的频率等于采样频率fs及其谐波频率2fs、3fs···。

当采样后的信号是周期性窄脉冲时,平移后的信号频率的幅度按(sinx)/x规律衰减。采样

信号的频谱是原信号频谱的周期性延拓,它占有的频带要比原信号频谱宽得多。

2.采样信号在一定条件下可以恢复原来的信号,只要用一截止频率等于原信号频谱中最高

频率fn的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号频谱的全部内容,

即低通滤波器的输出为恢复后的原信号。

3.原信号得以恢复的条件是fs≥2B,其中fs为采样频率,B为原信号占有的频带宽度。

Fmin=2B为最低采样频率。当fs<2B时,采样信号的频谱会发生混迭,所以无法用低通滤波

器获得原信号频谱的全部内容。在实际使用时,一般取fs=(5-10)B倍。

实验中选用fs<2B、fs=2B、fs>2B三种采样频率对连续信号进行采样,以验证采样定理

要是信号采样后能不失真的还原,采样频率fs必须远大于信号频率中最高频率的两倍。4.用下面的框图表示对连续信号的采样和对采样信号的恢复过程,实验时,除选用足够高的采样频率外,还常采用前置低通滤波器来防止信号频谱的过宽而造成采样后信号频谱的混迭。

图 4-1信号的采样与恢复原理框图

五、实验步骤

1.连接采样信号(方波)发生器、采样器、低通滤波器组成的采样与恢复电路(可参考本实验台的“信号的采样与恢复”实验单元)。

2.在信号采样与恢复实验单元的输入端输入频率为100Hz左右的正弦信号,然后调节方波发生器的输出频率在800Hz左右,观察采样输出信号以及通过低通滤波器后的恢复信号。

3.改变输入信号的频率,再观察采样输出信号以及通过低通滤波器后的恢复信号。

六、实验报告

1.绘制原始的连续信号、采样后信号以及采样信号恢复为原始信号的波形。

2.分析实验结果,并作出评述。

实验五 无源与有源滤波器

一、实验目的

1. 了解RC 无源和有源滤波器的种类、基本结构及其特性; 2.分析和对比无源和有源滤波器的滤波特性。

二、实验设备

1.TKSX-1E 型 信号与系统实验平台 2.计算机1台

https://www.wendangku.net/doc/0816296857.html,USB-1型多功能USB 数据采集卡

三、实验内容

1. MATLAB 编程,得到传递函数为=++2221

G(S)R C S 3RCS 1

的低通滤波器的幅频特性图和相

频特性图,并测出其3dB 截止频率。

2.采用TKSX-1E 型实验箱无源和有源滤波器模块,构建系统函数为=++222

1

G(S)R C S 3RCS 1

的无源LPF(低通滤波器) 和系统函数为=

++222

1

G(S)R C S 2RCS 1

的有源LPF(低通滤波器),观察经过无源和有源LPF(低通滤波器)的波形。记录3dB 截止频率与MATLAB 仿真程序得到的结果是否一致?

3.观察无源和有源HPF(高通滤波器)的波形; 4.观察无源和有源BPF(带通滤波器)的波形; 5.观察无源和有源BEF(带阻滤波器)的波形;

四、实验原理

滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频率范围)的信号通过,而其它频率的信号幅值均要受到衰减或抑制。这些网络可以由RLC 元件或RC 元件构成的无源滤波器,也可由RC 元件和有源器件构成的有源滤波器。

根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF )、高通滤波器(HPF )、带通滤波器(BPF )、和带阻滤波器(BEF )四种。图5-1分别为四种滤波器的实际幅频特性的示意图。

图5-1 四种滤波器的幅频特性

1.四种滤波器的传递函数和实验模拟电路如图5-2所示:

13RCS S C R 1G(S)222++=

1

2RCS S C R 1

G(S)222++=

(a)无源低通滤波器 (b)有源低通滤波器 13RCS S C R S C R G(S)2

22222++= 1

2RCS S C R S C R G(S)2222

22++=

(c) 无源高通滤波器 (d)有源高通滤波器

13RCS S C R RCS G(S)222++=

1

RCS S C R 2RCS

G(S)222++=

(e)无源带通滤波器 (f)有源带通滤波器

(g)无源带阻滤波器 (h)有源带阻滤波器

图5-2 四种滤波器的实验电路

2.滤波器的网络函数H (j ω),又称系统函数,它可用下式表示

θ(ω)

=A(ω)(j ω)

u (j ω)u H(j ω)=

i o ∠ 式中A(ω)为滤波器的幅频特性,)θ(ω为滤波器的相频特性。它们均可通过实验的方法来测

量。

五、实验步骤

1. MATLAB 编程,得到传递函数为

13RCS S C R 1

G(S)222++=

的低通滤波器的幅频特性图和相

频特性图,并测出其3dB 截止频率,分析滤波器特性。仿真程序shiyan5.m 参照如下:

num=[1];

den=[0.0000000001 0.00003 1]; w = logspace(0,5); freqs(num,den,w)

2.用示波器(或交流数字电压表),从总体上先观察各类滤波器的滤波特性。测试无源和有源低通滤波器的幅频特性实验线路如图:

实验时,在保持正弦波信号输出电压幅值(U i )不变的情况下,逐渐改变其输出频率,用示波器观察其输出波形。

注意:对于波滤波器的输入信号幅度不宜过大,对有源滤波器实验一般不要超过5V 。

1

4RCS S C R 1

S C R G(S)2

22222+++

=

六、实验报告

1.根据实验测量所得数据,绘制滤波器的幅频特性曲线和相频特性曲线。

2.根据实验测量所得数据,绘制滤波器的输入输出的波形,注意标注波形的幅值和相位。

七、实验思考题

1.如果要实现LPF、HPF、BPF、BEF源滤器之间的转换,应如何连接?

实验六 线性系统的稳定性分析

一、实验目的

1.研究增益K 对系统稳定性的影响。 2.研究时间常数T 对系统稳定性的影响。

二、实验设备

1.TKSX-1E 型 信号与系统实验平台; 2.双踪慢扫描示波器1台。

三、实验原理

本实验是研究三阶系统的稳定性与参数K 和T 的关系。图6-1为实验系统的方块图。

图6-1 三阶系统框图

它的系统函数为

K

1)S 1)(T S S(T T K

R(s)C(s)213+++==

)(s H 系统的特征方程为

T 1T 2T 3S 3+T 3(T 1+T 2)S 2+T 3S+K =0 (1)

1.令T 1=0.2S ,T 2=0.1S ,T 3=0.5S ,则上式改写为

S 3+15S 2+50S+100K =0

应用Routh 稳定判据,求得该系统的临界稳定增益K =7.5。这就意味着当K>7.5时,系统为不稳定,输出响应呈发散状态;K<7.5时,系统稳定,输出响应最终能超于某一定值;K =7.5时,系统的输出响应呈等幅振荡。

2.若令K =7.5,T 1=0.2S ,T 3=0.5S ,改变时间常数T 2的大小,观测它对系统稳定性的影响。 由式(1)得

0.1T 2S 3+0.5(0.2+T 2)S 2

+0.5S+7.5=0

排Routh 表:

S 3 0.1T 2 0.5 0 S 2 0.5(0.2+T 2) 7.5 0

S 1

)

T 0.5(0.20.75T )T 0.25(0.222

2+-+

S 0 7.5

若要系统稳定必须满足 T 2>0

0.25(0.2+T 2)-0.75T 2>0,解得 T 2<0.11s

即 0

四、实验内容及步骤:

1.应用MATLAB中的SIMULINK工具箱进行系统稳定性分析。

(1)打开MATLAB7.0,在MATLAB的命令视窗下输入simulink指令则打开Library simulink 两个窗,再打开untitled 窗。

(2) Library simulink有7个子库,其中source 是信号源子库,Sinks是显示器子库。以上子库中的任何模块可拖入untitled 窗中,用鼠标把模块用连线按输入输出关系连接起来,就构成了仿真系统。对于如图6-1所示系统框图,按如下步骤构建仿真系统:第一步,选择simulink库,点击Sources,并将其中的Step模块拖动到新建文件的空白页上。

第二步,选择simulink库,点击Continuous,并将其中的Transfer Fuc模块拖动到新建文件的空白页上。双击该模块,进行参数设置,如图所示。

第三步,选择simulink库,点击Math Operations,并将其中的Gain模块拖动到新建文件的空白页上,双击该模块,进行参数设置,如图所示。

第四步,选择simulink 库,点击Math Operations,并将其中的sum 模块拖动到新建文件的空白页上, 双击该模块,进行参数设置,如图所示。

第五步,选择simulink 库,点击Sinks,并将其中的Scope 模块拖动到新建文件的空白页上。

第六步,将各模块连接起来,建立如图所示的系统。

(3)设置K =10,T 1=0.2S ,T 2=0.05S 和T 3=0.5S ,观察并记录该系统的单位阶跃响应曲线。

(4)T 1=0.2S ,T 2=0.1S ,T 3=0.5S ,观察并记录K 分别为5、7.5和K =10三种情况下的单位阶跃响应曲线。

(5)令K =10,T 1=0.2S ,T 3=0.5S ,观察并记录T 2分别为0.1S 和0.05S 时系统的单位阶跃响应曲线。

2.根据系统函数K

T3S T2)S2T3(T1T1T2T3S3)

(++++=+++K

K 1)S 1)(T S S(T T K 213s H ,

其中K =10,T 1=0.2S ,T 2=0.1S 和T 3=0.5S ,利用MATLAB 画出该系统的零极点分布图;求出该系统的单位冲激响应和幅频响应,并判断系统是否稳定。

源程序如下: num=[10];

den=[0.01 0.15 0.5 10]; sys=tf(num,den); poles=roots(den);

figure(1);pzmap(sys); t=0:0.02:10;

h=impulse(num,den,t); figure(2);plot(t,h);

xlabel('t(s)');ylabel('h(t)');title('Impulse Respone') [H,w]=freqs(num,den); figure(3);plot(w,abs(H));

xlabel('ang.freq.\omega(rad/s)');

ylabel('|H(j\omega)|');title('Magnitude Respone');

五、实验报告

1.写出上述实验内容的实验步骤,画出所得的响应曲线。

2.写出源程序,并给出系统函数的零极点分布图、该系统的单位冲激响应和幅频响应,根据系统函数的极点位置来判断系统的稳定性。与simulink 仿真结果作比较,得到的关于系统稳定性的结论是否一致?设置不同的K 、T 1、T 2和T 3值,并将结果与simulink 仿真结果作比较。

3.定性地分析系统的开环增益K 和某一时间常数T 的变化对系统稳定性的影响。

六、实验思考题

1.如果系统出现不稳定,为使它能稳定地工作,系统开环增益应取大还是取小?

信号与系统实验题目及答案

第一个信号实验的题目 1实现下列常用信号 (1)(5)u t +;(2)(1)t δ-;(3)cos(3)sin(2)t t +;(4)()[(1)(2)]f t t u t t u t t =?---; (5)0.5()4cos(),010t f t e t t π-=?= 2连续信号的基本运算与波形变换 已知信号2 2,2 1 ()33 t t f t ? -+-≤≤?=???,试画出下列各函数对时间t 的波形: (1)()f t -(2)(2)f t -+(3)(2)f t (4)1 (1)2 d f t dt +(5)(2)t f d ττ-∞-? 3连续信号的卷积运算 实现12()()f t f t *,其中1()f t 、2()f t 从第2个题目中任选3对组合。 4连续系统的时域分析 (1) 描述某连续系统的微分方程为()2()()()2()y t y t y t f t f t ''''++=+,求当输入信号为 2()2()t f t e u t -=时,该系统的零状态响应()y t 。 (2) 已知描述某连续系统的微分方程为2()()3()()y t y t y t f t '''+-=,试用MATLAB 绘出 该系统的冲激响应和阶跃响应的波形。 实验一答案: (1)(5)u t +在MATLAB 软件的输入程序及显示波形如下:

(2)(1)t δ-在MATLAB 软件的输入程序及显示波形如下: (3)cos(3)sin(2)t t +在MATLAB 软件的输入程序及显示波形如下: (4)()[(1)(2)]f t t u t t u t t =?---在MATLAB 软件的输入程序及显示波形如下: (5)0.5()4cos(),010t f t e t t π-=?=在MATLAB 软件的输入程序及显示波形如下:

信号与系统实验

《信号与系统及MATLAB实现》实验指导书

前言 长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MA TLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MA TLAB 再多了解一些。 MA TLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MA TLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MA TLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MA TLAB的基本应用,学会应用MA TLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MA TLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MA TLAB的有关知识,以便更好地完成实验,同时实验中也可利用MA TLAB的help命令了解具体语句以及指令的使用方法。

测试技术实验指导书及实验报告2006级用汇总

矿压测试技术实验指导书 学号: 班级: 姓名: 安徽理工大学 能源与安全学院采矿工程实验室

实验一常用矿山压力仪器原理及使用方法 第一部分观测岩层移动的部分仪器 ☆深基点钻孔多点位移计 一、结构简介 深基点钻孔多点位移计是监测巷道在掘进和受采动影响的整个服务期间,围岩内部变形随时间变化情况的一种仪器。 深基点钻孔多点位移包括孔内固定装置、孔中连接钢丝绳、孔口测读装置组成。每套位移计内有5~6个测点。其结构及其安装如图1所示。 二、安装方法 1.在巷道两帮及顶板各钻出φ32的钻孔。 2.将带有连接钢丝绳的孔内固定装置,由远及近分别用安装圆管将其推至所要求的深度。(每个钻孔布置5~6个测点,分别为;6m、5m、4m、3m、2m、lm或12m、10m、8m、6m、4m、2m)。 3.将孔口测读装置,用水泥药圈或木条固定在孔口。 4。拉紧每个测点的钢丝绳,将孔口测读装置上的测尺推至l00mm左右的位置后,由螺丝将钢丝绳与测尺固定在一起。 三、测试方法 安装后先读出每个测点的初读数,以后每次读得的数值与初读数之差,即为测点的位移值。当读数将到零刻度时,松开螺丝,使测尺再回到l00mm左右的位置,重新读出初读数。 ☆顶板离层指示仪 一、结构简介: 顶板离层指示仪是监测顶板锚杆范围内及锚固范围外离层值大小的一种监测仪器,在顶板钻孔中布置两个测点,一个在围岩深部稳定处,一个在锚杆端部围岩中。离层值就是围岩中两测点之间以及锚杆端部围岩与巷道顶板表面间的相对位移值。顶板离层指示仪由孔内固定装置、测量钢丝绳及孔口显示装置组成如图1所示。

二、安装方法: 1.在巷道顶板钻出φ32的钻孔,孔深由要求而定。 2.将带有长钢丝绳的孔内固定装置用安装杆推到所要求的位置;抽出安装杆后再将带有短钢丝绳的孔内固定装置推到所要求的位置。 3.将孔口显示装置用木条固定在孔口(在显示装置与钻孔间要留有钢丝绳运动的间隙)。 4.将钢丝绳拉紧后,用螺丝将其分别与孔口显示装置中的圆管相连接,且使其显示读数超过零刻度线。 三、测读方法: 孔口测读装置上所显示的颜色,反映出顶板离层的范围及所处状态,显示数值表示顶板的离层量。☆DY—82型顶板动态仪 一、用途 DY-82型顶板动态仪是一种机械式高灵敏位移计。用于监测顶底板移近量、移近速度,进行采场“初次来压”和“周期来压”的预报,探测超前支撑压力高 峰位置,监测顶板活动及其它相对位移的测量。 二、技术特征 (1)灵敏度(mm) 0.01 (2)精度(%) 粗读±1,微读±2.5 (3)量程(mm) 0~200 (4)使用高度(mm) 1000~3000 三、原理、结构 其结构和安装见图。仪器的核心部件是齿条6、指针8 以及与指针相连的齿轮、微读数刻线盘9、齿条下端带有读 数横刻线的游标和粗读数刻度管11。 当动态仪安装在顶底板之间时,依靠压力弹簧7产生的 弹力而站立。安好后记下读数(初读数)并由手表读出时间。 粗读数由游标10的横刻线在刻度管11上的位置读出,每小 格2毫米,每大格(标有“1”、“22'’等)为10毫米,微读数 由指针8在刻线盘9的位置读出,每小格为0.01毫米(共200 小格,对应2毫米)。粗读数加微读数即为此时刻的读数。当 顶底板移近时,通过压杆3压缩压力弹簧7,推动齿条6下 移,带动齿轮,齿轮带动指针8顺时针方向旋转,顶底板每 移近0.01毫米,指针转过1小格;同时齿条下端游标随齿条 下移,读数增大。后次读数减去前次读数,即为这段时间内的顶底板移近量。除以经过的时间,即得

《信号与系统》实验四

信息科学与工程学院《信号与系统》实验报告四专业班级电信09-班姓名学号实验时间2011 年月日指导教师陈华丽成绩

0≤n 的幅频特性曲线,由此图可以确

1.对连续信号)()sin()(0t u t Ae t x t a Ωα-=(128.444=A ,πα250=,πΩ2500=)进行理想采样,可得采样序列500) ()sin()()(0≤≤==-n n u nT Ae nT x n x nT a Ωα。图1给出了)(t x a 的幅频特性曲线,由此图可以确 定对)(t x a 采用的采样频率。分别取采样频率为 1KHz 、300Hz 和200Hz ,画出所得采样序列)(n x 的幅频

特性)( j e X 。并观察是否存在频谱混叠。 源程序: % 产生序列x(n) n=0:50; A=444.128; a=50*sqrt(2.0)*pi; T=1/1000; % T 分别取1/1000、1/300、1/200 w0=50*sqrt(2.0)*pi; x=A*exp(-a*n*T).*sin(w0*n*T); %函数f 的表达式 subplot(1,2,1),stem(n,x) title('理想采样序列 fs=1000Hz') % 绘制x(n)的幅度谱 k=-250:250; W=pi/125*k; X=x*(exp(-j*pi/125)).^(n'*k); % 由公式计算DTFT magX=abs(X); subplot(1,2,2),plot(W,magX) title('理想采样序列的幅度谱') 结果图

fs=300HZ fs=200HZ

信号与系统实验2

实验报告 实验二连续时间系统的时域分析 一、实验目的: 1、掌握用Matlab进行卷积运算的数值方法和解析方法,加深对卷积积分的理解。 2、学习利用Matlab实现LTI系统的冲激响应、阶跃响应和零状态响应。 二、实验内容及步骤 实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

1、 编写程序Q2_1,完成)(1t f 与)(2t f 两函数的卷积运算。 2、 编写程序Q2_2,完成)(1t f 与)(2t f 两函数的卷积运算。 3、编写程序Q2_3。利用程序Q2_1,验证卷积的相关性质。 (a) 验证性质:)()(*)(t x t t x =δ (b) 验证性质: )()(*)(00t t x t t t x -=-δ 4、编写程序Q2_4。某线性时不变系统的方程为 )(8)(2)(6)(5)(t f t f t y t y t y +'=+'+'', (a)系统的冲激响应和阶跃响应。 (b)输入()()t f t e u t -=,求系统的零状态响应)(t y zs 。 三. 实验结果 一: dt=0.01 t1=0:dt:2 f1=0.5*t1 t2=0:dt:2 f2=0.5*t2 f=dt*conv(f1,f2) t=0:0.01:4 plot(t,f);axis([-1 5 0 0.8])

二: dt=0.01 t=-3:dt:3 t1=-6:dt:6 ft1=2*rectpuls(t,2) ft2=rectpuls(t,4) y=dt*conv(ft1,ft2) plot(t1,y) axis([-4 4 0 5]) 以上两题出现错误点:(1)最开始模仿例1的写法用function [f,k]=sconv,总提示出现 错误 (2)t0+t2 ≤ t ≤ t1+t3 不大能理解的运用个特点,在编写的时候总是被忽略。导致t和t1设置的长度总出错。 三: (a) dt=0.01 t=0:dt:2 t0=0 t1=0:dt:2t2=0:dt:2

混凝土结构实验指导书及实验报告(学生用)

土木工程学院 《混凝土结构设计基本原理》实验指导书 及实验报告 适用专业:土木工程周淼 编 班级::学 号: 理工大学 2018 年9 月

实验一钢筋混凝土梁受弯性能试验 一、实验目的 1.了解适筋梁的受力过程和破坏特征; 2.验证钢筋混凝土受弯构件正截面强度理论和计算公式; 3.掌握钢筋混凝土受弯构件的实验方法及荷载、应变、挠度、裂缝宽度等数据的测试技术 和有关仪器的使用方法; 4.培养学生对钢筋混凝土基本构件的初步实验分析能力。 二、基本原理当梁中纵向受力钢筋的配筋率适中时,梁正截面受弯破坏过程表现为典型的三个阶段:第一阶段——弹性阶段(I阶段):当荷载较小时,混凝土梁如同两种弹性材料组成的组合梁,梁截面的应力呈线性分布,卸载后几乎无残余变形。当梁受拉区混凝土的最大拉应力达到混凝土的抗拉强度,且最大的混凝土拉应变超过混凝土的极限受拉应变时,在纯弯段某一薄弱截面出现首条垂直裂缝。梁开裂标志着第一阶段的结束。此时,梁纯弯段截面承担的弯矩M cr称为开裂弯矩。第二阶段——带裂缝工作阶段(II阶段):梁开裂后,裂缝处混凝土退出工作,钢筋应力急增,且通过粘结力向未开裂的混凝土传递拉应力,使得梁中继续出现拉裂缝。压区混凝土中压应力也由线性分布转化为非线性分布。当受拉钢筋屈服时标志着第二阶段的结束。此时梁纯弯段截面承担的弯矩M y称为屈服弯矩。第三阶段——破坏阶段(III阶段):钢筋屈服后,在很小的荷载增量下,梁会产生很大的变形。裂缝的高度和宽度进一步发展,中和轴不断上移,压区混凝土应力分布曲线渐趋丰满。当受压区混凝土的最大压应变达到混凝土的极限压应变时,压区混凝土压碎,梁正截面受弯破坏。此时,梁承担的弯矩M u 称为极限弯矩。适筋梁的破坏始于纵筋屈服,终于混凝土压碎。整个过程要经历相当大的变形,破坏前有明显的预兆。这种破坏称为适筋破坏,属于延性破坏。 三、试验装置

信号与系统综合实验项目doc信号与系统综合实验项目(竞

信号与系统综合实验项目doc 信号与系统综合实验项目 (竞 实 验 指 导 项目一 用MATLAB 验证时域抽样定理 目的: 通过MATLAB 编程实现对时域抽样定理的验证,加深抽样定理的明白得。同时训练应用运算机分析咨询题的能力。 任务: 连续信号f(t)=cos(8*pi*t)+2*sin(40*pi*t)+cos(24*pi*t),通过理想抽样后得到抽样信号fs(t),通过理想低通滤波器后重构信号f(t)。 方法: 1、确定f(t)的最高频率fm 。关于无限带宽信号,确定最高频率fm 的方法:设其频谱的模降到10-5左右时的频率为fm 。 2、确定Nyquist 抽样间隔T N 。选定两个抽样时刻:T S T N 。 3、MA TLAB 的理想抽样为 n=-200:200;nTs=n*Ts; 或 nTs=-0.04:Ts:0.04 4、抽样信号通过理想低通滤波器的响应 理想低通滤波器的冲激响应为 )()()()(2ωωωπωωj H G T t Sa T t h C S C C S +?= 系统响应为 )()()(t h t f t y S *= 由于 ∑∑∞-∞=∞-∞=-=-=n S S n S S nT t nT f nT t t f t f )()()() ()(δδ 因此 )] ([)()()()()(S C n S C S C C S n S S nT t Sa nT f T t Sa T nT t nT f t y -=*-=∑∑∞-∞=∞-∞=ωπωωπωδ MATLAB 运算为 ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); 要求(画出6幅图): 当T S

信号与系统实验四

信号与系统实验实验四:周期信号的傅里叶级数 小组成员: 黄涛13084220 胡焰焰13084219 洪燕东13084217

一、实验目的 1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成。 2、观察矩形脉冲信号通过多个数字滤波器后,分解出各谐波分量的情况。 3、掌握用傅里叶级数进行谐波分析的方法。 4、观察矩形脉冲信号分解出的各谐波分量可以通过叠加合成出原矩形脉冲信号。 二、预习内容 1、周期信号的傅里叶级数分解及其物理意义。 2、典型信号傅里叶级数计算方法。 三、实验原理 1. 信号的时间特性与频率特性 信号可以表示为随时间变化的物理量,比如电压)(t u 和电流)(t i 等,其特性主要表现为随时间的变化,波形幅值的大小、持续时间的长短、变化速率的快慢、波动的速度及重复周期的大小等变化,信号的这些特性称为时间特性。 信号还可以分解为一个直流分量和许多不同频率的正弦分量之和。主要表现在各频率正弦分量所占比重的大小不同;主要频率分量所占的频率范围也不同,信号的这些特性称为信号的频率特性。 无论是信号的时间特性还是频率特性都包含了信号的全部信息量。 2. 信号的频谱 信号的时间特性和频率特性是对信号的两种不同的描述方式。根据傅里叶级数原理,任意一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间),(11T t t +内表示为 ()∑∞ =Ω+Ω+=10sin cos )(n n n t n b t n a a t f 即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。 A 0t A n 0A 0t (a)(b) Ω(c)ωΩ 5Ω3Ω Ω3Ω5 3. 信号的时间特性与频率特性关系 信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图4-1来形象地表示。其中图4-1(a)是信号在幅度--时间--频率三维坐标系统中的图形;图4-1(b)是信号在幅度--时间坐标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。反映各频率分量幅度的频谱称为振幅频谱。图4-1(c)是信号在幅度--频率坐标系统中的图形即振幅频谱图。反映各分量相位的频谱称为相位频谱。 4. 信号频谱的测量 在本实验中只研究信号振幅频谱。周期信号的振幅频谱有三个性质:离散性、谐波性、收敛

土工实验指导书及实验报告

土工实验指导书及实验报告编写毕守一 安徽水利水电职业技术学院 二OO九年五月

目录 实验一试样制备 实验二含水率试验 实验三密度试验 实验四液限和塑限试验 实验五颗粒分析试验 实验六固结试验 实验七直接剪切试验 实验八击实试验 土工试验复习题

实验一试样制备 一、概述 试样的制备是获得正确的试验成果的前提,为保证试验成果的可靠性以及试验数据的可比性,应具备一个统一的试样制备方法和程序。 试样的制备可分为原状土的试样制备和扰动土的试样制备。对于原状土的试样制备主要包括土样的开启、描述、切取等程序;而扰动土的制备程序则主要包括风干、碾散、过筛、分样和贮存等预备程序以及击实等制备程序,这些程序步骤的正确与否,都会直接影响到试验成果的可靠性,因此,试样的制备是土工试验工作的首要质量要素。 二、仪器设备 试样制备所需的主要仪器设备,包括: (1)孔径0.5mm、2mm和5mm的细筛; (2)孔径0.075mm的洗筛; (3)称量10kg、最小分度值5g的台秤; (4)称量5000g、最小分度值1g和称量200g、最小分度值0.01g的天平;

(5)不锈钢环刀(内径61.8mm、高20mm;内径79.8mm、高20mm或内径61.8mm、高40mm); (6)击样器:包括活塞、导筒和环刀; (7)其他:切土刀、钢丝锯、碎土工具、烘箱、保湿器、喷水设备、凡士林等。 三、试样制备 (一)原状土试样的制备步骤 1、将土样筒按标明的上下方向放置,剥去蜡封和胶带,开启土样筒取土样。 2、检查土样结构,若土样已扰动,则不应作为制备力学性质试验的试样。 3、根据试验要求确定环刀尺寸,并在环刀内壁涂一薄层凡士林,然后刃口向下放在土样上,将环刀垂直下压,同时用切土刀沿环刀外侧切削土样,边压边削直至土样高出环刀,制样时不得扰动土样。 4、采用钢丝锯或切土刀平整环刀两端土样,然后擦净环刀外壁,称环刀和土的总质量。 5、切削试样时,应对土样的层次、气味、颜色、夹杂物、裂缝和均匀性进行描述。 6、从切削的余土中取代表性试样,供测定含水率以及颗粒分析、界限含水率等试验之用。

信号与系统实验报告1

学生实验报告 (理工类) 课程名称:信号与线性系统专业班级:M11通信工程 学生学号:1121413017 学生姓名:王金龙 所属院部:龙蟠学院指导教师:杨娟

20 11 ——20 12 学年第 1 学期 金陵科技学院教务处制 实验报告书写要求 实验报告原则上要求学生手写,要求书写工整。若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。纸张一律采用A4的纸张。 实验报告书写说明 实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。各院部可根据学科特点和实验具体要求增加项目。 填写注意事项 (1)细致观察,及时、准确、如实记录。 (2)准确说明,层次清晰。 (3)尽量采用专用术语来说明事物。 (4)外文、符号、公式要准确,应使用统一规定的名词和符号。 (5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。 实验报告批改说明 实验报告的批改要及时、认真、仔细,一律用红色笔批改。实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。 实验报告装订要求

实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:常用连续信号的表示 实验学时: 2学时 同组学生姓名: 无 实验地点: A207 实验日期: 11.12.6 实验成绩: 批改教师: 杨娟 批改时间: 一、实验目的和要求 熟悉MATLAB 软件;利用MATLAB 软件,绘制出常用的连续时间信号。 二、实验仪器和设备 586以上计算机,装有MATLAB7.0软件 三、实验过程 1. 绘制正弦信号)t Asin t (f 0?ω+=(),其中A=1,πω2=,6/π?=; 2. 绘制指数信号at Ae t (f =),其中A=1,0.4a -=; 3. 绘制矩形脉冲信号,脉冲宽度为2; 4. 绘制三角波脉冲信号,脉冲宽度为4;斜度为0.5; 5. 对上题三角波脉冲信号进行尺度变换,分别得出)2t (f ,)2t 2(f -; 6. 绘制抽样函数Sa (t ),t 取值在-3π到+3π之间; 7. 绘制周期矩形脉冲信号,参数自定; 8. 绘制周期三角脉冲信号,参数自定。 四、实验结果与分析 1.制正弦信号)t Asin t (f 0?ω+=(),其中A=1,πω2=,6/π?= 实验代码: A=1;

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

CAD上机实验指导书及实验报告

北京邮电大学世纪学院 实验、实习、课程设计报告撰写格式与要求 (试行) 一、实验报告格式要求 1、有实验教学手册,按手册要求填写,若无则采用统一实验报告封面。 2、报告一律用钢笔书写或打印,打印要求用A4纸;页边距要求如下:页边距上下各为2.5厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。 3、统一采用国家标准所规定的单位与符号,要求文字书写工整,不得潦草;作图规范,不得随手勾画。 4、实验报告中的实验原始记录,须经实验指导教师签字或登记。 二、实习报告、课程设计报告格式要求 1、采用统一的封面。 2、根据教学大纲的要求手写或打印,手写一律用钢笔书写,统一采用国家标准所规定的单位与符号,要求文字书写工整,不得潦草;作图规范,不得随手勾画。打印要求用A4纸;页边距要求如下:页边距上下各为2.5厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。 三、报告内容要求 1、实验报告内容包括:实验目的、实验原理、实验仪器设备、实验操作过程、原始数据、实验结果分析、实验心得等方面内容。 2、实习报告内容包括:实习题目、实习任务与要求、实习具体实施情况(附上图表、原始数据等)、实习个人总结等内容。 3、课程设计报告或说明书内容包括:课程设计任务与要求、总体方案、方案设计与分析、所需仪器设备与元器件、设计实现与调试、收获体会、参考资料等方面内容。 北京邮电大学世纪学院 教务处 2009-8

实验报告 课程名称计算机绘图(CAD) 实验项目AutoCAD二维绘图实验 专业班级 姓名学号 指导教师实验成绩 2016年11月日

信号与系统综合实验报告-带通滤波器的设计DOC

广州大学 综合设计性实验 报告册 实验项目选频网络的设计及应用研究 学院物电学院年级专业班电子131 姓名朱大神学号成绩 实验地点电子楼316 指导老师

《综合设计性实验》预习报告 实验项目:选频网络的设计及应用研究 一 引言: 选频网络在信号分解、振荡电路及其收音机等方面有诸多应用。比如,利用选频网络可以挑选出一个周期信号中的基波和高次谐波。选频网络的类型和结构有很多,本实验将通过设计有源带通滤波器实现选频。 二 实验目的: (1)熟悉选频网络特性、结构及其应用,掌握选频网络的特点及其设计方法。 (2)学会使用交流毫伏表和示波器测定选频网络的幅频特性和相频特性。 (3)学会使用Multisim 进行电路仿真。 三 实验原理: 带通滤波器: 这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减和抑制。 典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成,如图1所示。 电路性能参数可由下面各式求出。 通带增益:CB R R R R A f vp 144+= 其中B 为通频带宽。 中心频率:)1 1(121 3 12 20R R C R f += π

通带宽度:)2 1(14 321R R R R R C B f -+= 品质因数:B f Q 0 = 此电路的优点是,改变f R 和4R 的比值,就可以改变通带宽度B 而不会影响中心频率0f 。 四 实验内容: 设计一个中心频率Hz f 20000=,品质因数5>Q 的带通滤波器。 五 重点问题: (1)确定带通滤波器的中心频率、上限频率及下限频率。 (2)验证滤波器是否能筛选出方波的三次谐波。 六 参考文献: [1]熊伟等.Multisim 7 电路设计及仿真应用.北京:清华大学出版社,2005. [2]吴正光,郑颜.电子技术实验仿真与实践.北京:科学出版社,2008. [4]童诗白等.模拟电子技术基础(第三版).北京:高等教育出版社, 2001. 图1 二阶带通滤波器

信号与系统实验报告

中南大学 信号与系统试验报告 姓名: 学号: 专业班级:自动化 实验一 基本信号的生成 1.实验目的 ● 学会使用MATLAB 产生各种常见的连续时间信号与离散时间信号; ● 通过MATLAB 中的绘图工具对产生的信号进行观察,加深对常用信号的 理解; ● 熟悉MATLAB 的基本操作,以及一些基本函数的使用,为以后的实验奠 定基础。 2.实验内容 ⑴ 运行以上九个例子程序,掌握一些常用基本信号的特点及其MATLAB 实现方法;改变有关参数,进一步观察信号波形的变化。 ⑵ 在 k [10:10]=- 范围内产生并画出以下信号: a) 1f [k][k]δ=; b) 2f [k][k+2]δ=; c) 3f [k][k-4]δ=; d) 4f [k]2[k+2][k-4]δδ=-。

源程序: k=-10:10; f1k=[zeros(1,10),1,zeros(1,10)]; subplot(2,2,1) stem(k,f1k) title('f1[k]') f2k=[zeros(1,8),1,zeros(1,12)]; subplot(2,2,2) stem(k,f2k) title('f2[k]') f3k=[zeros(1,14),1,zeros(1,6)]; subplot(2,2,3) stem(k,f3k) title('f3[k]') f4k=2*f2k-f3k; subplot(2,2,4) stem(k,f4k) title('f4[k]') ⑶ 在 k [0:31]=范围内产生并画出以下信号: a) ()()k k 144f [k]sin cos π π=; b) ()2k 24f [k]cos π =; c) ()()k k 348f [k]sin cos π π=。 请问这三个信号的基波周期分别是多少? 源程序: k=0:31; f1k=sin(pi/4*k).*cos(pi/4*k); subplot(3,1,1) stem(k,f1k) title('f1[k]') f2k=(cos(pi/4*k)).^2; subplot(3,1,2) stem(k,f2k) title('f2[k]') f3k=sin(pi/4*k).*cos(pi/8*k); subplot(3,1,3) stem(k,f3k) title('f3[k]') 其中f1[k]的基波周期是4, f2[k]的基波周期是4, f3[k]的基波周期是16。

北京理工大学信号与系统实验实验报告

实验1 信号的时域描述与运算 一、实验目的 1. 掌握信号的MATLAB表示及其可视化方法。 2. 掌握信号基本时域运算的MA TLAB实现方法。 3. 利用MA TLAB分析常用信号,加深对信号时域特性的理解。 二、实验原理与方法 1. 连续时间信号的MATLAB表示 连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。 从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。例如一个正弦信号可以表示如下: >> t=0:0.01:10; >> x=sin(t); 利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。 如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。例如对于上述正弦信号,可以用符号对象表示如下: >> x=sin(t); >> ezplot(X); 利用ezplot(x)命令可以绘制上述信号的时域波形 Time(seconds) 图1 利用向量表示连续时间信号

t 图 2 利用符号对象表示连续时间信号 sin(t) 2.连续时间信号的时域运算 对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。 1)相加和相乘 信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。 2)微分和积分 对于向量表示法表示的连续时间信号,可以通过数值计算的方法计算信号的微分和积分。这里微分使用差分来近似求取的,由时间向量[N t t t ,,,21?]和采样值向量[N x x x ,,,21?]表示的连续时间信号,其微分可以通过下式求得 1,,2,1,|)('1-?=?-≈ +=N k t x x t x k k t t k 其中t ?表示采样间隔。MA TLAB 中用diff 函数来计算差分 k k x x -+1。 连续时间信号的定积分可以由MATLAB 的qud 函数实现,调用格式为 quad ('function_name',a,b) 其中,function_name 为被积函数名,a 、b 为积分区间。

《流体力学》课程实验(上机)指导书及实验报告格式

《流体力学》课程实验指导书袁守利编 汽车工程学院 2005年9月

前言 1.实验总体目标、任务与要求 1)学生在学习了《流体力学》基本理论的基础上,通过伯努利方程实验、动量方程实 验,实现对基本理论的验证。 2)通过实验,使学生对水柱(水银柱)、U型压差计、毕托管、孔板流量计、文丘里流量计等流体力学常用的测压、测流量装置的结构、原理和使用有基本认识。 2.适用专业 热能与动力工程 3.先修课程 《流体力学》相关章节。 4.实验项目与学时分配 5. 实验改革与特色 根据实验内容和现有实验条件,在实验过程中,采取学生自己动手和教师演示相结合的方法,力求达到较好的实验效果。

实验一伯努利方程实验 1.观察流体流经实验管段时的能量转化关系,了解特定截面上的总水头、测压管水头、压强水头、速度水头和位置水头间的关系,从而加深对伯努利方程的理解和认识。 2.掌握各种水头的测试方法和压强的测试方法。 3.掌握流量、流速的测量方法,了解毕托管测速的原理。 二、实验条件 伯努利方程实验仪 三、实验原理 1.实验装置: 图一伯努利方程实验台 1.水箱及潜水泵 2.上水管 3.电源 4.溢流管 5.整流栅 6.溢流板 7.定压水箱 8.实验 细管9. 实验粗管10.测压管11.调节阀12.接水箱13.量杯14回水管15.实验桌 2.工作原理 定压水箱7靠溢流来维持其恒定的水位,在水箱下部装接水平放置的实验细管8,水经实验细管以恒定流流出,并通过调节阀11调节其出水流量。通过布置在实验管四个截面上的四组测压孔及测压管,可以测量到相应截面上的各种水头的大小,从而可以分析管路中恒定流动的各种能量形式、大小及相互转化关系。各个测量截面上的一组测压管都相当于一组毕托管,所以也可以用来测管中某点的流速。 电测流量装置由回水箱、计量水箱和电测流量装置(由浮子、光栅计量尺和光电子

信号与系统实验报告

实验三 常见信号的MATLAB 表示及运算 一、实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二、实验原理 根据MATLAB 的数值计算功能和符号运算功能,在MA TLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MA TLAB 语句表示出信号后,就可以利用MA TLAB 中的绘图命令绘制出直观的信号波形了。 1.连续时间信号 从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 ⑵ 符号运算表示法 如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。 ⑶ 常见信号的MATLAB 表示 单位阶跃信号 单位阶跃信号的定义为:10()0 t u t t >?=? 0); %定义函数体,即函数所执行指令

信号与系统实验(新)

信号与系统实验 实验1 阶跃响应与冲激响应 一、实验目的 1、观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并 研究其电路元件参数变化对响应状态的影响; 2、掌握有关信号时域的测量方法。 二、实验原理说明 实验如图1-1所示RLC串联电路的阶跃响应与冲激响应的电路连接图,图1

用周期方波通过微分电路后得到的尖顶脉冲代替冲激信号。 三、实验内容 1、阶跃响应波形观察与参数测量 设激励信号为方波,其幅度为1.5V 峰峰值,频率为500Hz 。 实验电路连接图如图1-1(a )所示。 ① 连接如图1-1所示 ② 调整激励源信号为方波,调节频率旋钮,使f=500Hz ,调节幅度旋钮, 使信号幅度为1.5V 。(注意:实验中,在调整信号源的输出信号的参数时,需连接上负载后调节) ③ 示波器CH1接于TP909,调节滑动变阻器,使电路分别工作于欠阻尼、 临界和过阻尼三种状态,并将实验数据填入表格1-1中。 ④ TP908为输入信号波形的测量点,可把示波器的CH ·接于TP908上,便 于波形比较。 表1-1 注:描绘波形要使三状态的X 轴坐标(扫描时间)一致。 2、冲激响应的波形观察 冲激信号是由阶跃信号经过微分电路而得到。 实验电路如图1—1(b )所示。 参数测量 波形观察 欠阻尼状态 临界状态 过阻尼状态 状态 参数测量 R< Tr= Ts= δ= R= Tr= R>

①将信号输入接于P905。(频率与幅度不变); ②将示波器的CH1接于TP906,观察经微分后响应波形(等效为冲激激 励信号); ③连接如图1-1(b)所示 ④将示波器的CH2接于TP909,调整滑动变阻器,使电路分别工作于欠 阻尼、临界和过阻尼三种状态 ④观察TP909端三种状态波形,并填于表1-2中。 表1-2 表中的激励波形为在测量点TP906观察到的波形(冲激激励信号)。 四、实验报告要求 1、描绘同样时间轴阶跃响应与冲激响应的输入、输出电压波形时, 要标明信号幅度A、周期T、方波脉宽T1以及微分电路的τ值。 2、分析实验结果,说明电路参数变化对状态的影响。 五、实验设备 双踪示波器 1 台 信号系统实验箱 1台 上升时间t r :y(t)从0.1到第一次达到0.9所需时间。 峰值时间t p :y(t)从0上升y max 所需的时间。 调节时间t s :y(t)的振荡包络线进入到稳态值的% 5 误差范围所需的时间。 激励波形 响应波形 欠阻尼状态临界状态过阻尼状态

电磁场实验指导书及实验报告

CENTRAL SOUTH UNIVERSITY 题目利用Matlab模拟点电荷电场的分布姓名xxxx 学号xxxxxxxxxx 班级电气xxxx班 任课老师xxxx 实验日期2010-10

电磁场理论 实验一 ——利用Matlab 模拟点电荷电场的分布 一.实验目的: 1.熟悉单个点电荷及一对点电荷的电场分布情况; 2.学会使用Matlab 进行数值计算,并绘出相应的图形; 二.实验原理: 根据库伦定律:在真空中,两个静止点电荷之间的作用力与这两个电荷的电量乘积成正比,与它们之间距离的平方成反比,作用力的方向在两个电荷的连线上,两电荷同号为斥力,异号为吸力,它们之间的力F 满足: R R Q Q k F ? 212 = (式1) 由电场强度E 的定义可知: R R kQ E ? 2 = (式2) 对于点电荷,根据场论基础中的定义,有势场E 的势函数为 R kQ U = (式3) 而 U E -?= (式4) 在Matlab 中,由以上公式算出各点的电势U ,电场强度E 后,可以用Matlab 自带的库函数绘出相应电荷的电场分布情况。 三.实验内容: 1. 单个点电荷 点电荷的平面电力线和等势线 真空中点电荷的场强大小是E=kq /r^2 ,其中k 为静电力恒量, q 为电量, r 为点电荷到场点P(x,y)的距离。电场呈球对称分布, 取电量q> 0, 电力线是以电荷为起点的射线簇。以无穷远处为零势点, 点电荷的电势为U=kq /r,当U 取

常数时, 此式就是等势面方程.等势面是以电荷为中心以r 为半径的球面。 平面电力线的画法 在平面上, 电力线是等角分布的射线簇, 用MATLAB 画射线簇很简单。取射线的半径为( 都取国际制单位) r0=, 不同的角度用向量表示( 单位为弧度) th=linspace(0,2*pi,13)。射线簇的终点的直角坐标为: [x,y]=pol2cart(th,r0)。插入x 的起始坐标x=[x; *x].同样插入y 的起始坐标, y=[y; *y], x 和y 都是二维数组, 每一列是一条射线的起始和终止坐标。用二维画线命令plot(x,y)就画出所有电力线。 平面等势线的画法 在过电荷的截面上, 等势线就是以电荷为中心的圆簇, 用MATLAB 画等势 线更加简单。静电力常量为k=9e9, 电量可取为q=1e- 9; 最大的等势线的半径应该比射线的半径小一点 r0=。其电势为u0=k8q /r0。如果从外到里取7 条等势线, 最里面的等势线的电势是最外面的3 倍, 那么各条线的电势用向量表示为: u=linspace(1,3,7)*u0。从- r0 到r0 取偶数个点, 例如100 个点, 使最中心点的坐标绕过0, 各点的坐标可用向量表示: x=linspace(- r0,r0,100), 在直角坐标系中可形成网格坐标: [X,Y]=meshgrid(x)。各点到原点的距离为: r=sqrt(X.^2+Y.^2), 在乘方时, 乘方号前面要加点, 表示对变量中的元素进行乘方计算。各点的电势为U=k8q. /r, 在进行除法运算时, 除号前面也要加点, 同样表示对变量中的元素进行除法运算。用等高线命令即可画出等势线 contour(X,Y,U,u), 在画等势线后一般会把电力线擦除, 在画等势线之前插入如下命令hold on 就行了。平面电力线和等势线如图1, 其中插入了标题等等。越靠近点电荷的中心, 电势越高, 电场强度越大, 电力线和等势线也越密。

相关文档
相关文档 最新文档