文档库 最新最全的文档下载
当前位置:文档库 › 中心极限定理的创立与发展

中心极限定理的创立与发展

中心极限定理的创立与发展
中心极限定理的创立与发展

中心极限定理的创立与发展

-----杨静邓明立

概率论极限理论是概率论的重要组成部分,是概率论的其他分支和数理统计的重要基础。的概率现象是由于无数的随机因素共同作用的结果---这些因素每一个都起到一点作用,但都没有起到很大的甚至决定性的作用。而极限定理告诉我们,这类多随机因素作用的现象必然会收敛于某个正态分布的概率模型。因此,该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。

现实中有许多随机变量都具有上述特点,比如,大炮的射程受到多种因素影响:炮身结构,炮弹外形,炮弹几炮弹内炸药质量,瞄准的误差,风速,风向的干扰,大炮的使用年限等等,其中每种因素的微小差异对总的影响作用都不大,并且可以看作是互相独立的、互相不影响的。每种因素都会引起一个微小的误差,而炮弹落点的误差就是这许多随机误差的总和所影响的。由此看出,研究随机变量和的极限对于搞清楚随机现象的本质有着极其的重要价值。

在生产和生活中,有许多随机变量的取值呈现出“中间多,两头少,左右对称”的特点。例如,一般来说我国北方男性身高在170厘米左右的居多,而高于180厘米和低于160厘米的较少。或者在生产条件不变的情况下产品的抗压强度、长度、等许多随机变量指标也都存在这样类似的情况。这样的随机变量所服从的分布就是所谓的“正态分布”。许多随机变量服从正态分布。

极限理论中的中心极限定理曾是概率论的中心课题。中心极限定理有很多形式。凡是关于随机变量的数目无限增多时,其和的分布函数在一定的条件下收敛于正态分布函数的任何论断,都称为中心极限定理。

“中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。

历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。

创立阶段:1733-----1853年

人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理”。

那么,是什么促使隶莫弗研究得到这个定理呢?这要归因于1721年卡明向棣莫弗提出的一个问题:A 、B 二人在某甲赌博。每局A 获胜的概率为p ,B 获胜的概率为q=1-p.赌N 局,以X 记A 胜局数。约定:若X>=Np,则A 付给甲X-Np 元;若XNq ,则B 付给甲(N-X)-Nq=Np-X 元。问甲所得到的期望值是多少?棣莫弗在解答和推广这个问题的过程中,得出了一些相关结论。1725年,卡明把棣莫弗的结果告诉了斯特林,这引起了他的兴趣,并把取得的结果通知了棣莫弗。这促使棣莫弗在1733年得到了上述重要的结果。以其为发端,直到1930年代初,独立随机变量和的中心极限定理的研究一直在概率论占据了中心地位。

法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t 换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函

数,或傅里叶变换,即itX Ee (t 为实数)。在1812年,他先后考虑了对称的、离散的均匀

分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p 证明了如下中心极限定理:

du

e x p np np S P x u n n ?∞--∞→=≤--2221))1((lim π

泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。

其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。

以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。可实际上,当时被视为法国领

袖概率学家贝特朗和庞加莱都能做这些研究。虽然贝特朗和庞加莱写了许多概率计算的著作,但是两人似乎都不知道中心极限定理。

从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领域被其他数学家视为一门数学科学,他们的同行不能理解,为什么标准的数学术语还不够,为什么古老的概念被重新命名为“随机变量”和“期望”。而且,概率书里充满了非数学的概念:骰子、赌场、甲乙等人。

另外,从下面博雷尔的一段话,也可以反观那时一些概率学家对中心极限定理的具体看法。博雷尔是继庞加莱之后法国的领袖概率学家,他曾在1924年和1950年表达了这样的观点: 通过拉普拉斯理论获得的结果,似乎对维持它们所需的分析而作出的努力没有什么意义.....它可能能证明某些定理,但是不会有什么价值,因为,事实上人们无法证明假设是否满足。

可以说,法国数学家的大部分研究被同代人所忽略,直到20世纪才被重新发现

严格证明阶段:1887---1910

俄国数学家切比雪夫受到布拉什曼的影响,对概率论产生了兴趣,后来接替布尼亚可夫斯基在圣彼得堡大学讲授概率论。1866年切比雪夫发表了《论平均数》,讨论了作为大数定律极限值的平均数问题。1884年,他的学生马尔可夫对矩方法所涉及的切比雪夫不等式给出了证明之后,切比雪夫于1887年发表了《概率论中的两个定理》,开始对随机变量和收敛到正态分布的条件即中心极限定理进行讨论,给出一般随机变量的切比雪夫定理。

这个定理的叙述是不完全正确,而且切比雪夫用“矩法”给出的证明也不完善,他只证明了随机变量的各阶原点矩的极限是标准正态随机变量的相应的原点矩,并未进而说明随机变量的分布函数确实以标准正态分布函数为极限。

不完善之处首先被马尔可夫注意到。马尔可夫在《关于方程0)/(2

2=-n x n x dx e d e

的解》一文中,对切比雪夫提出的命题给出了精确的陈述与证明,文中所使用的改进后的矩方法后来被人成为“切比雪夫---马尔可夫矩方法”。

1900年前后,马尔可夫的校友李雅普诺夫引入了特征函数来考察中心极限定理,从而避免了矩方法要求高阶矩存在的苛刻条件,并为之一定理进一步精确化准备了条件。1901年李雅普诺夫把马尔可夫定理的条件大为减弱,并证明了李雅普诺夫定理。这个定理要求随机变量必须是独立的,但是不必有相同的分布,还要求随机变量(加绝对值)具有某阶的矩,矩的增长速度受李雅普诺夫条件的限制。李雅普诺夫在证明中利用了特征函数。从此之后,特征函数成为研究极限定理的强有力的工具。

多年来,马尔科夫力图在概率论在恢复矩方法的地位,最后他创造了一种“截尾术”,即在适当的区域截断随机变量使之有界,从而在不改变它们和的极限分布的前提下保证任意阶的存在。马尔科夫的创造克服了特征函数过分依赖独立性的弱点,开辟了通向非独立随机变量研究的道路,并为强极限理论的发展提供了有力的手段。体育李雅普诺夫关于方法论的竞争,极大地丰富了概率论的内容,对这门学科的现代化产生了深远的影响。

新的发展:1919年以后

在俄罗斯数学家工作的基础上,芬兰数学家林代贝尔格把李雅普诺夫条件换成了弱一些的条件,于1922年证明了更一般的定理,即林代贝尔格定理。林代贝尔格条件是相当一般的。如果一族随机变量序列满足李雅普诺夫条件,则它一定满足林代贝尔格条件;但反之不成立。

以现在的眼光来看,林代贝尔格的证明是简单的。但在当时对大多数概率论学家而言,林代贝尔格的方法显得错综复杂。因为那时线性算子的概念还没有成为人们普遍接受的语言,所以林代贝尔格需要几页的篇幅去建立基本事实。而现在这些可以用一句话来说,但是论证是清楚的,简单易懂的。因此,林代贝尔格的研究很长时间以来置于人们的视野之外。

若随机变量序列是相互独立同分布的,第一个随机变量的期望和方差都存在,且方差不为0,则不难验证林代贝尔格条件满足,从而林代贝尔格定理成立。1925年,法国数学家莱维首先指出了这一点(林代贝尔格---莱维定理)。这个定理是林代贝尔格定理的推论,它表明,不管第一个随机变量的分布函数是怎样的,只要其期望和方差存在,则n 很大时(σμn n s n /)(-近似服从标准正态分布,从而n s 近似服从),(2σμn n N

林代贝尔格条件虽然适用范围很广,似乎在林代贝尔格1922年的论文后,或者至少在莱维1925年的书出版后,这方面的研究可以看作是完成了。然而事情并没有结束,因为所以的定理只是给出了依分布收敛到高斯分布的充分条件,这些还不是中心极限定理成立的必要条件,这一时期下来主要寻找中心极限定理的充要条件,费勒和莱维分别在1935年给出了部分答案。

前面曾经指出过,概率论在1870年代不能被数学家们看作是一门严格的数学专科。到了1930年代,这一情况并没有太多的好转。对于一些概率学家而言,概率是否可以作为一门严格的数学专科,这还不是那么清楚,当然对于大多数非概率学家而言更是疑虑重重。事实上,从他们的著作中可以清楚地看到,许多概率学家对他们的研究感到不安,除非他们的问题可以用非概率的语言重新叙述。正是这种不安使得费勒在研究中心极限定理时用的是分布函数的卷积的语言,而不是独立随机变量和,因为这种语言看起来更自然。费勒具有杰出的经典分析背景,因此想出来极为形式化的中心极限定理。而莱维则不同,他更多的是依赖他

的直觉。莱维是第一个深刻研究样本函数和序列的概率学家之一,却从未完全接受把测度论作为概率论的数学基础。例如,对莱维而言,条件期望就是概率的要素之一,而不需要形式上的一般定义。因此他给出的是相当模糊却原则上准确的定理形式,这使得人们认为他的表述含糊不清,令人费解,但掌握后就会发现其实是深刻的、给人启发的。

此后,关于中心极限定理的研究还有两种不同的方式。一种是:设},.....,1,1:{n k n X nk =≥是一族随机变量,对任何n nn n n X X X .....,,,2,21≥相互独立,令∑=≥=n k nk n n X

S 1)1(,那么在什么条件下n S 的极限分布是标准正态分布。另一种方式

则是:如何估计“误差”,即问:n ξ的分布函数与标准正态分布函数相差多大?

此后中心极限定理从实值情形推广到了向量情形、巴拿赫空间和鞅等情形。通过中心极限定理的主要三个发展阶段,可看出,每个时期都有各自不同的特点,这不仅与数学工具的发展有关,而且受到人们当时的数学观念的影响。

中心极限定理的创立与发展

中心极限定理的创立与发展 -----杨静邓明立 概率论极限理论是概率论的重要组成部分,是概率论的其他分支和数理统计的重要基础。的概率现象是由于无数的随机因素共同作用的结果---这些因素每一个都起到一点作用,但都没有起到很大的甚至决定性的作用。而极限定理告诉我们,这类多随机因素作用的现象必然会收敛于某个正态分布的概率模型。因此,该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 现实中有许多随机变量都具有上述特点,比如,大炮的射程受到多种因素影响:炮身结构,炮弹外形,炮弹几炮弹内炸药质量,瞄准的误差,风速,风向的干扰,大炮的使用年限等等,其中每种因素的微小差异对总的影响作用都不大,并且可以看作是互相独立的、互相不影响的。每种因素都会引起一个微小的误差,而炮弹落点的误差就是这许多随机误差的总和所影响的。由此看出,研究随机变量和的极限对于搞清楚随机现象的本质有着极其的重要价值。 在生产和生活中,有许多随机变量的取值呈现出“中间多,两头少,左右对称”的特点。例如,一般来说我国北方男性身高在170厘米左右的居多,而高于180厘米和低于160厘米的较少。或者在生产条件不变的情况下产品的抗压强度、长度、等许多随机变量指标也都存在这样类似的情况。这样的随机变量所服从的分布就是所谓的“正态分布”。许多随机变量服从正态分布。 极限理论中的中心极限定理曾是概率论的中心课题。中心极限定理有很多形式。凡是关于随机变量的数目无限增多时,其和的分布函数在一定的条件下收敛于正态分布函数的任何论断,都称为中心极限定理。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理”。

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

中心极限定理

中心极限定理 中心极限定理(Central Limit Theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。 (二)德莫佛——拉普拉斯中心极限定理 设μ n是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n 无限大时,频率设μ n / n趋于服从参数为的正态分布。即:

该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设是一个相互独立的随机变量序列,它们具有有限的数学期望和方 差:。 记,如果能选择这一个正数δ>0,使当n→∞时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理

中心极限定理 从总体中抽取容量为n的一个样本时,当样本容量足够大时,样本均值x的抽样分布近似服从于正态分布。 eg:用R从0-10的均匀分布中产生100个样本量为n=2的随机样本,对每个样本计算,并画出100个的频数分布,对于n=5,10,30,50,重复这一个过程。 a=matrix(rep(0,200),nrow=100,byrow=T) set.seed(200) for(i in 1:100) a[i,]=runif(2,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100 个样本量n=2的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2) a=matrix(rep(0,1000),nrow=100,byrow=T) set.seed(1000) for(i in 1:100) a[i,]=runif(10,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100个样本量n=10的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2) a=matrix(rep(0,3000),nrow=100,byrow=T) set.seed(3000) for(i in 1:100) a[i,]=runif(30,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100个样本量n=30的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2) a=matrix(rep(0,5000),nrow=100,byrow=T) set.seed(3000) for(i in 1:100) a[i,]=runif(50,0,10) b=matrix(rep(0,100),nrow=100) for(t in 1:100) b[t]=b[t]+mean(a[t,]) hist(b,freq=FALSE,density=20,main="100个样本量n=50的随机样本",xlab="x的均值") sd=sd(b) mean=mean(b) x=seq(min(b),max(b),by=0.1) y=dnorm(x,mean,sd) lines(x,y,col="red",lwd=2)

中心极限定理及其应用

中心极限定理及其应用 [摘要] 在中心极限定理的基础上,通过实例介绍它的应用。 [关键词] 中心极限定理随机变量应用 中心极限定理是棣莫佛在18世纪首先提出的,至今其内容已经非常丰富。它不仅是概率论中的重要内容,而且还是数理统计中大样本统计推断的理论基础。一种随机现象可能会受到许多不确定因素的影响,如果这些彼此之间没有什么依存关系,且谁也没有特别突出的影响,那么,这些影响的“累积效应”将会使现象近似地服从正态分布。中心极限定理在很一般的情况下证明了,无论随机变量服从什么分布,个随机变量的和当时的极限分布是正态分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释在现实中为什么很多数量指标都服从或近似服从正态分布这一事实。在中心极限定理的教学中,通过列举一些用中心极限定理解决问题的实例,能使学生较深地理解中心极限定理的理论与实用价值。 一、两个常用的中心极限定理 根据不同的假设条件,有多个中心极限定理。这里只介绍两个常用的中心极限定理。 定理1 列维—林德伯格(Levy-Lindeberg)定理(独立同分布的中心极限定理) 设随机变量相互独立,服从同一分布,且具有数学期望和方差.则随机变量 的分布函数Fn(x)对于任意x满足 (5.7) 从定理1的结论可知,当n充分大时,有 或者说,当n充分大时,有 如果用表示相互独立的各随机因素。假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度)。则(5.8)式说明,作为总和这个随机变量,当n充分大时,便近似地服从正态分布。 定理2(棣莫佛-拉普拉斯(De Moivre Laplace)定理) 设随机变量X服从参数为n,p (0<p<1)的二项分布,即,则

中心极限定理的发展

中心极限定理的创立和发展 1141010113 万帅 关键词:中心极限定理,创立,严格证明,新的发展,三阶段。 引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理” 法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】 泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。 从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

大数定理和中心极限定理

大数定理 概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一,又称弱大数理论。 发展历史 1733年,德莫佛—拉普拉斯在分布的极限定理方面走出了根本性的一步,证明了二项分布的极限分布是正态分布。拉普拉斯改进了他的证明并把二项分布推广为更一般的分布。1900年,李雅普诺夫进一步推广了他们的结论,并创立了特征函数法。这类分布极限问题是当时概率论研究的中心问题,卜里耶为之命名“中心极限定理”。20世纪初,主要探讨使中心极限定理成立的最广泛的条件,二三十年代的林德贝尔格条件和费勒条件是独立随机变量序列情形下的显著进展。伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理。 表现形式 大数定律有若干个表现形式。这里仅介绍高等数学概率论要求的常用的三个重要定律:?切比雪夫大数定理 设 是一列两两不相关的随机变量,他们分别存在期望 和方差 。若存在常数C使得: 则对任意小的正数ε,满足公式一: 将该公式应用于抽样调查,就会有如下结论:随着样本容量n的增加,样本平均数将接近于总体平均数。从而为统计推断中依据样本平均数估计总体平均数提供了理论依据。 ?伯努利大数定律 设μ是n次独立试验中事件A发生的次数,且事件A在每次试验中发生的概率为P,则对任意正数ε,有公式二: 该定律是切比雪夫大数定律的特例,其含义是,当n足够大时,事件A出现的频率将几乎接近于其发生的概率,即频率的稳定性。 在抽样调查中,用样本成数去估计总体成数,其理论依据即在于此。 ?辛钦大数定律

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

第五章大数定律及中心极限定理

第五章 大数定律及中心极限定理 第一节引言、第二节大数定律 一、教学目的要求 1.了解大数定律及中心极限定理的提出和发展历史。 2.掌握引理:切贝雪夫不等式。 3.掌握常用的切贝雪夫大数定律、贝努里大数定理、辛钦大数定律的适用条件及定律内容,会解答有关问题。 二、教学方法 讲授法:讲授大数定律、中心极限定理的概念。 演绎法:推导切贝雪夫不等式、定理1,2,3及例题 三、重点难点 重点:掌握切贝雪夫不等式及握常用的大数定律。 难点:大数定律应用具体应用。 四、课时安排:2课时 五、教具准备:多媒体。 六、教学步骤: (一)明确目标:通过问题引入本次课的教学,明确大数定律、中心极限定理的概念,掌握贝雪夫不等式的推导及应用,定理1及2的证明,了解定理3的条件及应用。 (二)教学过程及教学内容: 1问题引入:大数定律及中心极限定理的提出和发展历史 2.内容: (1)定义5.2.1 设ΛΛ,,,,21n X X X 是随机变量序列,记 )(1 21n n X X X n Y +++= Λ, 若存在一个常数序列ΛΛ,,,,21n a a a ,使得对任意正数ε,有 {}1lim =<-∞ →εn n n a Y P 则称随机变量序列{}n X 服从大数定律(Law of Great Numbers )。 (2)定义5.2.2 设ΛΛ,,,,21n X X X 是随机变量序列,a 是一个常数,若对任意正数ε,有 {}1lim =<-∞ →εa X P n n 则称随机变量序列{}n X 依概率收敛(Convergence In Probability)于常数a ,记为:a X P n ?→?。 (3)推论:可以证明:若a X P n ?→? ,b Y P n ?→?,),(y x g 在点),(b a 连续,则有:

中心极限定理及其意义

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

中心极限定理及其意义

中心极限定理及其意义

————————————————————————————————作者:————————————————————————————————日期:

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

大数定理与中心极限定理的关系及应用

本科生毕业论文(设计) 题目大数定律与中心极限定理的 关系及应用 姓名学号 院系数学科学学院 专业数学与应用数学 指导教师职称 2013年4 月16 日 曲阜师范大学教务处制

目录 摘要 (3) 关键词 (3) Abstract (3) Key words (3) 引言 (3) 1 大数定律与中心极限定理的关系 (4) 1.1预备知识 (4) 1.1.1大数定律 (4) 1.1.2中心极限定理 (5) 1.2大数定律与中心极限定理的关系 (6) 1.2.1服从大数定律不服从中心极限定理的例子 (7) 1.2.2服从中心极限定理不服从大数定律的例子 (8) 1.2.3大数定律与中心极限定理均不服从的例子 (9) 2 大数定律与中心极限定理在实际生活中的应用 (10) 2.1 在误差分析中的应用 (10) 2.2 在数学分析中的应用 (11) 2.3 在近似计算中的应用 (13) 2.4 在保险业中的应用 (14) 2.5 在企业管理方面的应用 (15) 结论 (16) 致谢 (16) 参考文献 (17)

大数定律与中心极限定理的 关系及应用 摘要:本文通过对大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据。另外,叙述了大数定律与中心极限定理之间的关系,同时通过举出很多相关的反例说明二者的关系。最后给出了一些简便的大数定律与中心极限定理在误差分析、数学分析、近似计算、保险业及企业管理等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。 关键词:大数定律中心极限定理随机变量应用 Relationship and Applications between the Law of Large Number and Central Limit Theorem Student majoring in mathematics and applied mathematics Bai Yanfei Tutor Liu Li Abstract: Based on the law of large numbers and central limit theorem in the independent distribution with the different distribution of both cases, it makes more systematic exposition, and reveals the phenomenon of the random nature of the most fundamental an average of the results of the Stability. Through the central limit theorem discussion, it gives out the random variables and the distribution of the normal distribution. At the same time, it demonstrates the relationship between the two aspects through lots of anti-related examples. Finally, it gives out several aspects of applications of a number of simple law of large numbers and the central limit theorem in error analysis, mathematical analysis, the approximate calculation, the insurance industry and business management to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value. Key words: Laws of large number; Central-limit theorem; Random variables; Applications 引言概率论与数理统计是研究随机现象的统计规律的一门学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带。大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。在现实生活中经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然。 而中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分

大数定律及中心极限定理 应用题

大数定律与中心极限定理 应用题 1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差 为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975? 解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX 设 ∑==500 1i i X X ,则X 是这些零件的总重量 250050005.0=?=EX ,5050001.02=?=DX 由中心极限定理 )1,0(~50 2500N X a - (1))2510(≥X P =)50 25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787 (2) 设 汽车载重量为a 吨 )(a X P ≤=)502500502500(-≤-a X P 95.0)50 2500(0≥-Φ≈a 查表得 64.150 2500≥-a 计算得 59.2511≥a 因此汽车载重量不能低于2512公斤 2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随 机的取100根,求其中至少有30根短于3m 的概率? 解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X 由中心极限定理 )16,20(~N X a )30(≥X P =)16 20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062 3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种 蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

中心极限定理证明

中心极限定理证明)题的方法应用于统计学,这从另一个方面也间接地开辟了统计学的方法领域,其在现代推断统计学方法论中居于主导地 位。参考文献 [1]邓永录著应用概率及其理论基础.清华大学出版社。 [2]魏振军著概率论与数理统计三十三讲.中国统计出版社。 [3]程依明等著概率论与数理统计习题与解答.高等数学出版社。 第五篇:中心极限定理 中心极限定理 中心极限定理(central limit theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a 和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。

(二)德莫佛——拉普拉斯中心极限定理 设μn是n次独立试验中事件a发生的次数,事件a在每次试验中发生的概率为p,则当n无限大时,频率设μn / n 趋于服从参数为的正态分布。即: 该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设 差:是一个相互独立的随机变量序列,它们具有有限的数学期望和方 。 记,如果能选择这一个正数δ>0,使当n→∞ 时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x ,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

两点分布和中心极限定理(总)

两点分布和中心极限定理 1 两点分布 伯努利分布(the Bernoulli distribution),又名两点分布或者0-1分布,是一个离散型概率分布,为纪念瑞士科学家雅各布·伯努利而命名。若伯努利试验成功,则伯努利随机变量取值为1。若伯努利试验失败,则伯努利随机变量取值为0。记成功的概率为p ,失败的概率为1q p =-。 pdf 为:()() 1if 111if 00otherwise x x p x f x p p p x -=??=-=-=??? CDF 为:()000111 for x F X q for x for x

2.1.1 定理 设n μ为n 重伯努利试验中事件A 出现的次数,已知每次试验事件A 出现的概率为p ,01p <<,则对任意x ,有 ()2/2 lim d x t n P x x e t --∞ →∞???<=Φ=?? ? 2.1.2 证明 随机变量n μ可表示为n 个独立的服从()1,B p 分布的随机变量 ()1,2, ,i X i n =和和,即1 n n i i X μ==∑,而()i E X p =,()()1i D X p p =-, 1,2, ,i n =,由独立同分布的中心极限定理有: 2/2lim lim d n i x t n n X np x x t -→∞→∞?? - ?????<=<=???? ? ∑? 由此定理可知,正态分布是二项分布(两点分布)的极限分布,因此,当n 很大时,有如下所示的近似计算二项分布的常用方法: ()() ()()2 1 2/2121d m n m m m m t n n m C p p P t P m m e βα μβα-=-= -??=<<≈=≤≤Φ-Φ∑ 其中()x Φ为()0,1N 的分布函数,且 αβ= = 2.2 中心极限定理的证明 设{}i ξ是独立随机变量序列,i ξ服从相同分布,且()i E ξμ=,()20i D ξσ=>,则当n →∞时,有:

相关文档