文档库 最新最全的文档下载
当前位置:文档库 › 净化-29-甲烷化炉超温原因分析及其处理

净化-29-甲烷化炉超温原因分析及其处理

净化-29-甲烷化炉超温原因分析及其处理
净化-29-甲烷化炉超温原因分析及其处理

甲烷化炉超温原因分析及其处理

张永华

中国石油宁夏石化公司

摘 要:对再生塔102-E上塔液位波动造成吸收塔101-E出口工艺气中CO2含量超标,后续甲烷化炉106-D 床层温度快速上涨的原因进行了分析,提出了处理措施。

关键词:甲烷化炉;再生塔;液位波动;超温原因;措施

2008年入冬以来多次出现再生塔102-E上塔液位(LRCA04302)波动,脱碳出口工艺气中CO2含量上涨,甲烷化炉106-D床层温度飞升的现象,给整个装置的安全、稳定、高负荷运行造成了极大影响,甚至发生被迫停车现象。10月21日下午18:00,工况正平稳运行,突然发生再生塔102-E上塔液位波动,造成甲烷化炉106-D床层温度急剧上升,最终导致超温联锁动作,后系统被迫停车1次。11月、12月相继又发生再生塔102-E上塔液位波动,甲烷化炉106-D床温上升过快,系统被迫紧急降负荷处理。以下对再生塔102-E上塔液位波动,工艺气中CO2含量超标及甲烷化炉106-D床温上涨的原因作出了分析,并提出了处理措施。

1 脱碳系统流程

出低变工段工艺气经105-CA/CB和106-C冷却后进入102-F进行气液分离,出102-F的工艺气进入CO2吸收塔101-E下部,在吸收塔中经填料层逆流向上与塔顶加入的贫液接触,脱去工艺气中所含CO2,再经塔顶洗涤段后出CO2吸收塔,出吸收塔101-E的净化气进入净化分离器(121-F/F1)进行气液分离,液体与102-F分离出的冷凝液汇合。气体(CO 0.245%V、CO20.09%V)去甲烷化工序。CO2吸收塔塔底出来的富液通过LCV-4进入再生塔102-E上段,释放出一部分CO2。从再生塔102-E上段底部出来的半贫液通过半贫液泵123-JA/JB经109-CB1/CB2、109-CA1/CA2加热升温进入再生塔102-E下段。在CO2再生塔下段中靠变换气煮沸器105-CA/CB、蒸汽煮沸器111-C提供的热量蒸发出大量蒸汽,由下向上逐渐汽提出溶液中的CO2。出再生塔102-E顶部的气体经过冷凝器110-C1、C2,经再生塔102-E回流液槽103-F 分离,分离出的CO2气体(CO2 99.681%、H2 0.268%,总硫小于1.5ppm),经150-C送尿素装置。从再生塔102-E底部出来的热贫液先经溶液换热器109-CA1/CA2降温,再经贫液泵经107-J升压,再经溶液换热器109-CB1/CB2降温,并经贫液冷却器108-C进一步冷却至40℃左右进吸收塔上塔。

2 再生塔102-E上塔液位波动原因分析

LRCA04302是控制再生塔102-E上塔液位的调节阀,再生塔102-E上塔的液位稳定与否直接影响脱碳液的再生程度,进而对吸收塔101-E的吸收能力及后续系统的稳定操作有很大的影响。造成再生塔102-E上塔液位波动的原因有以下几方面:

1)吸收塔101-E液位调节阀(LCV4)原因:LCV4液位出现波动,阀位随之忽开忽关造成再生塔102-E 上塔进塔溶液量波动,进而引起再生塔102-E上塔液位波动。

2)LRCA04302调节阀故障:定位器定位不准或调节阀调节速率慢(灵敏度低),当液位出现波动时

调节滞后,不仅不能稳定液位反而加剧了液位波动程度。

3)半贫液泵故障:因电流出现波动、泵汽蚀、进出口滤网堵等原因造成泵打量不稳,引起再生塔102-E上塔液位波动。

4)脱碳液性质问题:脱碳液消泡时间过长,泡高超标,溶液脏等原因引起液泛、气滞,进而引起再生塔102-E上塔液位波动。

5)再生塔102-E填料不规整,引起偏流、短路,导致再生塔102-E上塔液位波动。

6)仪表显示故障:仪表伴热投用过大,仪表管线内液体受热而汽化膨胀,造成仪表虚假液位显示,调节阀随假信号动作引起再生塔102-E上塔液位波动。

对再生塔102-E上塔液位出现波动及甲烷化温度发生变化前的操作和工况进行检查,分析过程中确认:

1)吸收塔101-E液位稳定,吸收塔液位调节阀(LCV4)阀位开度无大的波动,液位显示与现场液位计相符,排除了因该液位波动而导致系统波动的原因。

2)数次事故前半贫液泵进出口压力稳定,电流稳定,且后来对半贫液泵解体检查中也无异常,进出口滤网正常。因此,也不存在因半贫液泵故障导致系统波动的原因。

3)经手工分析结果表明,脱碳液泡高和消泡时间均在正常范围内,故也排除了因脱碳液性质因素造成的系统波动。

4)在事故之后,对再生塔102-E上塔液位调节阀LRCA04302阀位进行检查校对,该阀门调节正常,可排除调节阀本身的问题。

5)在再生塔102-E上塔液位波动恢复正常后,各工艺参数与波动前相比较基本没有大的变化,均在正常范围内,说明塔填料规整度本身变化不大。

6)在每次事故处理过程中,当液位调节阀LRCA04302伴热关小或者暂时关闭后,均出现液位波动趋势减缓或者消失。

由以上分析,可以排除1~5项因素的影响,可以确定近期几次再生塔102-E上塔液位波动都和仪表伴热的投用过大有关系。

2 再生塔102-E上塔液位波动引起甲烷化炉106-D床温飞升的原因分析

1)当仪表伴热投用过大,从而带来过多的热量使仪表管线内的液体受热汽化,汽化后的气体体积膨胀变大造成调节阀LRCA04302液位显示虚假偏高(实际上真实液位并没有发生太大变化),调节阀LRCA04302受虚高假信号控制,阀门开大(阀位可以从正常阀位的25%~30%开大至40%~70%)。因调节阀LRCA04302阀位突然开大造成半贫液泵打量大幅增加,进入再生塔102-E下塔的溶液量突然增加,从而影响到半贫液再生程度,最终影响了贫液的吸收效果,造成吸收塔出口工艺气CO2含量上升,甲烷化炉106-D床温出现大幅上升。

表1 10月21日甲烷化超温联锁部分参数(半贫液无流量指示,流量变化可参考泵电流值)

时间 LRCA04302液位 LRCA04302阀位开度半贫液泵123-J电流106-D热点温度 CO2含量 % 17:46 50% 25% 24A 318℃ 0.009 17:52 80% 58% 29A 356℃ 0.13

17:58 25% 15% 24A 380℃ 0.22(满量程) 18:01 60% 40% 26A 410℃(已联锁) 0.22(满量程)

2)半贫液流量突然增大造成脱碳液在填料上的喷淋密度增加,与自下而上的气体接触不够充分,汽提效果变差,影响到了半贫液的再生程度。同时,由于半贫液流量增加,脱碳液流过填料层的流速增

加,气液接触时间减少,也同样影响到汽提效果,最终造成半贫液再生程度差。再生不彻底的脱碳液经贫液泵送入吸收塔,因为其再生程度不够,对工艺气中的CO2吸收不完全,出吸收塔工艺气中的CO2含量上升,导致过多的CO2气体进入甲烷化炉106-D。因CO2气体甲烷化是一放热反应,CO2含量的增加必然会造成甲烷化炉106-D床层温度大幅上涨,甚至发生超温联锁使后系统停车等事故。

3)半贫液流量突然增加,再生塔102-E下塔液体分布器分布不好或下塔分布器有阻塞、脱落,造成液体在填料层上的分布不均匀,气液接触不充分同样也会造成半贫液再生不彻底,进而影响脱碳液的吸收效果,最终引起出口工艺气中CO2含量上涨。

4)由于调节阀LRCA04302阀位波动导致进再生塔102-E下塔的半贫液流量波动,脱碳液在填料中出现偏流、短路等现象,导致半贫液在再生塔102-E再生不彻底,影响其在吸收塔中的吸收效果,最终引起出口工艺气中CO2含量上涨。

5)脱碳吸收工况比较脆弱,生产中抗波动能力较弱,安全生产余度低。2005年二化肥50%扩能改造后,脱碳吸收CO2采用了进口MDEA作为吸收剂,进口MDEA具有低温高活性、吸收效率高、腐蚀性低等优点,在生产初期因为负荷低吸收效果较好。在以后的生产过程中,因为脱碳系统的正常损耗以及生产检修过程中发生的泄漏、跑冒等损耗,需要向系统补充新鲜的脱碳液,为降低成本,公司选择了国产MDEA溶液作为补充液。因为两种溶液在物理性质以及吸收条件等方面的差异,使二者混合使用后效果较差,在低压力、低流量、低负荷向高压力、高流量、高负荷转变过程中,或在系统补充新鲜脱碳液、停车后开车初期等工况下,吸收效率明显下降,曾多次出现出口工艺气中CO2含量持续满量程现象,造成生产上的被动。每次都要经过2~3天的充分混合才能使CO2吸收效果得到改善。因此,脱碳工况的脆弱和抵御风险能力差也是造成事故的原因之一。

6)甲烷化炉106-D上部催化剂的失活也是造成事故的原因之一。因为甲烷化炉106-D催化剂在二化肥原始开车后一直没有进行过更换,由于毒物的侵蚀,催化剂本身的老化,以及停车过程中的保护不当,催化剂的使用寿命等原因造成甲烷化炉上中层触媒基本失去活性。在运行过程中上层催化剂床层温度和进口温度几乎相等,基本上没有甲烷化反应发生,床层热点温度下移至甲烷化炉下部。而下层的2个温控点恰好是甲烷化炉的超温联锁控制测量点。因此当甲烷化炉106-D入口工艺气中CO、CO2含量超标或生产出现大的波动时,甲烷化反应加剧,下层床温上涨迅速,极易造成甲烷化炉106-D超温联锁。所以,甲烷化炉床层上部触媒失活、热点温度下移,造成甲烷化系统在生产中抗风险、抗波动能力不足,生产调节余度小。

表2 甲烷化炉年平均床温 ℃

时间 入口温度

TRCA12

上层温度

TRA1-111

上层温度

TI1-26

中层温度

TI1-27

下层温度(联锁点)

TIA1002A

下层温度(联锁点)

TIA1002B

2000年 270 272 278 312 305 306

2001年 275 278 285 310 310 312

2004年 280 283 287 306 315 318

2005年 280 284 286 300 317 315

2007年 280 281 283 295 320 323

2008年 280 280 284 289 322 326

3 甲烷化炉106-D温度快速上升时的处理措施

第一次再生塔102-E上塔液位波动后,由于原因不明,调节相对比较迟缓,故导致了系统停车。在后来的类似事故处理中吸取了第一次的经验教训,制定了相应的事故预案,在类似现象出现后及时采取措施,虽然也出现了系统降负荷、工艺气放空等消极因素,但在短时间内就恢复和稳定了装置,保证了

生产的连续运行,总体上说还是成功的。以下对出现类似现象后的操作做一总结: 1)中控人员尽快将调节阀LRCA04302打手动,阀位保持在正常阀位开度,视再生塔102-E上塔液位高低情况稍稍调节阀位开度,并注意半贫液泵电流不要有大幅波动,尽量保持电流在正常范围内,同时注意吸收塔101-E液位(LCV4)、再生塔102-E下塔液位(LIC70)不要发生大幅波动。

2)迅速通知仪表人员将调节阀LRCA04302仪表伴热关小或暂时切除,以防止仪表管线内液体持续汽化,导致虚假显示,造成错误判断延误处理时机,并引发次生事故。

3)将甲烷化炉106-D入口温度(TRC12)设定适当降低,以保持较低温度的工艺气进入甲烷化炉,降低因工艺气中CO、CO2发生甲烷化反应放热造成的温升,降低甲烷化炉床层温度上涨速度。但在降低TRC12温度设定时不宜过低,如果设定温度低于催化剂活性温度,在上中层温度较低的地方达不到触媒活性温度,无法发生甲烷化反应,而在中下层温度较高的地方,甲烷化反应剧烈,容易造成中下层温度迅速上涨,床层温度无法控制。

4)适当打开工艺气在甲烷化炉106-D进口前放空阀(PCV-5)放空,减少通过甲烷化炉106-D的工艺气量,使甲烷化炉床层温度上涨趋势得到控制。如通过修改PIC-5设定压力,使阀门自动打开放空,速度太慢,可将PCV-5改手动控制,手动将阀门打开放空。注意此时应控制PCV-5阀门开度不能过大,以防止甲烷化炉进气太少,合成气压缩机103-J喘振,合成塔105-D床层温度迅速降低等次生事故发生。若时间允许,最好是中控开MCV-26放空,但必须控制放空气量。通过MIC26放空,因降低了脱碳系统工作负荷,吸收效果提高,使脱碳系统出口工艺气CO2微量降低,且减少了甲烷化炉的进气量,从而使甲烷化床层温升减缓。该措施更有利于甲烷化炉106-D床层温度的控制。

5)如果出现甲烷化炉106-D下层温度持续增长无法控制,应及时联系转化岗位,前系统果断降负荷,同时提高转化水碳比设定值,减少进脱碳系统的工艺气量以及工艺气中CO2、CO含量,降低脱碳工段的工作负荷,使进入甲烷化炉106-D的工艺气中CO、CO2含量尽可能低。

6)其他岗位操作,开PCV-5或MIC26放空时应先通知机组岗位人员将合成气压缩机103-J转速下调,将防喘振阀FCV-7、8、14打开,防止因PCV-5或MIC26放空造成合成气压缩机喘振。系统将负荷降低时,应通知尿素调整工况,以防止二氧化碳压缩机喘振,同时注意合成塔床层温度调节,冷冻系统液位调整。

4 生产中的一些思考和建议

1)对关键的仪表伴热采用电伴热或热水伴热,以防止因蒸汽伴热投用过大或蒸汽参数波动、疏水阀故障等原因造成液体汽化或冻结而导致事故的发生。

2)在开车前脱碳系统提前建循环时,提高系统的压力及循环量,以提高系统的混合均匀程度,减少因进口、国产脱碳液混合不匀造成的系统吸收效果差,微量超标的结果。系统升压及加负荷的过程应缓慢均匀,以降低系统的波动。

3)建议对甲烷化炉106-D催化剂进行部分或全部更换。

4)建议和相关科研单位合作,对进口、国产脱碳液的混用进行课题研究,彻底解决因两种溶液混合使用而造成的整个脱碳系统吸收差的问题。

5)利用废汽作为伴热在化工装置中是很常见的废能利用措施,但经过数次再生塔102-E上塔液位(LRCA04302)波动处理和其原因分析,也提醒我们在一些关键仪表的伴热上应谨慎选择。

煤制气甲烷化技术对比及研究进展综述

煤制气甲烷化技术对比及研究进展综述 摘要:我国经济建设最近几年发展非常迅速,人们的生活水平不断提高,对于 能源的需求与日俱增。近些年,随着环境承载力的日益减弱,环保压力逐渐增大,同时,各大城市的公共交通相继开展煤改气、油改气工程,对天然气需求量激增,而我国的能源结构属于“富煤、贫油、少气”,为了将充裕的煤炭资源转化成清洁 的甲烷,“十二五”期间,国家能源局积极倡导煤制气项目,其中,甲烷化技术是 煤制气产业链中的重要步骤。 关键词:煤制气甲烷化技术对比;研究进展综述 引言 我国科学技术的快速发展带动我国整体经济建设发展迅速,各行业有了新的 发展机遇和发展空间。甲烷化技术是煤制气的关键环节,一氧化碳和氢气在一定 温度、压力和催化剂下合成甲烷的反应叫甲烷化反应。 1甲烷化技术的反应机理及催化剂 甲烷化反应主要包括CO甲烷化反应、CO2甲烷化反应、变换反应,同时伴 有歧化反应、甲烷裂解、甲烷CO2重整等副反应。甲烷化反应是一个强放热、体 积缩小的可逆反应,CO每转化1%,会引起温升70℃-72℃。因而,在甲烷化反 应中,如何有效提高甲烷的产量和选择性及减少催化剂因高温烧结、中毒和积炭 导致的失活,成为甲烷化技术的研究重点。对CO甲烷化、CO2甲烷化反应机理 的研究,目前尚未有一致的结论,对不同催化剂作用下的机理尚缺乏深入的研究。目前,国内外甲烷化工业中使用的催化剂主要以Ni基催化剂和贵金属Ru基催化 剂为主,载体主要为α-Al2O3、SiO2、ZrO2、TiO2、高岭土等,助剂主要分为晶格助剂、电子助剂和结构助剂,催化剂载体的制备方法主要为共沉淀法、浸渍法、 溶胶-凝胶法、溶液燃烧法等。 2煤制气甲烷化技术对比 1.主要工艺参数对比,与Davy甲烷化相比,Topse甲烷化开发历史、业绩等 更成熟,且两者还有一些核心差异。以下以某年产10亿Nm3SNG项目为例,重 点讨论两者的差别。Topse甲烷化相较Davy甲烷化来说,核心的差异在于增加了 一个GCC调节器,也即CO变换反应器,且1#和2#主甲烷化反应器出口温度更高。增加GCC调节器可使进气温度更低,通过变换放热自身加热,使温度满足1 #甲烷化反应器入口条件,在出口温度限定的情况下,床层允许温升更大,单程 转化率可更高,循环率更低,循环气压缩机投资和功耗均会降低。且GCC催化剂 能耐受较高浓度的CO和低温,同时可避免甲烷化催化剂低温失活现象的发生, 延长甲烷化催化剂的寿命。另外,Topse技术1#和2#甲烷反应器出口温度更高,进一步降低了循环率。增加GCC调节器可降低进气中CO的浓度,降低CO发生 歧化反应而出现析碳的风险。另外,为减少设备台数,降低设备投资,也可将GCC催化剂装入1#主甲烷化反应器的上方。另外,Davy主甲烷化采用串并联工艺,两台反应器操作条件基本相同,Topse甲烷化采用串联工艺,两台反应器仅 操作温度相同,气体组分完全不同,Topse甲烷化反应器内主要是高浓度CO2的 甲烷化。2.催化剂对比,影响甲烷化催化剂寿命的主要因素为催化剂耐毒性、高 温烧结和析碳。催化剂毒物主要是硫和氯,因此,在甲烷化反应器之前要设置精 脱硫脱氯保护床,将总硫控制在20μg/m3以内,氯控制在20μg/m3以内。上述 两种工艺均在甲烷化之前设置了保护床,用于深度脱硫和脱氯。抗高温烧结方面,Topse催化剂可长期运行在650-660℃之间,Davy催化剂长期运行在620℃左右,

甲烷化工艺设计

合肥学院 Hefei University 化工工艺课程设计 设计题目:甲烷化工艺设计 系别:化学与材料工程系 专业:化学工程与工艺 学号: 姓名: 指导教师: 2016年6月

目录 设计任务书 (1) 第一章方案简介 (3) 1.1甲烷化反应平衡 (3) 1.2甲烷化催化剂 (3) 1.3反应机理和速率 (4) 1.4甲烷化工艺流程的选择 (6) 第二章工艺计算 (7) 2.1 求绝热升温 (7) 2.2 求甲烷化炉出口温度 (7) 2.3 反应速率常数 (7) 2.4 求反应器体积 (8) 2.5 换热器换热面积 (9) 第三章设备计算 (9) 3.1 甲烷化反应器结构设计 (11) 3.2 计算筒体和封头壁厚 (11) 3.3 反应器零部件的选择 (12) 3.4 物料进出口接管 (13) 3.5 手孔及人孔的设计 (15) 设计心得 (16) 参考文献及附图 (17)

设计任务书 1.1设计题目:甲烷化工艺设计 1.2设计条件及任务 1.2.1进气量:24000Nm3/h 1.2.3出口气体成分“CO≤5ppm,CO2≤5ppm” 1.3设计内容 变换工段在合成氨生产起的作用既是气体的净化工序,又是原料气的再制造工序,经过变换工段后的气体中的CO含量大幅度下降,符合进入甲烷化或者铜洗工段气质要求。 1.3.1选定流程 1.3.2确定甲烷化炉的工艺操作条件 1.3.3确定甲烷化炉的催化剂床体积、塔径及床层高度 1.3.4绘图:(1)工艺流程图;(2)甲烷化炉的工艺条件图 1.4设计说明书概要 1.4.1目录:设计任务书,概述,热力计算,结构设计与说明,设计总结,附录,致谢,参考文献,附工艺流程图及主体设备图一张(要求工艺流程图出A2以上的图,要求主体设备用AutoCAD出A2以上的图) 1.4.2概述 1.4.3热力计算(包括选择结构,传热计算,压力核算等) 1.4.4结构设计与说明 1.4.5设计总结 1.4.6附录

锅炉课程设计说明书模板

课程设计说明书 学生姓名:学号: 学院: 班级: 题目: 指导教师:职称: 指导教师:职称: 年月日

绪论 一、锅炉课程设计的目的 锅炉课程设计《锅炉原理》课程的重要教学实践环节。通过课程设计来达到以下目的:对锅炉原理课程的知识得以巩固、充实和提高;掌握锅炉机组的热力计算方法,学会使用热力计算标准方法,并具有综合考虑锅炉机组设计与布置的初步能力;培养对工程技术问题的严肃认真和负责的态度。 二、锅炉校核计算主要内容 1、锅炉辅助设计:这部分计算的目的是为后面受热面的热力计算提供必要的基本计算数据或图表。 2、受热面热力计算:其中包含为热力计算提供结构数据的各受热面的结构计算。 3、计算数据的分析:这部分内容往往是鉴定设计质量等的主要数据。 三、整体校核热力计算过程顺序 1、列出热力计算的主要原始数据,包括锅炉的主要参数和燃料特性参数。 2、根据燃料、燃烧方式及锅炉结构布置特点,进行锅炉通道空气量平衡计算。 3、理论工况下(a=1)的燃烧计算。 4、计算锅炉通道内烟气的特性参数。 5、绘制烟气温焓表。 6、锅炉热平衡计算和燃料消耗量的估算。 7、锅炉炉膛热力计算。 8、按烟气流向对各个受热面依次进行热力计算。 9、锅炉整体计算误差的校验。 10、编制主要计算误差的校验。 11、设计分析及结论。 四、热力校核计算基本资参数 1) 锅炉额定蒸汽量De=220t/h 2)给水温度:t GS=215℃ 3)过热蒸汽温度:t GR=540℃ 4)过热蒸汽压力(表压)P GR= 5)制粉系统:中间储仓式(热空气作干燥剂、钢球筒式磨煤机) 6)燃烧方式:四角切圆燃烧 7)排渣方式:固态 8)环境温度:20℃ 9)蒸汽流程:一次喷水减温二次喷水减温 ↓↓

煤粉热风炉说明书

秦冶煤粉热风炉技术说明书

一.炉子设计计算 1.原始设计参数 (1)干燥能力:50t/h,含水率从33%降为18%。蒸发水分为7.5t/h。(2)混合风温:350℃ (3)燃料:褐煤干燥后成品煤粉作为煤粉炉燃料, 褐煤的地位发热值:3300kcal/kg (4)助燃空气温度:20℃ (5)所兑冷风温度:20℃/50℃(20℃是冷空气,50℃是烟气)2.设计参数 (1)蒸发物料中水分所需热量Q Q=60×104 kcal/t×7.5t/h=4.5×106 kcal/h 注:每蒸发一吨水需要60万kcal的热量。 (2)燃料消耗量B B=Q÷Q低=4.5×106÷3300=1363.6kg/h 为设回转窑及热风炉系统综合热效率为65%,则热风炉燃耗B 实B实=1363.6÷65%=2098kg/h (3)烧嘴能力的选择 根据燃料用量,选择普通煤粉烧嘴1个,烧嘴燃烧能力为3000kg/h。 MFP3000可调旋流煤粉烧嘴性能如下 最大燃烧煤量: 3000kg/h 调节比:1:2 一次风压: ≥980Pa 二次风压: ≥1960Pa 一次风量: 4130Nm3/h 二次风量: 12380Nm3/h 火炬射程: 4~6m 火炬张角: 40~60° (4)燃烧理论空气需要量L0及实际需要量L n L o=2.42×10-4Q低+0.5=2.42×3300×4.186÷10000+0.5 =3.843Nm3/kg L n=n×L0=1.2×3.843=4.612Nm3/kg

(5)助燃风机的选择 a.燃烧过程总的风量Q Q=L n×B=4.612×2098=9676m3/h b.风机的选择 扣除一次风量的25%,二次风占总需要的75%,所以风机实际所需风量为Q2=0.75×9676=7257m3/h 则所选风机为9-19系列N06.3A,其参数如下: 流量:7729 m3/h,全压:8208Pa, 功率:29.58kw,转速:2900r/min。 电机型号:Y200L1-2,电动机功率30KW。 ⑹燃烧产物生成量V n =3300kcal/kg,则空气过剩系数取n=1.2,燃烧发热量取Q 低 V n=2.13×10-4Q低+1.65+(n-1)L0 =2.13×10-4×3300×4.186+1.65+0.2×3.843 =5.36Nm3/kg 燃烧产物总体积V V=2098×5.36=11246 Nm3/h ⑺理论燃烧温度t理及实际炉温t炉 t理=(Q低+L n C空t空)÷(V n C产) =(3300×4.186+4.612×1.296×20)÷(5.36×1.592) =1633℃ 取炉子系数η=0.8则实际炉温t 为 炉 t炉=0.8×1633=1300℃ (8)烟气被兑到350℃所需掺的冷风量V2 烟气量V1:11246 Nm3/h 烟气温度t1:1300℃ 烟气比热容c1:1.56KJ/(Nm3?℃) 冷空气量/回兑烟气量V2:待求 冷空气/回兑烟气温度t2:20/50℃ 冷空气/回兑烟气比热容c2:1.296/1.43 KJ/(Nm3?℃) 掺冷风后烟气体积V:V1+V2 掺冷风后整个烟气温度t:350℃

甲烷化技术

甲烷化技术 ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ 甲烷化技术是煤制天然气的关键环节,一氧化碳和氢气在一定温度、压力和催化剂下合成甲烷的反应叫甲烷化反应。 煤制天然气的原理就是合成气的甲烷化反应,其化学方程式如下: 一氧化碳和氢反应: CO +3H2 =CH4 +H2O △H= -206.2kJ/mol 反应生成的水与一氧化碳发生作用 CO +H2O =CO2 +H2 △H= -38.4kJ/mol 二氧化碳与氢作用: CO2 +4H2 =CH4 +2H2O △H =-165.0kJ/mol 以上反应体系为强放热、快速率的自平衡反应,温度升高到一定程度后反应速率快速下降且向相反方向(左)进行。另外甲烷化的过程属于体积缩小的反应,增加反应压力,一方面有利于提高反应速率,另一方面有助于推动反应向甲烷合成向进行,增加压力可以在很大程度上减小装置体积,提高装置产能。 甲烷化反应为强放热反应,每转化1%的CO,体系绝热升温约72℃,因此煤制天然气工艺要解决一氧化碳转化率和反应热的转移问题。 该过程中发生的副反应: 一氧化碳的分解反应: 2CO =CO2 +C △H= -173.3kJ/mol 沉积碳的加氢反应 C +2H2 =CH4 △H = -84.3kJ/mol 该反应在甲烷合成温度下,达到平衡是很慢的。当有碳的沉积产生时催化剂失活。 反应器出口气体混合物的热力学平衡,决定于原料气的组成、压力和温度。目前,甲

烷化技术已经用在大规模的合成气制天然气上,最大的问题是催化剂的耐温和强放热反应器的设计制作上。 甲烷化工艺有两步法和一步法两种类型。 两步法甲烷化工艺是指煤气化得到的合成气,经气体变换单元提高H2/CO比后,再进入甲烷化单元的工艺技术。由于两步法甲烷化工艺技术成熟,甲烷转化率高,技术复杂度略低,已实现工业化运行。一步法甲烷化工艺是指将气体变换单元和甲烷化单元合并在一起同时进行的工艺技术,也叫直接合成天然气技术。 托普索甲烷化技术 ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ TREMP?技术的操作经验可以追溯到20世纪70年代后期,托普索进行了大量的中试验证,保证了该技术能够进行大规模应用。 托普索循环节能甲烷化工艺与鲁奇公司甲烷化技术和Davy公司甲烷化技术有所不同,

甲烷化操作规程

甲烷化岗位作业指导书 拟稿: 审核: 批准:

公布日期: 目录 一、岗位任务 (2) 二、工艺指标 (2) 三、工艺原理及流程 (2) 四、主要设备 (3) 五、正常开车步骤 (4) 六、正常停车步骤 (5) 七、紧急停车步骤 (5) 八、异常现象及处理方法 (5)

九、安全注意事项 (6)

、本岗位任务 甲烷化岗位的主要任务:在适当的压力、温度、催化剂的作用下把甲醇后 的CO和CO2与H2合成为CH4和战0,并把出0分离下来,把CO+CO2含量控制在25ppm 以下,送往合成岗位。 二、工艺指标 (一)新鲜气温度30- 40C (二)催化剂热点温度250C 士5 C (三)甲烷化塔一入温度W 130C (四)塔壁温度w 150C (五)甲烷化塔二入温度250C —270 C o (六)甲烷化塔二出温度w 190C (七)出系统CO+C2C含量W 25PPM 三、工艺原理及流程 (一)工艺原理: 本工段主要作用是脱除工艺气中的CO和C02。在催化剂的作用下使少量 CO、CO2加氢生成CH4和出0,把工艺气中的CO和CO2的含量脱除到25PPM 以下。由于该反应是放热反应,本工段充分利用其反应热以加热合成塔入口气体。甲烷化催化剂是以镍为活性组分,以稳定活性氧化铝为载体。 反应原理:CO+3H2= CH4+H2O+206.24kJ/mol CO2+4H2= CH4+2H2O+165.4kJ/mol (二)流程: 1、工艺介质主流程: 从压缩机六段来的氢氮气进油分离器,油水分离后气体进入预热器与合成 塔出口气体进行热量交换,加热后经合成塔环隙进塔底换热器与出口气体进一

燃油蒸汽锅炉房课程设计说明书

东华大学 燃油蒸汽锅炉房课程设计说明书 ——上海某造纸厂锅炉及锅炉房设计 学院: 专业班级: 学生姓名: 学号: 指导老师: 2012年6月24日

目录 1、设计概况 (2) 2、设计原始资料 (2) 2.1蒸汽负荷及参数 (2) 2.2 燃料资料 (2) 2.3水质资料 (2) 2.4气象资料 (2) 3、热负荷计算及锅炉选择 (2) 3.1最大热负荷 (2) 3.2锅炉型号与台数的确定 (2) 4、给水及水处理设备的选择 (3) 4.1给水设备的选择 (3) 4.2水处理系统设计及设备选择 (4) 5、热力除氧器选型 (7) 6、汽水系统主要管道管径的确定 (8) 6.1锅炉房最大的用水量及自来水总管管径的计算 (8) 6.2与离子交换器相接的各管管径的确定 (8) 6.3给水管管径的确定 (9) 6.4蒸汽母管管径 (9) 7、燃油系统以及送、引风系统的设备选择计算 (9) 7.1计算燃油消耗量,确定燃油系统 (9) 7.2计算理论空气量0V k 和烟气量0 V y (10) 7.3送风机的选择计算 (11) 7.4引风机的选择计算 (11) 7.5风、烟管道断面尺寸设计计算 (12) 7.6热回收方案确定 (13) 7.7烟囱设计计算 (13) 8、锅炉房布置 (15) 9、锅炉房人员的编制 (15) 10、锅炉房主要设备表 (15) 11、参考文献 (16)

一、 设计概况 本设计为一燃油蒸汽锅炉房,为造纸厂生产过程提供饱和蒸汽。生产用气设备要求提供的蒸汽压力最高为0.4MP ,用气量为20t/h;假设造纸厂凝结水回收利用率为20%。 二、 设计原始资料 1、蒸汽负荷及参数: 生产用汽 D=20t/h, P=0.4MPa, 设凝结水回收率=20% 2、燃料资料: 选择200号重油作为锅炉燃料 元素分析成分: ar 83.976%,12.23%,1%,0.568%0.2%,2%,0.026% ar ar ar ar ar ar C H S O N W A ======= 重油收到基低位发热量:,=41868kj/kg net ar Q 密度:3=0.92~1.01/g cm ρ 3、水质资料 总硬度: H=3me/L 永久硬度:FT H =1.0me/L 总碱度:T H =2me/L PH 值: PH=7.5 溶解氧: 6~9mg/L 悬浮物: 0 溶解固形物:400me/L 注:未查到相关资料,采用假设值。 4、气象资料: 大气压强:101520Pa 海拔高度: 4.5 m 土壤冻结深度: 无土壤冻结情况 冬季采暖室外计算温度:-2℃ 冬季通风室外计算温度:3℃ 三、 热负荷计算及锅炉选择 1、最大热负荷: 生产过程所需最大热负荷:00=K =22/D D t h 0K ——考虑蒸汽损失及锅炉房汽泵、吹灰、自用蒸汽等因素的系数取1.1。 2、 锅炉型号与台数的确定 根据用于生产的最大蒸汽负荷22t/h 以及蒸汽压力0.4Mpa ,且采用重油作为燃料,本设计选用WNS8-1.25-Y(Q)型锅炉3台。工作过程中3台锅炉基本上接

热风炉设计说明书

目录 第一章热风炉热工计算 (1) 1.1热风炉燃烧计算 (1) 1.2热风炉热平衡计算 (6) 1.3热风炉设计参数确定 (9) 第二章热风炉结构设计 (10) 2.1设计原则 (10) 2.2 工程设计内容及技术特点 (11) 2.2.1设计内容 (11) 2.2.2 技术特点 (11) 2.3结构性能参数确定 (12) 2.4蓄热室格子砖选择 (13) 2.5热风炉管道系统及烟囱 (15) 2.5.1顶燃式热风炉煤气主管包括: (15) 2.5.2顶燃式热风炉空气主管包括: (16) 2.5.3顶燃式热风炉烟气主管包括: (16) 2.5.4顶燃式热风炉冷风主管道包括: (17) 2.5.5顶燃式热风炉热风主管道包括: (17) 2.6 热风炉附属设备和设施 (18) 2.7热风炉基础设计 (21) 2.7.1 热风炉炉壳 (21) 2.7.2 热风炉区框架及平台(包括吊车梁) (21) 第三章热风炉用耐火材料的选择 (22) 3.1耐火材料的定义与性能 (22) 3.2热风炉耐火材料的选择 (22) 参考文献 (25)

第一章热风炉热工计算 1.1热风炉燃烧计算 燃烧计算采用发生炉煤气做热风炉燃料,并为完全燃烧。已知煤气化验成分见表1.1。 表1.1 煤气成分表

热风炉前煤气预热后温度为300℃,空气预热温度为300℃,干法除尘。发生炉利用系数为 2.3t/m3d,风量为3800m3/min,t热风=1100℃,t冷风=120℃,η热=90%。 热风炉工作制度为两烧一送制,一个工作周期T=2.25h,送风期T f=0.75h,燃烧期Tr=1.4h,换炉时间ΔT=0.1h,出炉烟气温度tg2=350℃,环境温度te=25℃。 煤气低发热量计算 查表煤气中可燃成分的热效应已知。0.01m3气体燃料中可燃成分热效应如下: CO:126.36KJ , H2:107.85KJ, CH4:358.81KJ, C2H4:594.4KJ。则煤气低发热量: Q DW=126.36×30.3+107.85×12.7+258.81×1.7+594.4×0.4=6046.14 KJ 空气需要量和燃烧生成物量计算 (1)空气利用系数b空=La/Lo计算中取烧发生炉煤气b空=1.1。燃烧计算见表2.13。 (2)燃烧1m3发生炉煤气的理论Lo为Lo=25.9/21=1.23 m3。 (3)实际空气需要量La=1.1×1.23=1.353 m3。

J105型甲烷化催化剂

J105型甲烷化催化剂 一、产品用途及特点 < 1、用途:用于合成氨工业中,将合成气中少量碳氧化物(一般CO+CO 2 1.2%)在本催化剂作用下与氢反应生成水和惰性的甲烷,以保护氨合成催化剂和防止系统结晶堵塞。本产品也可用于有机加氢工业中净化制备高纯氢的装置中。出口气指标一般CO+CO2<10PPm 2、特点:在实际生产中,反应过程为气-固相催化反应,且催化剂本征活性很高,反应速度快,强放热、不可逆、反应为扩散控制过程。 二、物化性能 1、物理性能:外观φ5×4~5mm灰黑色圆柱体 堆密度1.0~1.25Kg /L 2、化学组成:镍、铝、稀土、少量耐热添加剂等。 三、质量指标(执行标准 HG2509-2004) 四、产品使用及维护

1、装填:在炉篦上铺一层(100~200mm)耐火球和一层铁丝网,炉壁衬里材料中不能含有毒物质(如硫、氯、磷、砷等元素的化合物存在),炉壁不能有裂缝。装填催化剂时,必须多次扒平,达到疏密均匀。 2、升温还原:升温介质可用氮气或合格的工艺气,还原反应如下: NiO + H 2= Ni + H 2 O △H o 298 =2.55kJ /mol 还原反应为微吸热反应。温度达到300℃时催化剂开始有还原反应,达到400℃以上时才能彻底还原。还原后期适当提压到0.5Mpa左右有利于深度还原。一般升温还原需30小时左右。当出口微量达标时,边进行深度还原边向下工序送气。 3、正常操作条件: 温度:270~450℃, 压力:常压~18.0MPa 入炉气体:CO + CO 2 <1.2% 空速:6000~10000h-1(随系统压力而提高) 入口气中总硫:<0.1ppm; 入口气中氯:<0.01ppm 4、维护保养:防超温,特别防止气体带O 2,防止脱碳不正常造成CO 2 严重 超标,防低温导气造成羰基镍流失[ Ni + 4CO----Ni(CO) 4 (气)],防带液、防结晶堵塞,防中毒(硫、磷、砷、卤素),防止换热器内漏窜气,防止突然卸压。停车时保持正压,防止空气漏入。

吉林大学锅炉课程设计说明书DOC

吉林大学锅炉课程设计说明书DOC 1 2020年4月19日

本科生课程设计 题目: 锅炉课程设计--26题 学生姓名:刘泰秀42101020 专业:热能与动力工程(热能)班级: 421010班

一、设计任务 1.本次课程设计是一次虚拟锅炉设计,主要目的是为了完成一次完整的热力计算。 2.根据所提供参考图纸,绘制A0图纸2张,其目的是为掌握典型锅炉的基本机构及工作原理。 3.以《锅炉课程设计指导书》为主要参考书,以《电站锅炉原理》、《锅炉设计手册》为辅助参考资料,进行设计计算。 二、题目要求 锅炉规范: 1.锅炉额定蒸发量 670t/h 2.给水温度:222 ℃ 3.过热蒸汽温度:540 ℃、压力(表压)9.8MPa 4.制粉系统:中间仓储式 5.燃烧方式:四角切线圆燃烧 6.排渣方式:固态 7.环境温度:20 ℃ 8.蒸汽流程:指导书4页 三、锅炉结构简图

四、计算表格 设计煤种名称Car Har Oar Nar Sar Aar Mar Qar 枣庄甘霖井56.90 3.64 2.25 0.88 0.31 28.31 7.71 22362 序 号 项目名称符号单位计算公式及数据结果 1 理论空气量V0 m3/kg 0.0889*(Car+0.375*Sar)+0.265*Har- 0.0333*Oar 5.9584 2 理论氮容积V0N2 m3/kg 0.8*Nar/100+0.79*V0 4.7142 3 RO2容积VRO2 m3/kg 1.866*Car/100+0.7*Sar/100 1.0639 4 理论干烟气 容积 V0gy m3/kg V0N2+VRO2 5.7781 5 理论水蒸气 容积 V0H2O m3/kg 11.1*Har/100+1.24*Mar/100+1.61*dk *V0 0.5956 6 飞灰含量αfh 查表2-4 0.9

热风炉燃烧温度控制系统的设计

工号:JG-0054889 酒钢炼铁保障作业区 论文设计 题目热风炉燃烧温度控制系统设计 厂区炼铁厂 作业区保障作业区 班组维护班 姓名陈现伟 2011 年05 月08 日

论文设计任务书 职工姓名:陈现伟工种:维护电工 题目: 热风炉燃烧温度控制系统的设计 初始条件:炼铁高炉采用内燃式热风炉,燃烧所采用的燃料为高炉煤气和转炉 煤气。两种燃料混合后进入热风炉燃烧室,再与助燃空气一起燃烧,要求向高炉送风温度达到1350℃,则炉顶温度必须达到1400℃±10℃。 要求完成的主要任务: 1、了解内燃式热风炉工艺设备 2、绘制内燃式热风炉温度控制系统方案图 3、确定系统所需检测元件、执行元件、调节仪表技术参数 4、撰写系统调节原理及调节过程说明书 时间安排 4月29-30日选题、理解设计任务,工艺要求。 5月1-3日方案设计 5月4-7日参数计算撰写说明书 5月8日整理修改 主管领导签字:年月日

目录 摘要.............................................................. I 1内燃式热风炉工艺概述. (1) 2热风炉温度串级控制总体方案 (2) 2.1内燃式热风炉送风温度控制方案选择... (2) 2.2内燃式热风炉温度串级控制系统框图 (4) 3系统元器件选择 (4) 3.1温度变送器 (5) 3.2温度传感器 (5) 3.3控制器及调节阀 (6) 3.3.1调节阀的选择 (6) 3.3.2控制器即调节器的选择 (6) 4参数整定及调节过程说明 (7) 4.1参数整定 (7) 4.2调节过程说明 (8) 学习心得及体会 (10) 参考文献 (11)

向1500m3高炉送风的热风炉设计说明书

目录 1 热风炉本体结构设计 (1) 1.1炉基的设计 (2) 1.2炉壳的设计 (2) 1.3炉墙的设计 (3) 1.4拱顶的设计 (3) 1.5蓄热室的设计 (5) 1.6燃烧室的设计 (5) 1.7炉箅子与支柱的设计 (6) 2 燃烧器选择与设计 (7) 2.1金属燃烧器 (7) 2.2陶瓷燃烧器 (7) 3 格子砖的选择 (10) 4 管道与阀门的选择设计 (15) 4.1管道 (15) 4.2.阀门 (16) 5 热风炉用耐火材料 (18) 5.1 硅砖 (18) 5.2 高铝砖 (18) 5.3 粘土砖 (18) 5.4 隔热砖 (18) 5.5 不定形材料 (18) 6 热风炉的热工计算 (22) 6.1 燃烧计算 (22) 6.2简易计算 (26) 6.3砖量计算 (28) 7 参考文献 (30)

1 热风炉本体结构设计 热风炉的原理是借助煤气燃烧将热风炉格子砖烧热,然后再将冷风通入格子砖。冷风被加热并通过热风管道送往高炉。 目前蓄热式热风炉有三种基本结构形式,即内燃式热风炉、外燃式热风炉、顶燃式热风炉。 传统内燃式热风炉(如图1-1所示)包括燃烧室和蓄热室两大部分,并由炉基、炉底、炉衬、炉箅子、支柱等构成。热风炉主要尺寸(全高和外径)决定于高炉有效容积、冶炼强度要求的风温。 图1-1 内燃式热风炉 我国实际的热风炉尺寸见表1-1。

表1-1我国设计的热风炉尺寸表 1.1炉基的设计 由于整个热风炉重量很大又经常震动,且荷重将随高炉炉容的扩大和风温的提高而增加,故对炉基要求严格。地基的耐压力不小于2.0~2.5kg/2cm ,为防止热风炉产生不均匀下沉而是管道变形或撕裂,将三座热风炉基础做成一个整体,高出地面200~400mm ,以防水浸基础由3A F 或16Mn 钢筋和325号水泥浇灌成钢筋混泥土结构。土壤承载力不足时,需打桩加固。 生产实践表明,不均匀下沉未超过允许值时,可将热风炉基础又做成单体分离形式,如武钢、鞍钢两座大型高炉,克节省大量钢材。 1.2炉壳的设计 热风炉的炉壳由8~20mm 厚的钢板焊成。对一般部位可取:δ=1.4D (mm )。开孔多的部位可取:δ=1.7D (mm ), δ为钢板厚度(mm ),D 为炉壳内径(m ),钢板厚度主要根据炉壳直径、内压、外壳温度、外部负荷而定。炉壳下部是圆柱体,顶部为半球体。为确保密封炉壳连同封板焊成一个不漏气的整体。由于炉内风压较高,加上炉壳耐火砖的膨胀,使热风炉底部承受到很大的压力,为防止底板向上抬起,热风炉炉壳用地脚螺栓固定在基础上,同时炉底封板与基础之间进行压力灌浆,保证板下密实,也可以把地脚螺栓改成锚固板,并在底封板上灌上混泥土。将炉壳固定使其不变形,或把平底封板加工成蝶形底,使热风炉成为一个手内压的气罐,减弱操作应力的影响。在施工过程中对焊接必须进行X 光探伤检验,要求炉壳椭圆度不大于直径的千分之二,整个中心线的倾斜(炉顶中心与炉底中心差)不大于30mm 。为了保证炉壳和炉内砌砖的密封性,在砌砖前后要试漏、试压,检查砌砖前试验压力为0.3~1.5kg/2cm ,砌砖后工作压力的1.5倍试压,每小时压力降<=1.5%.蓄热室、燃烧室的拱顶和连接管处采用(韧性耐龟 v 有效 100 250 620 1036 1200 1513 1800 2050 2516 4063 H 21068 28840 33500 37000 42000 44450 44470 54000 49660 54050 D 上 4346 5400 7300 8000 8500 9000 9330 99600 9000 10100 下 5200 6780 9000 9500 H/D 4.80 5.57 4.80 4.70 4.95 4.93 4.93 5.70 5.57 5.35

锅炉课程设计说明书

锅炉课程设计说明书文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

课程设计说明书学生姓名:学号: 学院: 班级: 题目: 指导教师:职称: 指导教师:职称: 年月日 绪论 一、锅炉课程设计的目的 锅炉课程设计《锅炉原理》课程的重要教学实践环节。通过课程设计来达到以下目的:对锅炉原理课程的知识得以巩固、充实和提高;掌握锅炉机组的热力计算方法,学会使用热力计算标准方法,并具有综合考虑锅炉机组设计与布置的初步能力;培养对工程技术问题的严肃认真和负责的态度。 二、锅炉校核计算主要内容 1、锅炉辅助设计:这部分计算的目的是为后面受热面的热力计算提供必要的基本计算数据或图表。 2、受热面热力计算:其中包含为热力计算提供结构数据的各受热面的结构计算。 3、计算数据的分析:这部分内容往往是鉴定设计质量等的主要数据。

三、整体校核热力计算过程顺序 1、列出热力计算的主要原始数据,包括锅炉的主要参数和燃料特性参数。 2、根据燃料、燃烧方式及锅炉结构布置特点,进行锅炉通道空气量平衡计算。 3、理论工况下(a=1)的燃烧计算。 4、计算锅炉通道内烟气的特性参数。 5、绘制烟气温焓表。 6、锅炉热平衡计算和燃料消耗量的估算。 7、锅炉炉膛热力计算。 8、按烟气流向对各个受热面依次进行热力计算。 9、锅炉整体计算误差的校验。 10、编制主要计算误差的校验。 11、设计分析及结论。 四、热力校核计算基本资参数 1) 锅炉额定蒸汽量De=220t/h 215℃ 2) 给水温度:t GS= =540℃ 3)过热蒸汽温度:t GR 4)过热蒸汽压力(表压)P GR= 5)制粉系统:中间储仓式(热空气作干燥剂、钢球筒式磨煤机) 6)燃烧方式:四角切圆燃烧 7)排渣方式:固态

HY-F 系列热风炉说明书

操作前请仔细阅读使用说明书

前言 HY-F 热风炉是保定市恒宇机械电器制造有限公司开发研制,主要用于棉花等物料烘干的专用供热设备。该炉以煤为燃料,采用机械化给煤燃烧方式,使燃煤得以充分燃烧,是一种新型的高效、节能、低污染的供热设备。可替代现行的燃油、燃气及电加热设备。产品投放市场以来深受广大用户的欢迎,在国内成为广大棉花加工厂的首选产品,部分产品出口到非洲一些国家和地区。 一、结构说明 HY-F系列热风炉分四部分构成,分别为换热器、高效燃烧系统、除尘系统和电气系统。其中高效燃烧系统由炉排总成、燃烧室、上煤机三部分组成。 换热器为列管式换热器,合理的分布辐射和对流换热面;炉体两侧设有清理换热通道灰尘的清灰门及清灰通道。在换热器上部有检修门。 除尘系统采用的是水膜除尘,锅炉燃烧产生的烟气,先经过一次水膜除尘,去掉火星和烟尘,最后将不会产生火灾隐患的烟气排入大气中。 燃烧室内腔由耐火材料预制而成,分引燃区、燃烧区和燃尽区。炉排采用链条式炉排。炉排总成设有分风室、调风门和调风杆,用来调节各风室的供风量;炉体侧面设有点火门、看火门,炉排采用的是除渣机自动除渣。煤仓内有闸板,通过调节煤闸板的高度来控制煤层厚度,用来控制热温度。 上煤机由煤斗车、导轨架、支撑平台、提升电机和减速箱等构成(见图1),位于主机前方。燃煤由此机构提升送至煤仓,为燃烧用煤储备燃料。 二、工作原理 通过上煤机由煤斗车将煤送至煤仓,煤随炉排的缓慢运动经煤闸板刮成一定厚度的煤层进入燃烧室引燃区,迅速起火燃烧。燃烧所需的空气由炉排离心通风机提供,通过炉排分风室分配到燃烧室各区。燃烧后所形成的灰渣通过炉排的循环运动落至尾部的除渣机中。 利用锅炉离心引风机,将烟气均匀的引入换热器外表面,使鼓入换热器内

甲烷化催化剂

甲烷化催化剂的综述 院系: 专业班级: 学号: 姓名: 指导老师:

关于甲烷化催化剂的一些探讨 概念: 1、甲烷化: 2、甲烷化工艺的发展 目的:这次任务我主要找关于甲烷化的文献,通过对这些文献的查看来研究关于

甲烷化催化剂的发展,研究方向的重点以及它对人类的发展所起到的作用。这次自己找了十几篇文章来谈论一下。 主题: 1、低温甲烷化催化剂的工业应用 低温催化剂较高温催化剂性能, 反应空速大、床层温度低、开车时间短、蒸汽消耗量大幅降低,并且安全性能更好。该催化剂的使用提高了乙烯装置的安全性和稳定性。由原用的高温催化剂改为低温催化剂时, 只需更换催化剂即可, 无需改动反应器和管线。 2、第二金属组分对CO2 甲烷化沉淀型镍基催化剂的影响 用并流共沉淀法制备了一系列镍基双金属催化剂,在微型固定床流动反应装置上进行了二氧化碳和氢气生成甲烷的催化反应,考察了在不同反应条件下第二金属组分Fe、Co 、Cr 、Mn、Cu、Zn 等对镍基催化剂活性的影响。采用程序升温还原( TPR) 、X 射线衍射(XRD) 等手段对催化剂进行表征。结果表明,第二组分的添加会改变镍催化剂的表面结构以及活性组分的分散度,有些会产生电子效应。其中,锰的添加使催化剂活性大大提高,原因是Mn ( Ⅳ) Ni2O4 的生成不仅有利于催化剂还原,而且有利于产生电子效应。 3、二氧化碳甲烷化催化剂制备方法的研究 采用浸渍法和并流共沉淀法制备含Ni 量不同的Ni/ ZrO2 催化剂, 研究了它们在二氧化碳甲烷化反应中的催化性能. 结果表明, 共沉淀法制备的高Ni 催化剂具有良好的催化性能. 在较温和的条件( T = 573 K, P = 0. 1 MPa, GHSV =12000 h- 1) 下, CO2 的转化率达99. 7%, CH4 的选择性达100% . Ni 与ZrO2 的相互作用对催化活性有很强的影响. Ni 的含量和CO2 吸附程度决定了甲烷化反应活性.催化剂作用下活化能的大小与活性变化规律相符. 与浸渍法相比, 共沉淀法制备出的催化剂具有如下特点: ( 1) 产率高; ( 2) 性能稳定; ( 3) 抗积碳性好; ( 4) 反应温度及活化能更低; ( 5) 产物成分单一. 利用共沉淀法制备二氧化碳甲烷化催化剂具有很高的研究、应用和开发价值. 4、反应条件对焦炉气甲烷化催化剂性能的影响 近年来, 中国天然气市场需求急剧增加, 制取合成天然气的工业投资项目增多, 对于合成甲烷反应过程的研究逐渐得到重视。特别是焦炉气作为一种工业排放废气, 产量大( 2008年, 全国焦炉气总产量约1 430亿m3 ) [ 2] , 将其进行甲烷化回收利用, 既符合节能减排的政策要求, 又能产生一定的经济效益,是一项具有市场前景的技术。重视节能减排技术在传统工业中的推广应用, 在焦炉气甲烷化催化剂及相关工艺技术方面开展了一系列的条件实验和测试工作。通过实验可知1) 焦炉气甲烷化催化剂具有活性高的特点, 在以焦炉气的典型组成为原料、出口温度约550 、压力1MPa~ 3MPa、空速5 000 h- 1 ~ 10 000 h- 1的条件下, 可使CO 转化率> 99%, CO2 转化率> 97%,C2H6 转化率> 99%, 接近于平衡转化率, 能适用于焦炉气的甲烷化反应过程。 2) 通过稀土、助剂等改善了催化剂的固体酸碱性, 增强了活性表面的水气吸附力、氢气吸附解离性能等, 从而提高了抗结炭性能。抗结炭实验的测试结果表明, 该催化剂具有较好的抗结炭性能。

热风炉说明书

目录 一、公司简介 二、用途 三、设备主要技术参数 四、设备结构简介 五、安装 六、使用和安全 七、维护及保养 八、常见故障排除 九、安全注意事项 十、成套供应范围

一:公司简介 新乡市鼎升炉机科技有限公司(中国国防科工委定点企业)1972年成立于新乡胙城工业区,是一个开发设计制造综合公司。 我公司位于河南北部,与S307,S308,;新济高速,京深高速,京广铁路紧连,交通便利,运输方便。 我公司综合实力强,技术力量雄厚,专业工种齐全,工作经验丰富,技术装备先进,公司组建以来共完成580项大中型整体工程设计和总承包工程,项目遍及20多个省,市,自治区,自1995年以来 连年被新乡市授予“重合同守信用单位”称号,多次被新乡市工商局评为“消费者信得过单位”,并取得了中国工商行AAA企业信誉等级证书,2001年通过ISO9001:2000质量管理体系认证。树立了良好的形象。 我公司近十年来经营状况非常良好,在同行业中也处于领先地位,公司拥有厂房4180平方米,职工268人,工程技术人员26人,高级工程师7人,具有丰富的理论知识和实践经验,依靠雄厚的技术实力,运行新颖实用的设计理念,公司研发了一系列“高效、先进、可靠、环保、节能”的热处理自动生产线。并取得多项国家专利。在大型工业炉项目投标中,我公司取得了骄人的成绩。主要涉及的行业有军工,航空,机械,冶金,航海,铁路行业等。 近年来,企业本着“科技兴厂”的指导方针,公司积极与国内知名院校及专业科研机构广泛合作,使公司的创新能力有了一个质的飞跃。公司相继设计开发出各种高、中、低温箱式、台车式、井式、网带式、连续推杆式、盐浴式、滚筒式电阻炉等炉型,满足了气、固体渗碳、渗氮、

煤制合成天然气工艺中甲烷化合成技术 于岩松

煤制合成天然气工艺中甲烷化合成技术于岩松 发表时间:2018-01-24T20:27:41.630Z 来源:《基层建设》2017年第31期作者:于岩松 [导读] 摘要:天然气是一种高效、优质、清洁的能源,近年来随着我国城市化发展和环保政策的实施,对天然气的消费量大幅度提升;但从实际角度出发,我国的三大能源形势是"煤多、油缺、气少",自然界天然气的开采无法满足市场需求,利用煤制合成天然气就成了重要的获取途径。 内蒙古大唐国际克什克腾煤制天然气有限责任公司内蒙古赤峰市 025350 摘要:天然气是一种高效、优质、清洁的能源,近年来随着我国城市化发展和环保政策的实施,对天然气的消费量大幅度提升;但从实际角度出发,我国的三大能源形势是"煤多、油缺、气少",自然界天然气的开采无法满足市场需求,利用煤制合成天然气就成了重要的获取途径。从物理构成角度来说,天然气是一种混合气体,主要成分是甲烷,因此,甲烷合成技术是煤制合成天然气工艺中的重要组成部分。 关键词:煤制合成天然气;甲烷化合成技术;煤化产业; 一、甲烷化合成技术概况 煤制天然气工艺路线较为简单,煤制气经变换、净化后合适比例的H?、CO、CO?经甲烷化反应合成得到富含甲烷的SNG,煤制天然气的关键技术在于甲烷化合成技术。甲烷化反应是在催化剂作用下的强放热反应。甲烷化的反应热是甲醇合成反应热的2倍。在通常的气体组分中,每1个百分点的CO甲烷化可产生74℃的绝热温升;每1个百分点的CO?甲烷化可产生60℃的绝热温升。由于传统的甲烷化催化剂适用的操作温区较窄(一般为300~400℃),起活温度较高,因此对于高浓度CO和CO?含量的气体,其甲烷化合成工艺及催化剂有更高的要求。 二、国外甲烷化合成技术概况 20世纪70年代,世界出现了自工业化革命以来的第1次石油危机,引起了各国及相关公司的广泛关注,并积极寻找开发替代能源。当时德国鲁奇(Lugri)公司和南非煤、油、气公司率先在南非F-T煤制油工厂建设了1套半工业化煤制合成天然气实验装置,鲁奇公司还和奥地利艾尔帕索天然气公司在奥地利维也纳石油化工厂建设了另1套半工业化实验装置。2套实验装置都进行了较长时期的运转,取得了很好的试验成果。受能源危机影响,在试验获得成功的基础上,1984年美国大平原公司建成世界上第1个也是惟一一个煤制天然气工厂。该厂以北达科达高水分褐煤为原料,由鲁奇公司负责工程设计,采用14台鲁奇炉(12开2备)气化,耗煤量达18000t/d,产品气含甲烷96%,热值35564kJ/m3以上,年产人工天然气12.7亿m3。1978年丹麦托普索(Topse)公司在美国建成7200m3/d的合成天然气试验厂,1981年由于油价降低到无法维持生产,被迫关停。 三、鲁奇公司的甲烷化 鲁奇公司在很早就已经开展了甲烷化生产天然气的研究。在20世纪70年代,鲁奇公司、南非萨索尔公司开始进行煤气甲烷化生产合成天然气的研究和试验,经过2个半工业化试验厂的试验,证实可以生产合格的合成天然气。甲烷化反应CO的转化率可达100%,CO?转化率可达95%,低热值达35.6MJl/m3,完全满足生产天然气的需求。到目前为止,世界上惟一一家以煤生产SNG的大型工业化装置———美国大平原Dakota是由Lurgi公司设计的。 四、国内甲烷化工艺技术概况 到目前为止,国内还没有煤制合成天然气技术,但是国内低浓度CO甲烷化技术和城市煤气技术比较成熟氨合成工业中,由于CO和CO?会使氨合成催化剂中毒,在合成气进合成反应器前需将微量的CO和CO?转化掉,甲烷化技术是利用CO和CO?与H?反应完全转化为CH?,使合成气中CO和CO?体积分数小于10×10-6。由于甲烷化催化剂使用温区较窄(300~400℃),起活温度较高,为防止超温,进入甲烷化反应器的 CO+CO?体积分数要求小于0.8%,同时,为防止甲烷化镍基催化剂中毒,合成气中硫含量要求小于0.1×10-6。 另外,国内城市煤气运用也比较广泛,目前主要有2种工艺:一是采用鲁奇气化生产城市煤气,粗煤气经过净化后直接送城市煤气管网,其甲烷浓度约15%,CO浓度约35%,典型运用工厂有河南义马煤气厂、哈尔滨煤气厂等。另一种是固定层间歇气化生产半水煤气,经过净化后半水煤气中CO体积分数为29%,通过等温移热的方法,对其实现甲烷化。在20世纪80年代,在缺乏耐高温甲烷化催化剂的情况下,中国五环工程有限公司率先开发和研究该甲烷化工艺技术。这一工艺在湖北沙市、十堰第二汽车制造厂和北京顺义等城市居民用气和工业炉用气的供应中实现了工业化。 五、甲烷化工艺技术特点 5.1 甲烷化技术特点 Davy甲烷化工艺中,采用Davy公司生产的CRG高镍型催化剂。其中镍含量约为50%。该催化剂的起活温度为250℃,最佳活性温度在300~600℃,失活温度大于700℃。在使用前须对H?进行还原,若温度低于200℃,催化剂会与原料气中的CO等生成羰基镍,但是正常运行时系统温度在250℃以上,J&M公司可以提供预还原催化剂。因此在开停车段,要避免Ni(CO)?的产生。一般须用蒸汽将催化剂床层温度加热或冷却到200℃以上,然后用氮气作为冷媒或热媒介质置换。 对于甲烷化反应,合适的n(H?)/n(CO)=3,但在Davy甲烷化工艺中对该比例不需要严格控制,对原料气组分中的CO?也没有严格要求。这是由于CRG催化剂本生具有CO变换的功能。另外CRG催化剂具有对CO和CO?良好的选择性。因此在净化工艺中,应选择经济的CO?净化指标。 原料气经脱硫后直接进入甲烷化反应。一般要求净化总硫体积分数小于0.1×10-6就可以,但在戴维甲烷化工艺中甲烷化反应器前设置了保护床,以进一步脱硫,脱硫后总硫小于30×10-9。 由于反应温度的差别,补充甲烷化反应器中的催化剂寿命约比大量甲烷化反应器中催化剂寿命高2~3年。从已运行的情况来看,催化剂失活主要有2种原因:①催化剂中毒,主要毒物为S;②催化剂高温烧结。另外催化剂结碳后,也可能造成催化剂局部失活。甲烷化过程是一个高放热过程,在戴维甲烷化工艺 流程中可以产出高压过热蒸汽(8.6~12.0MPa,485℃),用于驱动大型压缩机,每生产1000m3天然气副产约3t高压过热蒸汽,能量效率高。

相关文档