文档库 最新最全的文档下载
当前位置:文档库 › 传输线反射以及终端电阻

传输线反射以及终端电阻

传输线反射以及终端电阻
传输线反射以及终端电阻

传输线反射以及终端电阻

传输线反射(reflection) 就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。

反射(reflection) 就是在传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。如果源端与负载端具有相同的阻抗,反射就不会发生了。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。

按照传输线理论,当负载与输出不匹配时,信号的传输为非理想行波状态(驻波或反射),会出现波形失真或衰减。阻抗匹配则传输功率大,对于一个电源来讲,当它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器

,输出阻抗50 Q,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即电缆长度可以忽略的话,就无须考惠阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了;反之则在传输中有能量损失。在高速的设计中,阻抗的匹配与否关系到信号质量的优劣。阻抗匹配的技术可以说丰富多样,但是在具体的系统中怎样才能比较合理地应用,需要衡量多个方面的因素。例如,在系统设计中,很多采用的都是源端的串联匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式,以下逐一分析。例如,差分的匹配多数采用串联终端的匹配;时钟采用并联终端匹配。1)串联终端匹配串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻

R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。串联终端匹配后的信号传输具有以下特点:(1)由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播。(2)信号在负载端的反射系数接近十1,因此反射信号的幅度接近原始信号幅度的50%。(3)反射信号与源端传播的信号叠加,使负载端接收到的信号与原始信号的幅度近似相同。(4)负载端反射信号向源端传播,到达源端后被匹配电阻吸收。(5)反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+4.5 V的CMOS驱动器,在低电平时典型的输出阻抗为37 Q,在高电平时典型的输出阻抗为45 Q;TTL驵动器和CMOS驱动器一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。2)并联终端匹配并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。并联终端匹配后的信

号传输具有以下特点:(1)驱动信号近似以满幅度沿传输线传播。(2)所有的反射都被匹配电阻吸收。(3)负载端接收到的信号幅度与源端发送的信号幅度近似相同。在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等。假定传输线的特征阻抗为50 Q,则R值为50 Q。如果信号的高电平为5V,则信号的静态电流将达到100 mA。由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中。双电阻形式的并联匹配,也被称为戴维南终端匹配,要求的电流驱动能力比单电阻形式小。这是因为两电阻的并联值与传输线的特征阻抗相匹配,每个电阻都比传输线的特征阻抗大。考虑到芯片的驱动能力,丙个电阻值的选择必须遵循三个原则:(1)两电阻的并联值与传输线的特征阻抗相等。(2)与电源连接的电阻值不能太小,以免信号为低电平时驱动电流过大。(3)与地连接的电阻值不能太小,以免信号为高电平时驱动电流过大。并联终端匹配优点是简单易行;显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关;双电阻方式则无论信号是高电平还是低电平都有直流功耗。因而不适用于电池供电系统等对功耗要求高的系统。另外,单电阻方式由于驱动能力问题在一般的TTL、CMOS系统中没有应用,而双电阻方式需要两个元件,这就对PCB板的面积提出了要求,因此不适合用于高密度印制电路板。

PCI-9820I数据手册

PCI-9820I https://www.wendangku.net/doc/0d848509.html, ———————————————概述PCI-9820I 接口卡是一款符合工业级温度范围(-25°C ~ +85°C)、兼容PCI2.2规范的2通道PCI-CAN 通讯接口卡,每一个CAN 通道均集成独立的隔离保护电路。 PCI-9820I 符合CAN2.0A/B 规范,支持5Kbps ~ 1Mbps 之间的任意波特率,并提供多个操作系统的设备驱动、工具软件等,能真正的满足客户的各种应用需求,为工业通讯CAN 网络提供了可靠性、高效率的解决方案。 ——————————————产品特性 符合工业级温度范围(-25°C ~ +85°C) 通用PCI 接口,适用于5V 系统 支持CAN2.0A 和CAN2.0B 规范 符合ISO/DIS 11898 规范 两路电气完全隔离的CAN 通道 支持5Kbps ~ 1Mbps 之间的任意波特率 DC 2500V 电气隔离保护 内置120欧姆终端电阻,可通过跳线选择 可靠的EMI/EMC 性能 遵守工业应用规范 ——————————操作系统支持 PCI-9820I 接口卡支持Win2000、WinXP 、Win2003等操作系统,提供WDM 驱动程序、ZLGVCI 动态库、ZOPC 服务器,支持用户进行二次开发。 如果客户有特殊要求,请与广州致远电子有限公司联系。 —————————————订购信息 型号 工作温度 接口 PCI-9820I -25°C ~ +85°C DB-9 ——————————————————————————————————规格 操作系统支持 Win2000、WinXP 、Win2003 工具软件支持 通讯CAN 测试工具ZLGCANTest OPC 服务器ZOPC_Server iCAN 测试工具iCANTest 虚拟串口服务器 ZVCom 电源和环境 电源要求:5V@300 mA (Max.) 操作温度:-25°C ~ +85°C 存储温度:-40°C ~ +85°C 尺寸:130 x 90 mm (W x D) 硬件 CAN 控制器:SJA1000T CAN 收发器:PCA82C251T 接口 总线:PCI ver. 2.2 (32-bit) 性能 速率:5Kbps ~ 1Mbps 传输率:1000fps(标准帧) 配置 PCI :中断和I/O 由BIOS 分配 工作模式:正常、只听、自收发 API :VCI 函数库

传输线理论与电感

目錄 第一章傳輸線理論 一傳輸線原理 二微帶傳輸線 三微帶傳輸線之不連續分析第二章被動元件之電感設計與分析一電感原理 二電感結構與分析 三電感設計與模擬 四電感分析與量測

第一章 傳輸線理論 傳輸線理論與傳統電路學之最大不同,主要在於元件之尺寸與傳導電波之波長的比值。當元件尺寸遠小於傳輸線之電波波長時,傳統的電路學理論才可以使用,一般以傳輸波長(Guide wavelength )的二十分之ㄧ(λ/20)為最大尺寸,稱為集總元件(Lumped elements );反之,若元件的尺寸接近傳輸波長,由於元件上不同位置之電壓或電流的大小與相位均可能不相同,因而稱為散佈式元件(Distributed elements )。 由於通訊應用的頻率越來越高,相對的傳輸波長也越來越小,要使電路之設計完全由集總元件所構成變得越來越難以實現,因此,運用散佈式元件設計電路也成為無法避免的選擇。 當然,科技的進步已經使得集總元件的製作變得越來越小,例如運用半導體製程、高介電材質之低溫共燒陶瓷(LTCC )、微機電(MicroElectroMechanical Systems, MEMS )等技術製作集總元件,然而,其中電路之分析與設計能不乏運用到散佈式傳輸線的理論,如微帶線(Microstrip Lines )、夾心帶線(Strip Lines )等的理論。 因此,本章以討論散佈式傳輸線的理論開始,進而以微帶傳輸線為例介紹其理論與公式,並討論微帶傳輸線之各種不連續之電路,以作為後續章節之被動元 1.1(a)。其中的集總元件電路模型描述,其中 (a) (b) i (z, t ) v z, t ) z

终端电阻的作用

在通讯中,增加终端电阻的作用是什么? (1)一般说法:终端电阻是为了消除在通信电缆中的信号反射。在通信过程中,有两种原因因导致信号反射:阻抗不连续和阻抗不匹配。阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻。引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。 终端电阻和偏置电阻 一个正规的RS-485网络(比如MPI,DP)应使用终端电阻和偏置电阻。在网络连接线非常短、临时或实验室测试时也可以不使用终端和偏置电阻。 终端电阻:在线型网络两端(相距最远的两个通信端口上),并联在一对通信线上的电阻。根据传输线理论,终端电阻可以吸收网络上的反射波,有效地增强信号强度。两个终端电阻并联后的值应当基本等于传输线在通信频率上的特性阻抗。 偏置电阻:偏置电阻用于在电气情况复杂时确保A、B信号的相对关系,保证“0”、“1”信号的可靠性。 西门子的PROFIBUS网络连接器已经内置了终端和偏置电阻,通过一个开关方便地接通或断开。网络终端的插头,其终端电阻开关必须放在“ON”的位置;中间站点的插头其终端电阻开关应放在“OFF”位置。 终端和偏置电阻的值完全符合西门子通信端口和PROFIBUS电缆的要求。 合上网络中网络插头的终端电阻开关,可以非常方便地切断插头后面的部分网络的信号传输。 与其他设备通信时(采用PROFIBUS电缆),对方的通信端口可能不是D-SUB9针型的,或者引脚定义完全不同。如西门子的MM4x0变频器,RS-485通信口采用端子接线形式,这种情况下需要另外连接终端电阻,西门子可以提供一个比较规整的外接电阻。对于其他设备,可以参照《S7-200系统手册》上的技术数据制作。 西门子网络插头中的终端电阻、偏置电阻的大小与西门子PROFIBUS电缆的特性阻抗相匹配,强烈建议用户配套使用西门子的PROFIBUS电缆和网络插头。可以避免许多麻烦。

can网络距离多远需要加终端电阻

can网络距离多远需要加终端电阻 本文主要是关于CAN总线的相关介绍,并着重对CAN总线网络距离和终端电阻距离进行了详尽的阐述。 CAN总线CAN是控制器局域网络(Controller Area Network,CAN)的简称,是由以研发和生产汽车电子产品著称的德国BOSCH公司开发的,并最终成为国际标准(ISO 11898),是国际上应用最广泛的现场总线之一。在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制局域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。 CAN 是Controller Area Network 的缩写(以下称为CAN),是ISO国际标准化的串行通信协议。在汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、“通过多个LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向汽车的CAN 通信协议。此后,CAN 通过ISO11898 及ISO11519 进行了标准化,在欧洲已是汽车网络的标准协议。 CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机局域网。它的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的技术支持。 优势 CAN属于现场总线的范畴,它是一种有效支持分布式控制或实时控制的串行通信网络。较之许多RS-485基于R线构建的分布式控制系统而言,基于CAN总线的分布式控制系统在以下方面具有明显的优越性: 网络各节点之间的数据通信实时性强 首先,CAN控制器工作于多种方式,网络中的各节点都可根据总线访问优先权(取决于

485通信终端电阻的使用

RS485总线终端电阻 1.一般情况下不需要增加终端电阻,只有在485通信距离超过300米的情况下,要在485通讯的开始端和结束端增加终端电阻。 2.终端电阻是为了消除在通信电缆中的信号反射在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。 阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻。 引起信号反射的另一原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射, 主要表现在通讯线路处在空闲方式时,整个网络数据混乱。 要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。在实际应用中, 对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。 3. 补充说明: 1)RS-485需要2个终接电阻,接在传输总线的两端,其阻值要求等于传输电缆的特性阻抗。在短距离传输时不需终接电阻,即一般在100米以下不需终接电阻。 2)为了抑制干扰,RS485总线常在最后一台设备之后接入一个120欧的电阻(即为上面所述)。 3)RS-485与RS-422的共模输出电压是不同的。RS-485共模输出电压在-7V至+12V之间,RS-422 在-7V至+7V之间,RS-485接收器最小输入阻抗为12KΩ;RS-422是4kΩ;RS-485满足所有RS-422的规范,所以RS-485的驱动器可以用在RS-422网络中应用。 4.终端匹配电阻的正确接法是在每个485总线的首尾两端上各接一个120欧姆的终端电阻。 下列建议希望会有所帮助: 1.采用阻抗匹配、低衰减的RS485专用电缆更有利于保证通信。 一般推荐如下: 普通双绞屏蔽型电缆STP-120Ω(for RS485 & CAN)one pair 20 AWG ,电缆外径7.7mm左右。适用于室内、管道及一般工业环境。使用时,屏蔽层一端接地! 普通双绞屏蔽型电缆STP-120Ω(for RS485 & CAN)one pair 18 AWG ,电缆外径8.2mm左右。适用于室内、管道及一般工业环境。使用时,屏蔽层一端接地!

CAN总线两端加终端电阻

在RS485组网过程中另一个需要主意的问题是终端负载电阻问题,在设备少距离短的情况下不加终端负载电阻整个网络能很好的工作但随着距离的增加性能将降低。理论上,在每个接收数据信号的中点进行采样时,只要反射信号在开始采样时衰减到足够低就可以不考虑匹配。但这在实际上难以掌握,美国MAXIM公司有篇文章提到一条经验性的原则可以用来判断在什么样的数据速率和电缆长度时需要进行匹配:当信号的转换时间(上升或下降时间)超过电信号沿总线单向传输所需时间的3倍以上时就可以不加匹配。 一般终端匹配采用终端电阻方法,RS-485应在总线电缆的开始和末端都并接终端电阻。终接电阻在RS-485网络中取120Ω。相当于电缆特性阻抗的电阻,因为大多数双绞线电缆特性阻抗大约在100~120Ω。这种匹配方法简单有效,但有一个缺点,匹配电阻要消耗较大功率,对于功耗限制比较严格的系统不太适合。另外一种比较省电的匹配方式是RC匹配。利用一只电容C隔断直流成分可以节省大部分功率。但电容C的取值是个难点,需要在功耗和匹配质量间进行折衷。还有一种采用二极管的匹配方法,这种方案虽未实现真正的“匹配”,但它利用二极管的钳位作用能迅速削弱反射信号,达到改善信号质量的目的,节能效果显著。 抗干扰~~ 一般在总线两端接终端电阻即可,但也有例外,例如有临时加上的总线诊断设备,形成支线。 在不接终端电阻的情况下,除了EMC性能下降,其他影响也是有的,例如若CAN总线断开一根,与接终端电阻是不一样的,没接的居然还能收,单线通讯??不过EMC大大的下降,一半左右。 关于阻值计算,好像跟收发器驱动特性,电缆特性有关。而总线长度主要取决于位定时参数,位速率允许情况下,才能达到一定的总线长度。 总的来说,终端电阻主要用于增强EMC性能,然而EMC性能在汽车级的应用中当然十分重要,一般在两端加入120欧姆的电阻即可。 本人初学,抛砖引玉。关注~~~ 另外可推荐一本书:《现场总线CAN原理与应用技术》,北京航空航天大学出版社。上面论述较为详细~~ CAN是多主传输,为了消除短路现象,其CANH和CANL电平的性质是不一样的,如CANH的两种逻辑状态为高电平和高阻状态,CANL的两种逻辑状态为低电平和高阻,高阻状态其实电平是不确的,因此在差分传输的CAN总线中,匹配电阻不仅作为匹配用还起降低CANH与CANL回路中阻抗的作用,使CANH和CANL具有确定的电平,所以在调CAN时,即使线再短也需要加在CANH与CANL之间加一个电阻的原因,此时这个电阻并不起匹配作用。 基于CAN总线的RS-232串口设备远程通信 工业设备通信通常涉及到很多硬件和软件产品以及用于连通标准计算机平台(个人计算机或工作站)和工业自动化应用设备的协议,而且所使用设备和协议的种类繁多。因此,大部分自动化应用设备都希望执行简单的串行命令,并希望这些命令同个人计算机或者附加的串行端口板上的标准串行端口兼容。RS-232是目前PC机与通信工业中应用最广泛的一种串行接口。RS-232被定义为一种在低速率串行通讯中增加通讯距离的单端标准。由于RS-232的发送端与接收端之间有公共信号地,所以它不能使用双端信号,否则,共模噪声会耦合到信号系统中。RS-232标准规定,其最大距离仅为15m,信号传输速率最高为20kbit/s。 CAN,全称为“Controller Area Network”,即控制器局域网,是国际上应用最广泛的现场总线之一

为什么RS485总线要接终端电阻

[资源分享]为什么RS485总线要接终端电阻 终端电阻是为了消除在通信电缆中的信号反射。 在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻。引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。 补充说明: 1.RS-485需要2个终接电阻,接在传输总线的两端,其阻值要求等于传输电缆的特性阻抗。在短距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。 2.为了抑制干扰,RS485总线常在最后一台设备之后接入一个120欧的电阻(即为上面所述)。 3.RS-485与RS-422的共模输出电压是不同的。RS-485共模输出电压

在-7V至+12V之间,RS-422在-7V至+7V之间,RS-485接收器最小输入阻抗为12KΩ;RS-422是4kΩ;RS-485满足所有RS-422的规范,所以RS-485的驱动器可以用在RS-422网络中应用。 RS485为什么长距离通信时要加一个终端电阻? 485的通信方式就是一个正极D+和一个负极D-,两线间的电压为0和1的信号,为什么长距离的时候要加一个终端电阻?在后面并个电阻的作用是什么?个人感觉并不并联这个电阻从电气原理上好像没有太多的意义? 这个电阻为什么能识别是整个网络节点中的最后一个设备? 最佳答案 恩,作为网络传输路径,其中一个重要的指标就是信号反射。 如果没有终端电阻来消除信号反射的话,那么发射信号的设备,在传输路径的终端后,反射信号到发射端,这样使得网络上的信号产生叠加,网络信号就紊乱了。 所以终端电阻是必要的,同时也是与网络的传输阻抗有关。 终端电阻本身应该处于网络中,但是位置建议放在最末端,这样不会衰减正常的信号,它本身是无法识别 级2012-08-21 08:02:42 其他答案 主要是避免信号传递过程中的错误,加上终端电阻后,可以有效地抑制干扰! 回答者:YHKingKong - 高级工程师第11级 2012-08-21 08:26:25 你好! PROFIBUS是485网络,以差分电压信号来代表数据0和1。如果没有终端电阻,或者拨了终端电阻但终端没有电压,会造成阻抗不匹配,导致信号反射,从而电压波形畸变。但只要波形还能被正确识别,通信就还正常,但造成的影响是存在的。因此正常来讲必须在终端拨上终端电阻并保持供电。 置评专家:西门子自动化技术支持 2011-07-08 17:04:25 RS485接口、电缆、布网、终端电阻RS485接口RS485采用差分信号负逻辑,+2V~+6V表示“0”,- 6V~- 2V表示“1”。RS485有两线制和四线制两种接线,四线制只能实现点对点的通信方式,现很少采用,现在多采用的是两线制接线方式,这种接线方式为总线式拓朴结构在同一总线上最多可以挂接32个结点。在

怎样理解阻抗匹配,很难得的资料

怎样理解阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R 越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的

匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是"短线",反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上

终端电阻

有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er决定: 另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻 只有当同轴电缆的特性阻抗Zo和终端阻抗FT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

图2 终端电阻RT和线路阻抗的变动终端电阻的效果 (2009-07-08 01:33:30) 转载▼ 标签:终端电阻 阻抗匹配 波形 it 分类:电子技术

终端电阻的作用: 1:阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2:减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及 后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 无论是RS485、CAN总线、USB。都是需要加终端电阻进行阻抗匹配的,许多工程师对终端电阻的理解不是很清楚,甚至因为程序上能正常通讯,所以就索性省去了终端电阻。这样带来很大的隐患,通讯时好时坏,通常是去检查时没有问题,而回到家一睡觉,现场就出问题了,呵呵。所以终端电阻还是很有作用的,可是如果讲理论,又是长篇大论,这里就用波形来说明问题。 1.未加终端电阻的波形(还是可以通讯的) 2.加上终端电阻的波形(通讯稳定性增强)

PROFIBUS接线方式

?收藏 ?评论(0) 分享到 微博 QQ 微信 LinkedIn Profibus-DP电缆接法 PROFIBUS 电缆很简单的,就只有两根线在里面,一根红的 一根绿的,然后外面有屏蔽层。接线的时候,要把屏蔽层接 好,不能和里面的电线接触到。要分清楚进去的和出去的线 分别是哪个,假如是一串的,就是一根总线下去,中间不断 地接入分站,这个是很常用的方法。在总线的两头的两个接 头,线都要接在进去的那个孔里,不能是出的那个孔,然后 这两个两头的接头,要把它们的开关置为ON状态,这时候 就只有进去的那个接线是通的,而出去的那个接线是断的。 其余中间的接头,都置为OFF,它们的进出两个接线都是通 的(记忆方法:ON表示接入终端电阻,所以两端的接头拨 至ON;OFF表示断开终端电阻,所以中间的接头要拨至 OFF)。 Profibus-DP电缆的测量 接好了线以后呢,还要用万用表量一量,看这个线是不是通 的。假如你这根线上只有一个接头,你量它的收发两个针上

面的电阻值,如果是220欧姆,那么就是对的,假如你这根线已经做好了,连了一串的接口,你就要从一端开始逐个检查了。第一个单独接线的接口,是ON状态,然后你把邻近的第一个接口的开关也置为ON,那么这个接口以后的部分就断了。现在测最边上,就是单线接的那个接口,之后的测量也一直都是测这个接口,测它的收发两个针,和刚才一样,假如电阻是110欧姆(被并联了),那么这段线路就是通的,然后把中间刚才那个改动为ON的接口改回到OFF,然后是下一个接口改为ON…….就这么测下去,如果哪个的电阻不是110欧姆了,就是那一段的线路出问题了。 Profibus-DP常见故障 (1)终端DP头接线错误,或终端电阻设置错误。 (2)DP头接线不牢,最好接完线用上面的方法测试一遍。(3)硬件配置和从站号设置问题

PCB中的传输线理论

PCB中的传输线理论 PCB板上的信号传输速率越来越高,PCB走线已经表现出传输线的性质.在集总电路中视为短路线的连线上,在同一时刻的不同位置的电流电压已经不同,所以集总参数在这时已经不起作用了,必须采用分布参数传输线理论来处理(注:如果线长度大于信号传输有效长度的1/6(1/4),那么我们就看做是一个分布式系统)。传输线的模型可以用图1表示: 单根传输线模型 如果是理想的无损传输线,这没有G 和 R。当然这也在现实中不存在的理想状况。所以,我们以下的考虑都是有损传输线。 对于图传输线的性质可以用电报方程来表达,电报方程如下: dU/dz = ( R + jwL) I dI/dz = ( G +jwC) U 电报方程的解为: 通解中的 由于R, G 远小于 jwL、jwC,所以通常所说的阻抗是指: 从通解中可以看到传输线上的任意一点的电压和电流都是入射波和反射波的叠加,传输因此传输线上任意一点的输入阻抗值都是时间、位置、终端匹配的函数,再使用输入阻抗来研究传输线已经失去意义了,所以引入了特征阻抗、行波系数、反射系数的概念描述传输线。 特征阻抗的物理意义就是:入射波的电压和入射波的电流的比值,或反射波的电压和反射波电流的比值。 电磁波在介质的中的传输速度只与介质的介电常数或等效介电常数有关。 根据经验:FR4内层带状线的传输速度为180ps/inch,表层微带线的传输速度为 140~180ps/inch。 PCB常见的传输线主要有以下几种: 1.1.1 微带线(Microstrip)

式中: w--导线宽度 t --导线厚度 h--介质厚度适用范围: w/h 的比值在0.1~1.0之间; 相对介电常数在1~15之间; 地线宽度大于信号线宽度7倍以上。 1.1.2 嵌入式微带线(Embedded Microstrip) 式中: w--导线宽度 t--导线厚度 h--介质厚度适用范围: w/h 的比值在0.1~1.0之间; 相对介电常数在1~15之间; 地线宽度大于信号线宽度7倍以上。 1.1.3 差分线(Differential Pair)

终端电阻

终端电阻的含义 高频信号传输时,信号波长相对于传输线较短,信号在传输终端会形成反射波,干扰原信号,所以在传输末端要加终端电阻,使信号到达传输末端后不反射。对于低频信号则不用,在长线信号传输时,一般避免信号的反射和回波,也需要在接受终端接入终端电阻匹配。 终端匹配电阻取决于电缆的阻抗特性,与电缆长度无关。RS485/RS422一般采用双绞线连接(屏蔽或非屏蔽),终端电阻一般介于100-140欧姆,典型值为120欧姆,在实际配置中,在电缆的缆的两个终端节点上,起始端和最远端各接入一个终端电阻,儿处于中间的各节点,不能接入终端电阻,否则将导致通讯失误。 终端电阻的作用:一般说法:终端电阻是为了消除在电缆中的信号反射,在通信中有两种情况导致信号反射,阻抗不连续和阻抗不匹配,1.阻抗不连续,信号在传输线末端突然遇到电缆阻值很小,甚至没有,信号在这个地方就会引起反射,这种信号反射原理,与光从一种介质进入另一种介质原理相似,消除这种反射,就必须在电缆末端跨接一个与电缆的特性阻抗同样大小到的终端电阻,使电缆阻抗连续,由于信号在电缆上的传输是双向的,引起信号反射的另一原因是数据收发器与传输电缆之间的阻抗不匹配,这种原因引起的反射主要表现在通讯线路在恐闲方式时,整个网络数据混乱,要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。 RS485通讯原理,采用两根双绞线,一根A+或信号正极,一根A-或信号负极,采用差分信号,正信号在+2--+6V之间,负信号在-2---6V之间。 RS422通讯原理,采用四根线。发射+,发射-,接收+,接收-. RS232通讯原理,三根线,发射2-3,接受3-2. 5-5GND,发射和GND比较电压,接受和GND 比较电压,记录电压即可。

]LVDS,CML,LVPECL,VML之间接口电平转换

1概要 随着通讯速度的提升,出现了很多差分传输接口,以提升性能,降低电源功耗和成本。早期的技术,诸如emitter-coupled logic(ECL),使用不变的负电源供电,在当时用以提升噪声抑制。随着正电压供电技术发展,诸如TTL和CMOS技术,原先的技术优点开始消失,因为他们需要一些-5.2V或-4.5V的电平。在这种背景下,ECL转变为positive/pseduo emitter-coupled logic (PECL),简化了板级布线,摒弃了负电平供电。PECL要求提供800mV的电压摆幅,并且使用5V对地的电压。LVPECL类似于PECL也就是3.3V供电,其在电源功耗上有着优点。 当越来越多的设计采用以CMOS为基础的技术,新的高速驱动电路开始不断涌现,诸如current mode lo gic(CML),votage mode logic(VML),low-voltage differential signaling(LVDS)。这些不同的接口要求不同的电压摆幅,在一个系统中他们之间的连接也需要不同的电路。 本应用手册主要内容为:TI的不同的SERDES器件,输入输出结构,多种高速驱动器,以及偏置和终端电路。 在不同的接口之间,往往采用交流耦合的方式(ac-coupling),从而可以独立的对驱动器和接收器进行处理。 1. 不同接口之间的转换 2. 不同信号电平的转换 3. 不同地之间的转换 2各信号电平 第一步首先是理解各个接口点逻辑电平,主要讨论LVPECL,CML,VML,以及LVDS。 表一为这些接口的输出电平。 项目LVPECL CML VML LVDS VOH 2.4V 1.9V 1.65V 1.4V VOL 1.6V 1.1V 0.85V 1V 输出电压(单 800mV 800mV 800mV 400mV 端) 1.25V 1.2V 共模电压2V 1.5V (VCC-0.2V)1 表一,各接口电平规范 图一 3输入输出结构 在上文中提到了关于LVPECL,CML,VML以及LVDS驱动器,这些都是基于CMOS技术的。这个部分介绍各个种类的输入输出结果。 3.1 LVPECL接口

如何正确使用Profibus插头以及终端电阻

如何正确使用Profibus插头以及终端电阻 插头与终端电阻在Profibus通讯中有着非常重要的作用,它们使用起来非常简单,没有很多复杂的设置;但是正是由于使用简单,使得很多工程师在使用当中忽略了一些细节,导致很多通讯问题。 1 Profibus插头的结构与简单用法 图1Profibus插头结构 这是常见的Profibus插头,如果我们有A、B两个站点要做Profibus通讯,应该如何连接插头呢?因为总线上只有两个站,显然终端电阻都要打到ON位置。那么插头上的接线是否要一进一出呢。

图2 两个DP站点的连接 正确的做法是两个插头都连接进线端。因为终端电阻与插头的出线端是2选1的。终端电阻打ON,进线端连接终端电阻,断开与出线端的连接;终端电阻打OFF,进线端断开与终端电阻的连接,连接出线端。 2常见的Profibus总线连接

图3 主站在总线一端点 图3所示的是一般的Profibus总线连接方法,主站位于总线的一端,终端电阻打ON。 然后依次连接后面的站点,中间的站点终端电阻打OFF,最后面的站点终端电阻打ON。 图4 主站在总线中间 有时候由于现场设备分布的原因,主站也可以安装在Profibus总线的中间,具体做法如图4所示。 终端电阻打ON的设备不能断电,如图5所示Profibus插头上除了220欧的终端电阻以外还有两个390欧的偏置电阻,并且偏置电阻上必须连接电源。

图5 终端电阻和偏置电阻 如果终端设备需要经常断电维护,或者终端设备只有接线端子而没有9针D型插座,就需要使用有源终端模块作为Profibus总线的终端(6ES7 972-0DA00-0AA0)。 图6 Profibus有源终端模块 如果Profibus电缆不够长,需要把两根电缆接起来,不能简单的把两根铜芯拧起来,因为这样会破坏电缆的特征阻抗,可能会导致通讯问题。最好使用图7中的接头来连接两根需要接起来的电缆。

阻抗匹配的原理与方法

一、50ohm特征阻抗 终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。 终端电阻示图 B.终端电阻的作用: 1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2、减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 C.终端电阻取决于电缆的特性阻抗。 D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容. E.有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er 决定:

另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻构成 只有当同轴电缆的特性阻抗Zo和终端阻抗RT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

DP接头终端电阻介绍

dp通讯采用的是rs485通讯,rs485采用差分信号负逻辑,+2V~+6V表示“0”,- 6V~- 2V 表示“1”。 从图中可见,当开关拨至“ON”时,A1和B1两端和终端电阻相连,所以在DP网络的终端只能接A1和B1,否则不能连接终端电阻。当开关拨至“OFF”时,终端电阻和数据线断开,A1和A2,B1和B2相连,串起网络上的设备。 平时使用只用到了DB9(针)插头的3和8两个引脚,判断DP网络硬件连接是否正常首先要保证数据线连接牢固,而检测的最好方法就是测量3,8引脚之间的电阻。如果接线牢固,那么当开关拨至“ON”时3,8之间的电阻为220欧姆,当开关拨至“OFF”时电阻为无穷大。 我们可以在一个DB9(孔)接头的3,8引脚焊接两根电线,电线的另一端各焊接一个可以插入万用表的表笔头。使用时将两个表笔头插入万用表,使用欧姆档,将制作的DB9(孔)插头插到DP网络的一个终端接头上,所有电阻开关均拨至“OFF”,然后从这个终端开始,依次将开关拨至“ON”,观察万用表读数,如果为220欧姆,则该节点正常,然后将开关拨至“OFF”,测量下一节点。如果那个节点电阻不正常则该节点接线有误。 很多时候DP网络不通都是接线造成的,做好DP电缆后使用以上的方法测试一遍再连接DP 设备可以保证硬件连接正确,提高调试效率。 在通讯中,增加终端电阻的作用是什么? (1)一般说法:终端电阻是为了消除在通信电缆中的信号反射。在通信过程中,有两种原因因导致信号反射:阻抗不连续和阻抗不匹配。阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。这种信号反射的原理,与光从一

CN为什么接欧姆终端电阻

1,为什么不能直接在一端用一个60Ω的电阻 2,终端电阻的作用都说是使阻抗连续,消除反射,那为什么只在物理上最远的两个节点加这个匹配电阻,而不是在所有的节点都加上匹配电阻 传输时,信号波长相对较短,信号在终端会形成,干扰原信号,所以需要在末端加,使信号到达传输线末端后不反射。对于低频信号则不用 两端必须连接才可以正常工作,应该与的相同,典型值为120欧姆.其作用是匹配总线,提高的抗干扰性及可靠行。 1. 终端电阻的作用就是吸收信号反射及回波,而产生信号反射的最大来源便是阻抗不连续以及不匹配。 2. 如果是加在单独的两根线上,相当于一个开环的状态,根据产生信号反射的来源,也就是说这种连接方式会导致单线上阻抗更加不连续,在末端突然变为0,会导致反射成倍增加。 高速CAN所加的两个120欧的电阻实际上模拟的是线束连接无穷远的时候在传输线上产生的特性阻抗(而不是实际阻抗),这是个典型经验值,具体值取决于所采用的线束类型。 以上如仍有不明之处,请简单查阅下传输线理论和信号反射相关的知识。 CAN低速之所以不加终端电阻,是因为不同的频率时,同样的连接方式所产生的信号反射和回波差异很大,频率越高,反射和回波越强烈。另外不同的频率下,传输线的特性阻抗是不同的。

3. 在ISO-11898-2:2003第4页第一段中大致有这么一句话:“当一个显性位发送到至少包含一个CAN驱动处于开启状态的网络上时,意味着有电流经过终端电阻,因此,CAN_H 和CAN_L具有了不同的电压值。”,也就是说,在显性状态时,终端电阻会稳定并增强差分电压,当去掉一个或两个终端,通过示波器可以明显看到一是信号不稳,二是差分电压会有变化,缺少终端或没有终端电阻时所测到的电压我认为是单纯由CAN驱动器所产生的,离发送端越远,电压差异越大。

CAN终端电阻

CAN终端电阻 1. 终端电阻是为了消除在通信电缆中的信号反射,在通信过程中,有两种原因导致信号反射:阻抗不连续和阻抗不匹配。 阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻。 引起信号反射的另外一个原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱 为了提高网络节点的拓扑能力,CAN总线两端需要接有120Ω的抑制反射的终端电阻,它对匹配总线阻抗起着非常重要的作用,如果忽略此电阻,会使数字通信的抗干扰性和可靠性大大降低,甚至无法通信。C 2. 阻抗指的是电阻加电抗,阻抗是电阻和电抗在向量上的和,阻抗匹配主要是用于传输线上所有的高频信号都能传输至负载点的目的,不能有信号反射会发射点,提升传输能源效率。当某个电源的内阻等于其负载时,输出功率最大,则为阻抗匹配,如为高频信号,则为无反射波。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,表明所有能量都被负载吸收了.反之则在传输中有能量损失。 阻抗匹配有串联终端匹配和并联终端匹配,串联终端匹配是信号源端阻抗低于传输线特征阻抗的情况下采用,在信号源与传输线上串接一个电阻,使得信号源的输出阻抗和传输线的特征阻抗相匹配,抑制负载端反射回来的信号发生再反射。并联终端匹配是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。 并联终端匹配分为单电阻和双电阻,RS-485总线终端匹配多采用的是双电阻并联终端匹配,如采用单电阻方式,负载端并联电阻值与传输线的特性阻抗相等或相近,那样静态电流将会很大,对电流驱动能力要求很高,很少采用。双电阻并联终端匹配由于是两电阻并联值与传输线的特性阻抗相等或相近,每个电阻都比传输线的特征阻抗大,对电流的要求不高。但是,并联终端匹配不管是单电阻还是双电阻总归是会带来直流功耗,降低总线负载能力。一般485总线传输线的特征阻抗为120欧姆,采用两个120欧姆电阻作为485总线的终端匹配电阻,具体连接方式是首尾各接一个,并联于485正负上。由于485总线并联电阻会导致直流功耗,一般建议在传输距离不超过300米,传输速率较低的情况下不要接终端电阻,只有在传输有信号反射,导致通信不稳定的情况下才加以考虑接终端电阻。

通讯电缆终端电阻详解

通讯电缆终端电阻详解【工控老鬼】 终端电阻的含义 在线型网络两端(相距最远的两个通信端口上),并联在一对通信线上的电阻。根据传输线理论,终端电阻可以吸收网络上的反射波,有效地增强信号强度。两个终端电阻并联后的值应当基本等于传输线在通信频率上的特性阻抗。 高频信号传输时,信号波长相对传输线较短,信号在传输线终端会形成反射波,干扰原信号,所以需要在传输线末端加终端电阻,使信号到达传输线末端后不反射。对于低频信号则不用。在长线信号传输时,一般为了避免信号的反射和回波,也需要在接收端接入终端匹配电阻。 其终端匹配电阻值取决于电缆的阻抗特性,与电缆的长度无关。

RS-485/RS-422 一般采用双绞线(屏蔽或非屏蔽)连接,终端电阻一般介于100至140Ω之间,典型值为120Ω。在实际配置时,在电缆的两个终端节点上,即最近端和最远端,各接入一个终端电阻,而处于中间部分的节点则不能接入终端电阻,否则将导致通讯出错。 终端电阻的作用 一般说法:终端电阻是为了消除在通信电缆中的信号反射。在通信过程中,有两种原因导致信号反射:阻抗不连续和阻抗不匹配。阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。消除这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电

阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻。引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。 终端电阻和偏置电阻 一个正规的RS-485网络(比如MPI,DP)应使用终端电阻和偏置电阻。在网络连接线非常短、临时或实验室测试时也可以不使用终端和偏置电阻。 终端电阻:在线型网络两端(相距最远的两个通信端口上),并联在一对通信线上的电阻。根据传输线理论,终端电阻可以吸收网络上的反射波,有效地增强信号强度。两个终端电阻并联后的值应当基本等于传输线在通信频率上的特性阻抗。 偏置电阻:偏置电阻用于在电气情况复杂时确保A、B信号的相对关系,保证“0”、“1”信号的可靠性。 西门子的PROFIBUS网络连接器已经内置了终端和偏置电阻,通过一个开关方便地接通或断开。网络终端的插头,其终端电阻开关必须放在“ON”的位置;中间站点的插头其终端电阻开关应放在“OFF”位置。 终端和偏置电阻的值完全符合西门子通信端口和PROFIBUS电缆的要求。 合上网络中网络插头的终端电阻开关,可以非常方便地切断插头后面的部分网络的信号传输。 与其他设备通信时(采用PROFIBUS电缆),对方的通信端口可能不是D-SUB9针型的,或者引脚定义完全不同。如西门子的MM4x0变频器,RS-485通信口采用端子接线形式,这种情况下需要另外连接终端电阻,西门子可以提供一个比较规整的外接电阻。对于其他设备,可以参照《S7-200系统手册》上的技术数据制作。 西门子网络插头中的终端电阻、偏置电阻的大小与西门子PROFIBUS电缆的特性阻抗相匹配,强烈建议用户配套使用西门子的PROFIBUS电缆和网络插头。可以避免许多麻烦。

相关文档