文档库 最新最全的文档下载
当前位置:文档库 › 数学建模模拟试题(一)

数学建模模拟试题(一)

数学建模模拟试题(一)
数学建模模拟试题(一)

数学建模模拟试题(一)

一、填空题(每题5分,共20分)

1. 若,,

x z z y ∝∝则y 与x 的函数关系是 .

2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 .

3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 .

4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型.

二、分析判断题(每小题15分,满分30分)

1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种.

2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是

),ml /mg (100/56 又过两个小时,含量降为),ml /mg (100/40试判断,当事故发生时,司

机是否违反了酒精含量的规定(不超过80/100)ml /mg (.

(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ?+内酒精浓度的改变量为

t t kC t C t t C ?-=-?+)()()(

其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.)

三、计算题(每题25分,满分50分)

1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:

(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.

2. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?

数学建模模拟试题(一)参考答案

一、填空题(每题5分,共20分)

1. k kx y ,=是比例常数;

2. )()(2211t n p m t n p m +<+;

3. 增长率是常数还是人口的递减函数;

4. 类比.

二、分析判断题(每小题15分,满分30分)

1. 问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个: (1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等; (2)学生:是否连续上课,专业课课时与公共基础课是否冲突,选修人数等; (3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件;

(每个因素3分) 2. 设)(t C 为t 时刻血液中酒精的浓度,则浓度递减率的模型应为

,/kC C -=

其通解是,e

)0()(kt

C t C -=而)0(C 就是所求量.

由题设可知,40)5(,56)3(==C C 故有 56e )0(3=-k

C 和 ,40e )0(5=-k C

由此解得

.94e 56)0(17.040/56e 32≈=?≈?=k k C k

可见在事故发生时,司机血液中酒精的浓度已经超出了规定.

三、计算题(每题25分,满分50分)

1. 设21,x x 表示甲、乙两种产品的产量,则有 原材料限制条件: ,902321≤+x x ,303221≤+x x ,805821≤+x x 目标函数满足 ,680580max 21x x z += 合在一起便是所求线性规划模型:

,680580max 21x x z +=

???

???

?=≥≤+≤+≤+.2,1,0,8058,3032,902321

2

121j x x x x x x x j (1)使用图解法易得其最优生产方案只有一组(这是因为所有约束条件所在直线的斜率与目标函数直线的斜率均不相等),从而最优方案没有可选择余地.计算知:

最优解为 ,)740,745(

T

*

=X 目标值为 7

53300

max =z (万元).

(2)利用图解法求解中只用到了后两个约束条件,故羊毛有剩余量,将解代入可检验而知羊毛有7

2

59

单位的剩余量. 2. 本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解,

其次对方案进行最优性检验:

λ11 = 10-4+6-7=5 > 0, λ12 = 6-4+6-5=3 > 0, λ31 = 8-7+5-3=3 > 0, λ33 = 9-3+5-6=5 > 0,

故上述方案已是最优方案,即总运费最低的调运方案为:

2150

3310223021160231701,,,,B A B A B A B A B A ?→??→??→??→??→?

总费用为 2460150310630516071704=?+?+?+?+?(百元).

数学建模模拟试题(二)

一、填空题(每题5分,共20分)

1. 设S 表示挣的钱数,x 表示花的钱数,则“钱越多花的也就越多”的数学模型可以简单表示为 .

2. 假设,,21x C Y Y C S ∝∝则S 与x 的数学关系式为 ,其中21,C C 是常数.

3. 在建立人口增长问题的罗捷斯蒂克模型时,假设人口增长率r 是人口数量)(t x 的递减函数,若最大人口数量记作,m x 为简化模型,采用的递减函数是 .

4. 一次晚会花掉100元用于食品和饮料,其中食品至少要花掉40%,饮料起码要花30元,用f 和d 列出花在食品和饮料上的费用的数学模型是 .

二、分析判断题(每题15分,满分30分)

1. 作为经济模型的一部分,若产量的变化率与生产量和需求量之差成正比,且需求量中一部分是常数,另一部分与产量成正比,那么相应的微分方程模型是什么?.

2. 考虑在一片面积为定数的草地上进行牛的养殖问题.为了获得最大经济效益,指出建立该问题数学模型应该考虑的相关因素至少5个.

三、计算题(每题25分,满分50分)

1. 设某小型工厂使用A ,B 两种原料生产甲、乙两种产品,按工艺,生产每件产品甲需要原料A ,B 依次为6、5个单位,生产每件产品乙需要原料A ,B 依次为2、10个单位,两种原料的供给量依次为18和40个单位,两种产品创造的产值分别为1万元和2万元,试建立其生产规划模型,并回答以下问题:

(1)产值最大的生产方案是什么?最大产值是多少?方案是否有可选择余地?若有请至少再给出一个.

(2)依你所给最优方案,说明原料的利用情况.

2. 如图一是某村镇9个自然屯(用91,,v v 表示)间可架设有线电视线路的最短距离示意图,边旁数字为距离(单位:km ).若每km 的架设费用是定数20元/m ,试协助有线电视网络公司设计一个既使得各村屯都能看到有线电视又使架设费用最低的路线,并求出最小架设费用.

数学建模模拟试题(二)参考答案

一、填空题(每题5分,共20分) 1. 0,>=k kx S ;

2. kx x C C k k S ==2121,其中2121C C k k k =;

3. )1()(m

x x

r x r -

=; 4. 30,4.0)/(,100≥≥+≤+d d f f f d .

二、分析判断题(每题15分,满分30分)

1. 令x 表示产量,y 表示需求量,则有)(d d x y k t

x

-=以及,bx a y +=其中k b a ,,均为常数.将后一式代入前一式即可得到

d cx t

x x b a k t x +=?-+=d d ))1((d d

2. 饲料来源、公羊与母羊的比例、饲料冬储、繁殖问题、羊的养殖年限、出售时机、

v 1 v 2 v 3 v 4 v 6 v 5 v 7 v 9 v 8 3 4 6 2 5 4 11 3 6 4 2

8 7 5

图一

羊制品及其深加工等.

三、计算题(每题25分,满分50分)

1. 设生产甲、乙两种产品的数量依次为,,21x x z 表示总产值,则有模型如下:

212max x x z +=

???

??=≥≤+≤+.2,1,0401051826..2121j x x x x x t s j

使用图解法易得其产值最大的生产方案将有无穷多组(这是因为第二个约束条件所在直线的斜率与目标函数直线的斜率相等),其中的两个方案可以选为该直线段上的两个端点:

,)4,0(,)3,2(T 2T 1==X X

最大产值均为 8=z (万元)

(2)按照上面的第一个解,原材料全部充分利用;而按照第二个解,原材料A 将有10个单位的剩余量,原材料B 将被充分利用(但产品甲不生产).

2. 由题意可知,只需求出该网络图的最小树即可.利用破圈法容易得树形图(图二):

故得架设路线为:

总架线长度为27km ,故总架设费用为 5420100027=??(万元)

图二 v 1 v 2 v 3 v 4 v 6 v 5 v 8 v 7 v 9 4 3

2 4

3 4

2 5

数学模型实验报告

数学模型实验报告 实验内容1. 实验目的:学习使用lingo和MATLAB解决数学模型问题 实验原理: 实验环境:MATLAB7.0 实验结论: 源程序 第4章:实验目的,学会使用lingo解决数学模型中线性规划问题1.习题第一题 实验原理: 源程序: 运行结果: 、 管 路 敷 设 技 术 通 过 管 线 不 仅 可 以 解 决 吊 顶 层 配 置 不 规 范 高 中 资 料 试 卷 问 题 , 而 且 可 保 障 各 类 管 路 习 题 到 位 。 在 管 路 敷 设 过 程 中 , 要 加 强 看 护 关 于 管 路 高 中 资 料 试 卷 连 接 管 口 处 理 高 中 资 料 试 卷 弯 扁 度 固 定 盒 位 置 保 护 层 防 腐 跨 接 地 线 弯 曲 半 径 标 等 , 要 求 技 术 交 底 。 管 线 敷 设 技 术 中 包 含 线 槽 、 管 架 等 多 项 方 式 , 为 解 决 高 中 语 文 电 气 课 件 中 管 壁 薄 、 接 口 不 严 等 问 题 , 合 理 利 用 管 线 敷 设 技 术 。 线 缆 敷 设 原 则 : 在 分 线 盒 处 , 当 不 同 电 压 回 路 交 叉 时 , 应 采 用 金 属 隔 板 进 行 隔 开 处 理 ; 同 一 线 槽 内 强 电 回 路 须 同 时 切 断 习 题 电 源 , 线 缆 敷 设 完 毕 , 要 进 行 检 查 和 检 测 处 理 。 、 电 气 课 件 中 调 试 对 全 部 高 中 资 料 试 卷 电 气 设 备 , 在 安 装 过 程 中 以 及 安 装 结 束 后 进 行 高 中 资 料 试 卷 调 整 试 验 ; 通 电 检 查 所 有 设 备 高 中 资 料 试 卷 相 互 作 用 与 相 互 关 系 , 根 据 生 产 工 艺 高 中 资 料 试 卷 要 求 , 对 电 气 设 备 进 行 空 载 与 带 负 荷 下 高 中 资 料 试 卷 调 控 试 验 ; 对 设 备 进 行 调 整 使 其 在 正 常 工 况 下 与 过 度 工 作 下 都 可 以 正 常 工 作 ; 对 于 继 电 保 护 进 行 整 核 对 定 值 , 审 核 与 校 对 图 纸 , 编 写 复 杂 设 备 与 装 置 高 中 资 料 试 卷 调 试 方 案 , 编 写 重 要 设 备 高 中 资 料 试 卷 试 验 方 案 以 及 系 统 启 动 方 案 ; 对 整 套 启 动 过 程 中 高 中 资 料 试 卷 电 气 设 备 进 行 调 试 工 作 并 且 进 行 过 关 运 行 高 中 资 料 试 卷 技 术 指 导 。 对 于 调 试 过 程 中 高 中 资 料 试 卷 技 术 问 题 , 作 为 调 试 人 员 , 需 要 在 事 前 掌 握 图 纸 资 料 、 设 备 制 造 厂 家 出 具 高 中 资 料 试 卷 试 验 报 告 与 相 关 技 术 资 料 , 并 且 了 解 现 场 设 备 高 中 资 料 试 卷 布 置 情 况 与 有 关 高 中 资 料 试 卷 电 气 系 统 接 线 等 情 况 , 然 后 根 据 规 范 与 规 程 规 定 , 制 定 设 备 调 试 高 中 资 料 试 卷 方 案 。 、 电 气 设 备 调 试 高 中 资 料 试 卷 技 术 电 力 保 护 装 置 调 试 技 术 , 电 力 保 护 高 中 资 料 试 卷 配 置 技 术 是 指 机 组 在 进 行 继 电 保 护 高 中 资 料 试 卷 总 体 配 置 时 , 需 要 在 最 大 限 度 内 来 确 保 机 组 高 中 资 料 试 卷 安 全 , 并 且 尽 可 能 地 缩 小 故 障 高 中 资 料 试 卷 破 坏 范 围 , 或 者 对 某 些 异 常 高 中 资 料 试 卷 工 况 进 行 自 动 处 理 , 尤 其 要 避 免 错 误 高 中 资 料 试 卷 保 护 装 置 动 作 , 并 且 拒 绝 动 作 , 来 避 免 不 必 要 高 中 资 料 试 卷 突 然 停 机 。 因 此 , 电 力 高 中 资 料 试 卷 保 护 装 置 调 试 技 术 , 要 求 电 力 保 护 装 置 做 到 准 确 灵 活 。 对 于 差 动 保 护 装 置 高 中 资 料 试 卷 调 试 技 术 是 指 发 电 机 一 变 压 器 组 在 发 生 内 部 故 障 时 , 需 要 进 行 外 部 电 源 高 中 资 料 试 卷 切 除 从 而 采 用 高 中 资 料 试 卷 主 要 保 护 装 置 。

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)=f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π)<0 根据连续函数的零点定理,则存在α’∈(0,π),使得 h(α’)=f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答:用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0=i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1,1x x x x D ----=对岸状态。安全状态集合为 :

数学建模实验报告

在下面的题目中选做100分的题目,给出详略得当的答案。 一.通过举例简要说明数学建模的一般过程或步骤。(15分) 答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型 为例): 1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息 2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。(查资料得出数学式子或算法)。 3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。注意要尽量采用简单的数学公具。例如:马尔萨斯模型,洛杰斯蒂克模型 4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验 5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。 二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而 只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分) 答: 模型假设: 1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。 2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。 3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。 5.挪动仅只是旋转。 我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。将AC和BD这两条腿逆时针旋转角度θ。记AC到地面的距离之和为f(θ)。记BD到 地面的距离之和为g(θ)。易得f(θ),g(θ)至少有一个为零。

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

数学建模数模第一次作业(章绍辉版)

1.(1) n=101; x1=linspace(-1,1,n); x2=linspace(-2,2,n); y1=[sqrt(1-x1.^2);-sqrt(1-x1.^2)]; y2=[sqrt(4-x2.^2);-sqrt(4-x2.^2);sqrt(1-(x2.^2)/4);-sqrt(1-(x2.^2)/4)]; plot(x1,y1) … hold on; plot(x2,y2) title('椭圆x^2/4+y^2=1的内切圆和外切圆') axis equal -2.5 -2-1.5-1-0.500.51 1.52 2.5 -2-1.5-1-0.500.511.5 2椭圆x 2/4+y 2=1的内切圆和外切圆 (2) x1=linspace(-2,2,101); / x2=linspace(-2,8); axis equal plot(exp(x1),x1,x1,exp(x1),x2,x2) title('指数函数y=exp(x)和对数函数y=ln(x)关于y=x 对称')

-2 -1 1 2 3 4 5 6 7 8 -2-101234567 8指数函数y=exp(x)和对数函数y=ln(x)关于y=x 对称 (3) hold on — q=input('请输入一个正整数q;') for i=1:q for j=1:i if rem(j,i) plot(j/i,1/i) end end end @

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 00.050.10.150.20.250.30.350.40.45 0.5 3.代码如下: n=input('请输入实验次数n=') k=0; for i=1:n 。 x=ceil(rand*6)+ceil(rand*6); if x ==3|x==11 k=k+1; elseif x~=2&x~=7&x~=12 y= ceil(rand*6)+ceil(rand*6); while y~=x&y~=7 y=ceil(rand*6)+ceil(rand*6); end if y==7 ; k=k+1; end end end

数学建模--杨桂元--第一章习题答案

第一章 1-1习题 1.设用原料A 生产甲、乙、丙的数量分别为131211,,x x x ,用原料B 生产甲、乙、丙的数量分别为232221,,x x x ,原料C 生产甲、乙、丙的数量分别为333231,,x x x ,则可以建立线性规划问题的数学模型: ?? ??? ??? ?? ?????=≥≤+--≤+--≥--≤+--≥--≤++≤++≤++++++++-+=) 3,2,1,(,00 5.05.05.004.0 6.06.00 15.015.085.008.02.02.006.06.04.012002500 2000..8.38.56.78.18.36.52.08.16.3max 33231332221232 22123121113121113332312322 21131211333231232221131211j i x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x x S ij LINDO 求解程序见程序XT1-1-1。 求解结果: 1200 ,22.1482,33.473,0,78.1017,66.1526322212312111======x x x x x x 0,0,0332313===x x x ,24640max =S (元) 。 2.设用设备,,,,,32121B B B A A 加工产品Ⅰ的数量分别为54321,,,,x x x x x ,设备121,,B A A 加工产品Ⅱ的数量分别为876,,x x x ,设备22,B A 加工产品Ⅲ的数量分别为109,x x ,则目标函数为: 976321)5.08.2())(35.02())(25.025.1(max x x x x x x S -++-+++-= 4000 7200700011478340008625010000129731260001053005 1048397261x x x x x x x x x x ?-+?-+?-++?-+? -整理后得到: ??? ??? ?=≥=-=-+=--++≤≤+≤+≤++≤+-+-++---+=)10,9,8,7,6,5,4,3,2,1(,00;0;0;40007;7000114;400086; 100001297;6000105..2304.19256.15.03692.115.135.04474.0375.07816.075.0max 10987654321510483972611098765 4321j x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x x x S j 整数 LINDO 求解的程序见程序XT1-1-2。 求解结果: 324,500,0,571,859,0,230,120010987654321==========x x x x x x x x x x 446.1155max =S 3.设自己生产甲、乙、丙的数量分别为312111,,x x x ,外协加工甲、乙、丙第数量分别为322212,,x x x (外协加工的铸造、机加工和装配的工时均不超过5000小时),则

数学建模实验报告最优捕鱼策略

最优捕鱼策略 一.实验目的: 1、了解与熟练掌握常系数线性差分方程的解法; 2、通过最优捕鱼策略建模案例,使用MATLAB软件认识与掌握差分方程模型在实际生活方面的重要作用。 二.实验内容:(最优捕鱼策略) 生态学表明,对可再生资源的开发策略应在事先可持续收获的前提下追求最大经济效益。考虑具有4个年龄鱼:1龄鱼,…,4龄鱼的某种鱼。该鱼类在每年后4个月季节性集中产卵繁殖。而据规定,捕捞作业只允许在前8个月进行,每年投入的捕捞能力固定不变,单位时间捕捞量与个年龄鱼群条数的比例称为捕捞强度系数。使用只能捕捞3、4龄鱼的13mm网眼的拉网,其两个捕捞强度系数比为:1.渔业上称这种方式为固定力量捕捞。 该鱼群本身有如下数据: 1.各年龄组鱼的自然死亡率为(1/年),其平均质量分别为,,,(单位:g);2.1龄鱼和2龄鱼不产卵,产卵期间,平均每条4龄鱼产卵量为ⅹ105(个),3龄鱼为其一半; 3.卵孵化的成活率为ⅹ1011/(ⅹ1011 + n)(n为产卵总量); 有如下问题需要解决: 1)分析如何实现可持续捕获(即每年开始捕捞时各年龄组鱼群不变),并在此前提下得到最高收获量; 2)合同要求某渔业公司在5年合同期满后鱼群的生产能力不能受到太大的破坏,承包时各年龄组鱼群数量为122,,,(ⅹ109条),在固定努力量的捕捞方式下,问该公司应采取怎样的捕捞策略,才能使总收获量最高。 三. 模型建立 假设a、鱼群总量的增加虽然是离散的,但对大规模鱼群而言,我们可以假设鱼群总量的变化随时间是连续的;b、龄鱼到来年分别长一岁成为i + 1龄鱼,i = 1,2,3;c、4龄鱼在年末留存的数量占全部数量的比例相对很小,可假设全部死

第一次作业

第一章 1.计算机图像学的定义是什么?说明计算机图形学、图像处理和模式识别之间的关系。 计算机图像学是一门研究如何利用计算机表示、生成、处理、显示图形的学科。计算机图形学是研究如何利用计算机把描述图形的几何模型通过指定的算法转化为图像显示的一门学科。图像处理主要是指对数字图像进行增强、去噪、复原、分割、重建、存储、压缩和恢复等不同处理方法的学科。模式识别是对点阵图像进行特征抽取,然后利用统计学方法给发出图像描述的学科。 3.名词解释:点阵法、参数法、图形、图像的含义。 点阵法:在显示的阶段用具有颜色信息的像素点来表示图像的一种方法。 参数法:在设计阶段采用几何方法建立数学模型时,用形状参数和属性参数描述图形的一种方法。 图形:一般用参数法描述的图形称为图形。 图像:一般用点阵法描述的图形称为图像。 4.名词解释:光栅、荫罩板、三枪三束、扫描线的含义。 光栅:由于电子束从左至右,从上至下有规律的周期运动,在屏幕上留下了一条条扫描线,这些扫描线形成了光栅。 荫罩板:凿有许多小孔的热捧找那个绿很低的钢板。 三枪三束:该显示器的每个荧光点由呈三角形排列的红、绿、蓝三原色组成,因此需要三支枪与每个彩色荧光点一一对应,叫做“三枪三束”显示器。 扫描线:电子束沿着水平方向从着水平方向从左至右匀速扫描,达到第一行的屏幕右端之后,电子束立即回到屏幕左端下一行的起点位置,在匀速地向右端扫描。在这个过程中形成的线叫扫描线。 8.为什么说随机扫描显示器是画线设备,而光栅扫描显示器是画点设备? 图像的定义是存储在文件存储器中的一组画线命令。随机扫描显示器周期性地读取画线命令,依次在屏幕上画出直线段,当所有的画线命令都执行完毕后,图像就显示出来。这是随机扫描显示器又返回到第一条命令进行屏幕刷新。随机扫描显示器可以直接按指定路径画线,所绘制直线段光滑没有锯齿,因而图像清晰,主要用于显示高质量的图像。 光栅扫描显示器是画点设备,可看做是一个点阵单元发生器,并可控制每个点阵单元的颜色,这些点阵单元被称为像素。光栅扫描显示器不能从单元阵列中一个可编址的像素直接画一段直线到达另一个可编址的像素,只能用靠近这段直线路径的像素点集来近似地表示。 9.什么是像素?像素的参数有那些?打开windows附件中自带的“画图”工具,选择放大镜的比例为8x,选择“查看”|“缩放”|“显示网格”菜单,绘制一条斜线,观察像素级直线的形状。 一个点阵单元发生器的点阵单元被称为像素。 像素的参数:颜色、大小、像素级。 Window自带的画图工具是点阵式的,随着放大比例越来越大,可以明显的看出是在填充一个个的四方形。

三峡大学数学建模第一题电力生产问题

电力生产问题 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 ( 只有在每个时段开始时才允许启动或关闭发电机。与启动发电机不同,关闭发电机不需要付出任何代价。 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 电力生产问题的数学模型 摘要 本文解决的是电力生产问题,在发电机的发电量能满足每日的电力需求的条件下,为了使每日的总成本达到最低,我们建立了一个最优化模型。 对于问题一:由已知条件可知有固定成本、边际成本、启用成本,据此,我们确定了三个指标:即固定总成本、边际总成本、启动总成本。总成本即为这三项总成本之和。每天分为七个时段,发电机共有四种型号,方案结果应该包括每个时段每种型号平均功率及该时段该型号发电机的数量,一共有56个未知数,为减少未知数,并将非线性约束条件转化为线性约束条件,将整数规划转化为非整数规划,我们以每个时段每种型号的几个发电机发出的总功率为变量,并列出相应的约束条件,然后通过LINGO求出个时段各种型号发电机的总功率,再采用分支定界法求出最小总成本为

146.9210万元。再根据总功率利用Matlab软件计算出总功率所对应的该型号发电机的数量(见表一)。 对于问题二:题目要求在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。其他条件与问题一相同,因此,只需增加一个约束条件,即发电机机组所能发出的最大总功率乘以80%后大于用电需求。为锻炼编程技术,故在第二问改用Matlab软件编程来求解,将所要求的7个时段4种型号的发电机的平均功率一共28个未知数用X1,X2,,,,X28表示,将其对应的发电机数量用X29,X30,,,X56表示,并利用矩阵列出约束条件和目标函数,然后编程并运行求解,得到的发电机数量有的不为整数,然后采用分支定界法,得到调整后的结果,最小总成本为157.5426万元。 ! 关键词:线性规划、总功率、使用数量、总成本 1.问题重述 1.1问题背景 为满足每日电力需求(单位为兆瓦(MW)),可以选用四种不同类型的发电机。每日电力需求如下表1。 所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。 任何代价。 1.2需要解决的问题 问题(1)在每个时段应分别使用哪些发电机才能使每天的总成本最小,最小总成本为多少? 问题(2)如果在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。那么每个时段又应分别使用哪些发电机才能使每天的总成本最小,此时最小总成本又为多少? 2.模型假设 假设1:调整发电机功率没有成本 :

西南大学2016年春《数学建模》作业及答案(已整理)(共5次)

西南大学2014年春《数学建模》作业及答案(已整理) 第一次作业 1:[填空题] 名词解释: 1.原型 2.模型 3.数学模型 4.机理分析 5.测试分析 6.理想方法 7.计算机模拟 8.蛛网模型 9.群体决策 10.直觉 11.灵感 12.想象力 13.洞察力 14.类比法 15.思维模型 16.符号模型 17.直观模型 18.物理模型19.2倍周期收敛20.灵敏度分析21.TSP问题22.随机存储策略23.随机模型24.概率模型25.混合整数规划26.灰色预测 参考答案: 1.原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。2.模型:指为某个特定目的将原形的某一部分信息简缩、提炼而构造的原型替代物。3.数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。4.机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。5.测试分析:将研究对象看作一个"黑箱”系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。6.理想方法:是从观察和经验中通过想象和逻辑思维,把对象简化、纯化,使其升华到理状态,以其更本质地揭示对象的固有规律。7.计算机模拟:根据实际系统或过程的特性,按照一定的数学规律用计算机程序语言模拟实际运行情况,并依据大量模拟结构对系统或过程进行定量分析。8.蛛网模型:用需求曲线和供应曲线分析市场经济稳定性的图示法在经济学中称为蛛网模型。9.群体决策:根据若干人对某些对象的决策结果,综合出这个群体的决策结果的过程称为群体决策。10.直觉:直觉是人们对新事物本质的极敏锐的领悟、理解或推断。11.灵感:灵感是指在人有意识或下意识思考过程中迸发出来的猜测、思路或判断。12.想象力:指人们在原有知识基础上,将新感知的形象与记忆中的形象相互比较、重新组合、加工、处理,创造出新形象,是一种形象思维活动。13.洞察力:指人们在充分占有资料的基础上,经过初步分析能迅速抓住主要矛盾,舍弃次要因素,简化问题的层次,对可以用那些方法解决面临的问题,以及不同方法的优劣作出判断。14.类比法:类比法注意到研究对象与以熟悉的另一对象具有某些共性,比较二者相似之处以获得对研究对象的新认识。15.思维模型:指人们对原形的反复认识,将获取的知识以经验的形式直接储存于人脑中,从而可以根据思维或直觉作出相应的决策。16.符号模型:是在一定约束条件或假设下借助于专门的符号、线条等,按一定形式组合起来描述原型。17.直观模型:指那些供展览用的实物模型以及玩具、照片等,通常是把原型的尺寸按比例缩小或放大,主要追求外观上的逼真。18.物理模型:主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律。19.2倍周期收敛:在离散模型中,如果一个数列存在两个收敛子列就称为2倍周期收敛。20.灵敏度分析:系数的每个变化都会改变线性规划问题,随之也会影响原来求得的最优解。为制定一个应付各种偶然情况的全能方法,必须研究以求得的最优解是怎样随输入系数的变化而变化的。这叫灵敏性分析。21.TSP问题:在加权图中寻求最佳推销员回路的问题可以转化为在一个完备加权图中寻求最佳哈密顿圈的问题,称为TSP问题。22.随机存储策略:商店在订购货物时采用的一种简单的策略,是制定一个下界s和一个上界S,当周末存货不小于s时就不定货;当存货少于s 时就订货,且定货量使得下周初的存量达到S,这种策略称为随机存储策略。23.随机模型:如果随机因素对研究对象的影响必须考虑,就应该建立随机性的数学模型,简称为随机模型。24.概

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

数模第一次作业 (1)

2016年数学建模论文 第套 论文题目: 专业、姓名: 专业、姓名: 专业、姓名: 提交日期:2016.6.27

题目:人口增长模型的确定 摘要 对美国人口数据的变化进行拟合,并进行未来人口预测,在第一个模型中,考虑到人口连续变化的规律,用微分方程的方法解出其数量随时间变化的方程,先求对数用matlab里线性拟合求出参数,即人口净增长率r=0.0214,对该模型与实际数据进行对比,并计算了从1980年后每隔10年的人口数据,与实际对比,有很大出入。因此又改进出更为符合实际的阻滞增长模型,应用微分方程里的分离变量法和积分法解出其数量随时间变化的方程,求出参数人口增长率r=0.0268和人口所能容纳最大值m x=285.89,与实际数据对比,拟合得很好,并预测出1980年后每隔10年的人口数据,与实际对比,比较符合。为了便于比较两个模型与实际数据的描述情况作对比,又做出了两个模型与实际数据的对比图,并计算了误差。 关键词:人口预测微分方程马尔萨斯人口增长模型阻滞增长模型 一、问题重述 1790-1980年间美国每隔10年的人口记录如下表所示: 表1 人口记录表 试用以上数据建立马尔萨斯(Malthus)人口指数增长模型,并对接下来的每隔十年预测五次人口数量,并查阅实际数据进行比对分析。 如果数据不相符,再对以上模型进行改进,寻找更为合适的模型进行预测。 二、问题分析 由于题目已经说明首先用马尔萨斯人口增长模型来刻划,列出人口增长指数增长方程并求解,并进行未来50年内人口数据预测,但发现与实际数据有较大出入。考虑到实际的人口增长率是受实际情况制约的,因此,使人口增长率为一变化的线性递减函数,列出人口增长微分方程,求出其方程解,并预测未来五十年内人口实际数据。 三、问题假设 1.假设所给的数据真实可靠; 2.各个年龄段的性别比例大致保持不变;

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

1数学数模实验报告

1数学数模实验报告

福建农林大学计算机与信息学院 (数学类课程) 实验报告 课程名称:数学模型 姓名:苏志东 系:数学 专业:数学与应用数学 年级:2014级 学号: 指导教师:姜永 职称:副教授 2016年6月12日

实验项目列表

福建农林大学计算机与信息学院数学类实验报告(一) 系: 数学 专业: 数学与应用数学 年级: 2014级 姓名: 学号: 3 实验课程: 数学模型 实验室号: 明南附203 实验设备号: 实验时间: 2016/6/6 指导教师签字: 成绩: 1.实验项目名称: 数学规划模型建立及其软件求解 2.实验目的和要求: 了解数学规划的的基本理论和方法,并用于建立实 际问题的数学规划模型;会用LINGO 软件解数学规划问题并对结果加以分析应用。 3.实验使用的主要仪器设备和软件: 联想启天M430E 电脑; LINGO12.0或以上版本。 4.实验的基本理论和方法: 一般地,数学规划模型可表述成如下形式: )(in x f z M x = .,...,2,1,0)(s.t.m i x g i =≤ 其中)(x f 表示目标函数,),...,2,1(0)(m i x g i =≤为约束条件。 LINGO 用于解决二次规划、线性规划以及非线性规划问题,同时可以求解线性或非线性方程(组)。LINGO 的最大特色在于通过高运行速度解决优化模型中的决策变量的整数取值问题。 线性优化求解程序通常使用单纯性算法,可以使用LINGO 的内点算法解决大规模规划问题。非线性规划可通过迭代求解一系列线性规划求解。 5.实验内容与步骤:

数学建模作业

习 题 1 1. 请编写绘制以下图形的MA TLAB 命令,并展示绘得的图形. (1) 221x y +=、224x y +=分别是椭圆2241x y +=的内切圆和外切圆. (2) 指数函数x y e =和对数函数ln y x =的图像关于直线y=x 对称. (3) 黎曼函数 1, (0)(0,1) 0 , (0,1), 0,1 q x p q q x y x x x =>∈?=? ∈=?当为既约分数且当为无理数且或者 的图像(要求分母q 的最大值由键盘输入). 3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次掷出3或11点,打赌者赢;如果第一次掷出2、7或12点,打赌者输;如果第一次掷出4、5、6、8、9或10点,记住这个点数,继续掷骰子,如果不能在掷出7点之前再次掷出该点数,则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概率吗?请问随着试验次数的增加,这些概率收敛吗?

4. 根据表1.14的数据,完成下列数据拟合问题: (1) 如果用指数增长模型0()0()e r t t x t x -=模拟美国人口从1790年至2000年的变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算指数增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r ; (ii) 取定0t =1790,拟合待定参数0x 和r ; (iii) 拟合待定参数0t 、0x 和r . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. (2) 通过变量替换,可以将属于非线性模型的指数增长模型转化成线性模型,并用MA TLAB 函数polyfit 进行计算,请说明转化成线性模型的详细过程,然后写出程序,给出拟合参数和误差平方和的计算结果,并展示拟合效果图. (3) 请分析指数增长模型非线性拟合和线性化拟合的结果有何区别?原因是什么? (4) 如果用阻滞增长模型00 () 00()()e r t t Nx x t x N x --= +-模拟美国人口从1790年至2000年的变化过程,请用MA TLAB 统计工具箱的函数nlinfit 计算阻滞增长模型的以下三个数据拟合问题: (i) 取定0x =3.9,0t =1790,拟合待定参数r 和N ; (ii) 取定0t =1790,拟合待定参数0x 、r 和N ; (iii) 拟合待定参数0t 、0x 、r 和N . 要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图. 年份 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890

数学建模练习试题

2011年数学建模集训小题目 1.求下列积分的数值解 ? +∞ +-?23 2 2 3x x x dx 2.已知)s i n ()()c o s (),(2h t h t h t e h t f h t ++++=+,dt h t f h g ?=10 ),()(,画出 ]10,10[-∈h 时,)(h g 的图形。 3.画出16)5(2 2=-+y x 绕x 轴一周所围成的图形,并求所产生的旋转体的体积。 4.画出下列曲面的图形 (1)旋转单叶双曲面 14 92 22=-+z y x ; (2)马鞍面xy z =; 5.画出隐函数1cos sin =+y x 的图形。 6.(1)求函数x x y -+=12 ln 的三阶导数; 法一:syms x y dy; >> y=log((x+2)/(1-x)); >> dy=diff(y,3) dy = (6/(1-x)^3+6*(x+2)/(1-x)^4)/(x+2)*(1-x)-2*(2/(1-x)^2+2*(x+2)/(1-x)^3)/(x+2)^2*(1-x)-2*(2/(1-x)^2+2*(x+2)/(1-x)^3)/(x+2)+2*(1/(1-x)+(x+2)/(1-x)^2)/(x+2)^3*(1-x)+2*(1/(1-x)+(x+2)/(1-x)^2)/(x+2)^2 (2)求向量]425.00[=a 的一阶向前差分。 7.求解非线性方程组 (1)?????=-+=-+060622x y y x (2)???=+=++5 ln 10tan 10cos sin y x y e y x 8.求函数186)(2 3-++=x x x x f 的极值点,并画出函数的图形。 9.某单位需要加工制作100套钢架,每套用长为2.9m ,2.1m 和1m 的圆钢各一根。已知原料长6.9m ,问应如何下料,使用的原材料最省。 10. 某部门在今后五年内考虑给下列项目投资,已知: 项目A ,从第一年到第四年每年年初需要投资,并于次年末回收本利115%; 项目B ,从第三年初需要投资,到第五年末能回收本利125%,但规定最大投资额不超过4万元;

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

相关文档