文档库 最新最全的文档下载
当前位置:文档库 › Fe掺杂ZnO的室温铁磁性

Fe掺杂ZnO的室温铁磁性

Fe掺杂ZnO的室温铁磁性
Fe掺杂ZnO的室温铁磁性

Fe 掺杂ZnO 的室温铁磁性Ξ

李 莉1,2, 赵瑞斌3, 侯登录1, 叶小娟1, 郭俊梅1, 潘成福1, 甄聪棉1, 唐贵德1(1.河北师范大学物理科学与信息工程学院,河北石家庄 050016;2.石家庄邮电职业技术学院电信工程系,河北石家庄 050031;

3.河北医科大学基础部,河北石家庄 050011)

摘要:利用溶胶凝胶法制备了Zn 1-x Fe x O 粉末.X 射线衍射表明,所有样品都具有纤维锌矿结构,没有发现

其他的衍射峰.紫外可见光吸收谱发现,随着掺杂量的增加样品的吸收边发生红移,能隙减小,表明Fe 离子进入ZnO 的晶格,替代了Zn 离子.光致发光谱发现,在467,482nm 出现了蓝光和近绿光.磁性测量表明,所有的样品都具有室温铁磁性,而且随着掺杂量的增加样品的饱和磁化强度增加.

关键词:溶胶凝胶;紫外可见光吸收谱;光致发光谱;室温铁磁性

中图分类号:O 482.52+3 文献标识码:A 文章编号:100025854(2009)0520603204

ZnO 基稀磁半导体由于其可能具有较高的居里温度和饱和磁化强度引起了人们的广泛关注[1~5].一些报道认为过渡元素掺杂ZnO 具有室温铁磁性[1~3],另外一些报道认为过渡元素掺杂ZnO 具有自旋玻璃态[4]或顺磁性[5].很明显,对于过渡元素掺杂ZnO 是否具有铁磁性以及磁性起源而言,仍然存在着很大的争议[6,7].

本文中,笔者通过溶胶凝胶法制备了Zn 1-x Fe x O 粉末,并对样品的结构,光学性质和磁学性质进行了测量,探讨了实验观察到的样品中铁磁性的来源.

1 实验方法

按照化学计量比,把一定量的二水醋酸锌、六水硝酸铁,按0.7mol/L 浓度溶于乙二醇甲醚中,再把与金属阳离子等浓度的乙醇胺加入上述溶液中.在80℃下搅拌1h ,使得溶液成透明状.然后,把上述溶液在100℃下干燥6h 后,升温至250℃恒温8h 后得到黑色粉末.把上述黑色粉末研磨1h 后,在空气下600℃煅烧2h ,最后研磨2h 得到Zn 1-x Fe x O 的粉末.

利用布鲁克D8ADVANCE X 射线衍射仪(XRD )对样品的结构进行表征,D TA 21700热重分析仪对样品进行热分析,U 23010紫外分光光度计对样品的光学性质进行测量,利用岛津RF 25301荧光分光光度计测量光致发光性能,激发波长为340nm.美国LakeShore 振动样品磁强计(VSM )对样品的磁性进行测量.图1 Z n 0.95Fe 0.05O 的热重分析曲线

2 结果与讨论

2.1 热重分析

图1为Zn 1-x Fe x O (x =0.05)样品的热重分析图,其中

实线为失重曲线,虚线为失重的微分曲线.可见,在大约100,

480℃时样品有较大的失重.其中在100℃时失重为6%,是

由于所用溶剂乙二醇甲醚的蒸发和溶质失去结晶水导致的.

样品在480℃失重为10%,是由于所含有机物进一步分解

导致.500℃以上无明显的失重存在,表明有机残渣已经基本

清除,因此可以初步确定热处理温度为600℃.

2.2 结构分析

图2为Zn 1-x Fe x O (x =0.02,0.05,0.07)的X 射线衍Ξ收稿日期:2009205208;修回日期:2009206208

基金项目:河北省自然科学基金(E2005000178;E2007000280)

作者简介:李 莉(19722),女,河北武安人,硕士研究生,主要从事稀磁半导体方面的研究.

第33卷/第5期/

2009年9月河北师范大学学报/自然科学版/J OURNA L OF HE BEI NORM A L UNI VERSITY /Natural Science Edition/Vol.33No.5Sep.2009

射图,结果表明样品属于纤锌矿结构,在仪器精度范围内没有发现Fe 团簇和相分离.使用unitcell 软件计算c 轴晶格常数,图3为c 轴晶格常数随掺杂Fe 浓度的变化曲线.可以看出,随着掺杂量的增加样品的晶格常数变大,这是由于Fe 2+(0.078nm )的离子半径比Zn 2+(0.072nm )大,初步说明Fe 进入了ZnO 的格点,替代了Zn 离子的位置[2].这与采用紫外可见光吸收谱得出的结论是一致的

.

2.3 光学性质

图4为Zn 1-x Fe x O (x =0.02,0.05,0.07)的紫外可见光吸收谱,随着掺杂浓度的增加,吸收边发生红

移.由于ZnO 是宽带隙半导体,其光学吸收系数满足方程:α=(A /h

ν)(h ν-E g )1/2,其中A 是比例常数,h ν是光子能量,E g 是ZnO 的能隙.图5为Zn 1-x Fe x O (x =0.02,0.05,0.07)能隙图,E g 可以通过画出(h

να)2与h

ν曲线,然后把线性部分延长到α=0得出.通过计算可以得出掺杂量为0.02,0.05,0.07时能隙约为3.18,3.13,3.05eV.随着掺杂量的增加能隙变小,K im 等有过类似报道[8].这是由于能带电子和取代Zn 的Fe 离子的d 壳层电子的交换相互作用,产生了与导带和价带相关负能和正能.该结果再次说明了Fe 离子进入ZnO 的晶格,替代了Zn 离子[8~10]

.

图6为样品Zn 1-x Fe x O (x =0.02,0.05,0.07)室温下的光致发光图.掺杂0.02时,样品的光致发光带出现在467nm 蓝带和482nm 近绿带.随着掺杂量的增加,第2个发光带变弱.氧空位形成施主能级,锌空位形成受主能级,绿峰来自施主和受主能级之间的跃迁[11].Fe 元素本身不具有荧光性质,随着Fe 浓度的增加,有可能使晶体中的锌空位减少,从而抑制了绿带发光.对蓝光的报道较少,样品在大约467nm 处蓝光发射对应光子能量2.65eV ,小于ZnO 室温带隙3.37eV ,且与室温能隙相差0.68eV.因此可以认为蓝光的发射峰与样品的本征缺陷能级跃迁有关.

2.4 磁学性质

图7为室温下,外场为796kA/m 时,样品Zn 1-x Fe x O (x =0.02,0.05,0.07)的磁化曲线.可以发现,所?

406?

有掺杂样品都具有室温铁磁性.插图为Zn 1-x Fe x O 饱和磁化强度随掺杂浓度的变化曲线,可知随着掺杂浓

度的增加,样品饱和磁化强度增加,当掺杂量为0.07时,饱和磁化强度最大为0.056μB /Fe ,要比Wu 等

[12]用离子注入法制备的Fe ∶ZnO 的饱和磁化强度(0.13μB /Fe )小,但都远小于理论值6.7μB /Fe ,这可能是由于只有一小部分Fe 离子对铁磁性有贡献[13].而Balcells 等[14]没有发现Zn 1-x Fe x O 的铁磁性.显然,样品的饱和磁化强度的大小和有无铁磁性与制备过程有密切关系[15]

.

2.5 磁性起源

ZnO 基稀磁半导体磁性的起源有2种可能的原因,一种是由掺杂的过渡元素颗粒(团簇)或其他杂相产生.另一种认为是由于掺杂引起的内禀稀释铁磁性.由于所制备的样品是在空气中烧结得到的,可以排除Fe 团簇产生的可能.而且X 射线衍射没有发现相分离,紫外可见光吸收谱证实Fe 离子进入ZnO 的晶格,替代了Zn 离子,样品具有的铁磁性属于稀磁半导体的内禀性质,是由于Fe 掺入引起的.

关于Zn 1-x Fe x O 中的室温铁磁性可以通过交换作用理论去解释[16].随着Fe 浓度的增加,更多的Fe 2+离子进入ZnO 晶格中,从而铁磁性的sp -d 相互交换作用以及反铁磁性的d -d 超交换作用均被增强,前者发生在来自Fe 原子的局域磁矩之间,并受到材料中的自由载流子的协调作用,而后者发生在具有磁性的Fe 2+离子之间.Sato 等基于第一原理计算,预测出几种掺杂元素V ,Cr ,Mn ,Fe ,Co 及Ni 掺杂的ZnO 基稀磁半导体的铁磁性状态的稳定性.在Fe 掺杂基稀磁半导体中随着掺杂浓度的提高,铁磁性状态与自旋玻璃态之间的能量差也随之增大,表明铁磁性状态随之变得更加稳定.样品中的铁磁性正是来源于铁磁性的双交换作用和反铁磁性的超交换作用之间的竞争.

3 结 论

溶胶凝胶法制备了Zn 1-x Fe x O (x =0.02,0.05,0.07)粉末,XRD 没有发现第2相,紫外吸收谱证实Fe 离子取代了Zn 离子.所有样品都具有室温铁磁性,且其饱和磁化强度随着掺杂量的增加而增强.可以认为,该室温铁磁性主要来源于铁磁性的双交换作用和反铁磁性的超交换作用之间的竞争.

参考文献:

[1] HSU H S ,HUAN G J C A.Evidence of Oxygen Vacancy Enhanced Room 2temperature Ferromagnetism in Co 2doped ZnO [J ].

Applied Physics Letters ,2006,88:242507.

[2] GU Zheng 2bin ,LU Ming 2hui ,WAN G Jing.Structur ,Optical ,and Magnetic Properties of Sputtered Manganese and Nitrogen 2

codoped ZnO Films [J ].Applied Physics Letters ,2006,88:082111.

[3] Y OUN G M C ,WOON G K C.E ffects of Rapid Thermal Annealing on the Ferromagnetic Properties of Sputtered Zn 1-x (Co 0.5

Fe 0.5)x Thin Films [J ].Applied Physics Letters ,2002,80:3358.

[4] FU KUMURA T ,J IN Zheng 2wu ,K AWASA KI M.Magnetic Properties of Mn 2doped ZnO [J ].Applied Physics Letters ,2001,

78:958.

?

506?

[5] RIDE K ,ANAN E A ,MA TTANA R ,et al.Magnetic Semiconductors Based on Cobalt Substituted ZnO [J ].Journal of A pplied

Physics ,2003,93:767627678.

[6] SHINDE R ,O G AL E S B ,HIGGINS J S ,et al.Co 2occurrence of Superparamagnetism and Anomalous Hall E ffect in Highly Re 2

duced Cobalt 2doped Rutile TiO 2-δFilms [J ].Phys Rev Lett ,2004,92:166601.

[7] PAR K J H ,KIM G ,JAN G H M.Co 2metal Clustering as the Origin of Ferromagnetism in Co 2doped ZnO Thin Films [J ].Ap 2

plied Physicsl Etters ,2004,84:1338.

[8] KIM K J ,PAR K Y R.Optical Investigation of Zn 1-x Fe x O Films Grown on Al 2O 3(0001)by Radio 2frequency Sputtering [J ].

Journal of Applied Physics ,2004,96:4150.

[9] L IU G L ,CAO Q ,DEN G X J.High T c Ferromagnetism of Zn 1-x Co x O Diluted Magnetic Semiconductors Grown by Oxygen

Plasma 2assisted Molecular Beam E pitaxy [J ].Applied Physics Letters ,2007,90:052504.

[10] MIAND W B ,BAI H L.Microstructure ,Magnetic ,and Optical Properties of Sputtered Mn 2doped ZnO Films with High 2tem 2

perature Ferromagnetism [J ].Journal of Applied Physics ,2007,101:023904.

[11] J IN B J ,IM S ,L EE S Y.Violet and UV Luminescence Emitted from ZnO Thin Films Grown on Sapphire by Pulsed Laser De 2

position [J ].Thin S olid Films ,2000,366:1072110.

[12] WU P ,SARAF G ,LUA Y.Ferromagnetism in Fe Implanted α2plane ZnO Films [J ].Applied Physics Letters ,2006,89:

012508.

[13] BIEGGER E ,FON IN M ,RUDIGER U.Defect Induced Low Temperature Ferromagnetism in Zn 1-x Co x O Films [J ].Joural

of Applied Physics ,2007,101:073904.

[14] BALCELL S L ,FRON TERA C ,SANDIUMEN GE F.Absent of Ferromagnetism in Fe 2doped TiO 2Nanoparticles [J ].Applied

Physics Letters ,2006,89:122501.

[15] HOU Deng 2lu ,YE Xiao 2juan ,MEN G Huai 2juan.Magnetic Properties of Mn 2doped ZnO Powder and Thin Films [J ].Materials

Science and Engineering B ,2007,138:1842188.

[16] SARMA S Das ,HWAN G E H ,PRIOUR D J.Enhancing T c in Ferromagnetic Semiconductors [J ].Phys Rev B ,2004,70:

1612032124.

Room T emperature Ferromagnetism in Fe 2doped ZnO

L I Li 1,2, ZHAO Rui 2bin 3, HOU Deng 2lu 1, YE Xiao 2juan 1,

GUO J un 2mei 1, PAN Cheng 2fu 1, ZHEN Cong 2mian 1, TAN G Gui 2de 1

(1.College of Physics Science and Information Engineering ,Hebei Normal University ,Hebei Shijiazhuang 050016,China ;

2.Department of T elecom Engineering ,Shijiazhuang P osts and T elecommunications Professional T echnology Institute ,Hebei Shijiazhuang 050031,China ;

3.Department of Basic ,Courses ,Hebei Medical Universit y ,Hebei Shijiazhuang 050011,China )

Abstract :Zn 1-x Fe x O powders (x =0.02,0.05,0.07)have been prepared by a sol 2gel process technique.X 2ray diffraction results reveal that all samples are single ZnO wurtzite structure.As Fe concentration increase in the Zn 1-x Fe x O ,the absorption edges show red 2shift.The decreasing band 2gap energy with Fe concentration in 2creasing confirmed that the Fe ions have entered into the ZnO crystal lattice.Photoluminescence measurements of Fe 2doped samples illustrate blue emission and green emission centered at about 467,482nm.The room tempera 2ture ferromagnetism of Zn 1-x Fe x O (x =0.02,0.05,0.07)is observed.The obtained saturation value of magne 2tization increases as Fe concentration increases.

K ey w ords :sol 2gel ;UV 2absorption ;photoluminescence ;ferromagnetism

(责任编辑 刘新喜)

?

606?

铁磁材料在现代科学中的应用

铁磁材料在现代科学中的应用 【关键词】铁磁材料,磁导率,磁滞,软磁材料 铁磁材料在现代科学技术中得到广泛的应用,随着材料科学的发展,它已成为一种重要的智能材料。本文主要介绍铁磁材料的原理,分类,及其应用;并对三类主要铁磁材料详细介绍,包括软磁材料,硬磁材料,矩磁材料。 随着工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉。氧化铁。细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达。广播。集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯。自动控制。等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 铁磁材料是受到外磁场作用时显示很强磁性的材料。例如铁,钴,镍和它们的一些合金,稀土族金属以及一些氧化物都属于铁磁材料,具有明显而特殊的磁性。首先,它们都有很大的磁导率μ;其次,它们都有明显的磁滞效应。 磁导率(magnetic permeability):表征磁介质磁性的量。常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。磁滞----铁磁体在反复磁化的过程中,它的磁感应强度的变化总是滞后于它的磁场强度,这种现象叫磁滞。高磁导率是铁磁材料应用特别广泛的主要原因。磁滞特性使永磁体的制造成为可能,但在许多其他应用中却带来不利影响。当铁磁材料处于交变磁场中时将沿磁滞回线反复被磁化。在反复磁化的过程中要消耗额外的能量,以热的形式从铁磁材料中释放,这种能量损耗称为磁滞损耗,磁滞损耗不仅造成能量的浪费,而且使铁芯的温度

磁性材料基本参数详解

磁性材料基本参数详解 磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。 自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。 铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。 锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。它是以氧化铁、氧化锌为主要成分的复合氧化物。其工作频率在1kHz 至10MHz 之间。主要用着开关电源的主变压器用磁芯. 。 随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。使用频率可达100KHZ ,甚至更高。但最适合于10KHZ 以下使用。 磁场强度H : 磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。 它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。 均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示; 使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N I H 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。 在磁芯中,加正弦波电流,可用有效磁路长度Le 来计算磁场强度: 1 奥斯特= 80 安/ 米 磁通密度,磁极化强度,磁化强度 在磁性材料中,加强磁场H 时,引起磁通密度变化,其表现为: B= ц o H+J= ц o (H+M) B 为磁通密度( 磁感应强度) ,J 称磁极化强度,M 称磁化强度,ц o 为真空磁导率,其值为4 π× 10 ˉ 7 亨利/ 米(H/m ) B 、J 单位为特斯拉,H 、M 单位为A/m, 1 特斯拉=10000 高斯(Gs ) 在磁芯中可用有效面积Ae 来计算磁通密度:

磁性材料的基本特性16505

1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B ~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换 ?设计软磁器件通常包括三个步骤:正确选用磁性材料; ?合理确定磁芯的几何形状及尺寸;

铁磁材料(一)

铁磁材料(一) 论文关键词:铁磁材料磁导率磁滞软磁材料硬磁材料矩磁材料 论文摘要:铁磁材料在现代科学技术中得到广泛的应用,随着材料科学的发展,它已成为一种重要的智能材料。本文主要介绍铁磁材料的原理,分类,及其应用;并对三类主要铁磁材料详细介绍,包括软磁材料,硬磁材料,矩磁材料。 引言 随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉。氧化铁。细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达。电视广播。集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯。自动控制。计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 铁磁材料是受到外磁场作用时显示很强磁性的材料。例如铁,钴,镍和它们的一些合金,稀土族金属以及一些氧化物都属于铁磁材料,具有明显而特殊的磁性。首先,它们都有很大的磁导率μ;其次,它们都有明显的磁滞效应。 磁导率(magneticpermeability):表征磁介质磁性的物理量。常用符号μ表示,μ为介质的磁导率,或称绝对磁导率。磁滞----铁磁体在反复磁化的过程中,它的磁感应强度的变化总是滞后于它的磁场强度,这种现象叫磁滞。高磁导率是铁磁材料应用特别广泛的主要原因。磁滞特性使永磁体的制造成为可能,但在许多其他应用中却带来不利影响。当铁磁材料处于交变磁场中时将沿磁滞回线反复被磁化。在反复磁化的过程中要消耗额外的能量,以热的形式从铁磁材料中释放,这种能量损耗称为磁滞损耗,磁滞损耗不仅造成能量的浪费,而且使铁芯的温度升高,导致绝缘材料的老化,所以应尽量减少。 软磁材料(softmagneticmaterial):具有低矫顽力和高磁导率的磁性材料。软磁材料易于磁化,也易于退磁,广泛用于电工设备和电子设备中。软磁材料在工业中的应用始于19世纪末。软磁材料主要有,以金属软磁材料(以硅钢片,坡莫合金等为代表,包括Fe系,FeSiAl 系和FeGo系等)和铁氧体软磁材料(如MnZn系,NiZn系和MgZn系等)为代表的晶体材料,非晶态软磁合金(主要分为Fe基和Go基两种)以及近年来发展起来的纳米晶软磁合金,如纳米粒状组织软磁合金,纳米结构软磁薄膜和纳米线等等。应用最多的软磁材料是铁硅合金(硅钢片)以及各种软磁铁氧体等。 硬磁材料是指磁化后不易退磁而能长期保留磁性的一种铁氧体材料,也称为永磁材料或恒磁材料。硬磁铁氧体的晶体结构大致是六角晶系磁铅石型,其典型代表是钡铁氧体BaFe12O19。这种材料性能较好,成本较低,不仅可用作电讯器件如录音器、电话机及各种仪表的磁铁,而且在医学、生物和印刷显示等方面也得到了应用。硬磁材料常用来制作各种永久磁铁、扬声器的磁钢和电子电路中的记忆元件等。在电学中硬磁材料的主要作应是产生磁力线,然后让运动的导线切割磁力线,从而产生电流。 磁带录音原理:硬磁性材料被磁化以后,还留有剩磁,剩磁的强弱和方向随磁化时磁性的强弱和方向而定。录音磁带是由带基、粘合剂和磁粉层组成。带基一般采用聚碳酸脂或氯乙烯等制成。磁粉是用剩磁强的r-Fe2O3或CrO2细粉。录音时,是把与声音变化相对应的电流,经过放大后,送到录音磁头的线圈内,使磁头铁芯的缝隙中产生集中的磁场。随着线圈电流的变化,磁场的方向和强度也作相应的变化。当磁带匀速地通过磁头缝隙时,磁场就穿过磁带并使它磁化。由于磁带离开磁头后留有相应的剩磁,其极性和强度与原来的声音相对应。磁带不断移动,声音也就不断地被记录在磁带上。

磁性材料的基本特性及分类参数

一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2)

多种材料的磁导率

非铁磁性物质的μ近似等于μ0。而铁磁性物质的磁导率很高,μ>>μ0。铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。空气的相对磁导率为1.00000004;铂为1.00026;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为0.999971、0.999974、0.99990、0.999979、0.999982。 铁粉心 磁导率10左右材料以优良的频率特性和阻抗特性良好的温度特性是雷 达和发射机滤波用电感器最佳材料; 磁导率33材料最适合在几十A到上百A的大电流逆变电感器,如果对体积和温升要求不高,可以使用其做频率底于 50KHz的开关电源输出电感器,APFC电感器; 磁导率75材料是做差模电感器和频率在20K左右的滤波电感器储能电感器的高性价比材料。 铁镍50 该材料最适合用做差模电感器但是价格很高,由于原来国内能做铁镍钼 的厂家做的铁镍钼性能很差,所以一些开关电源厂家和军工客户都使用 铁镍50材料做储能电感器,其实这是错误的选择,因为这种材料的损 耗仅好于铁粉心,是铁硅铝的2倍左右,是铁镍钼的三倍左右,但是该 材料同样磁导率下,直流叠加特性好于铁硅铝材料, 虽然它的Bs值达14000Gs,但是由于磁滞回线的形状不一样,所以它的 直流叠加特性并不好于铁镍钼材料(只是原来国内能做的厂家做的性能 较差)。 铁硅铝 高性价比材料,是铁粉心的替代品(不包括低磁导率铁粉心)。 铁镍钼

价格与铁镍50相当(我公司),损耗最低材料,频率特性最好的材料, 如果将您正在使用的国内公司的铁镍50材料换成我公司的铁镍钼材料 将大大提高您的模块效率。不信您可以索要样品适用。 四种金属磁粉心性能和价格对比

铁磁材料磁滞回线及基本磁化曲线的测量

实验26 铁磁材料磁滞回线和基本磁化曲线的测量 铁磁性材料分为硬磁材料和软磁材料。软磁材料的矫顽力小于100A/m ,常用于电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。铁磁材料的磁化过程和退磁过程中磁感应强度和磁场强度是非线性变化的,磁滞回线和基本磁化曲线是反映软磁材料磁性的重要特性曲线。矫顽力、饱和磁感应强度、剩余磁感应强度、初始磁导率、最大磁导率、磁滞损耗等参数均可以从磁滞回线和基本磁化曲线上获得,这些参数是磁性材料研制、生产和应用的总要依据。采用直流励磁电流产生磁化场对材料样品反复磁化测出的磁滞回线称为静态磁滞回线;采用交变励磁电流产生磁化场对材料样品反复磁化测出的磁滞回线称为动态磁滞回线。本实验利用交变励磁电流产生磁场对不同性能的铁磁材料进行磁化,测绘基本磁化曲线和动态磁滞回线。 【实验目的】 ①了解用示波器显示和观察动态磁滞回线的原理和方法。 ②掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理和方法,加深对铁磁材料磁化规律的理解。 ③学会根据磁滞回线确定矫顽力 、剩余磁感应强度 、饱和磁感应强度 、磁滞损耗等磁化参数。 【实验仪器与用具】 FB310型动态磁滞回线实验仪,双踪示波器,导线。 【实验原理】 1.磁性材料的磁化特性及磁滞回线 研究磁性材料的磁化规律时,一般是通过测量磁化场的磁场强度H 与磁感应强度B 之间的关系来进行的。铁磁性材料磁化时,它的磁感应强度B 要随磁场强度H 变化而变化。但是B 与H 之间的函数关系是非常复杂的。主要特点如下: (1)当磁性材料从未磁化状态(H =0且B =0)开始磁化时,B 随H 的增加而非线性增加由此画出的H B 曲线称为起始磁化曲线,如图3.26.1(O-a )段曲线。起始磁化曲线大致分为三个阶段,第一阶段曲线平缓,第二阶段曲线较陡,第三阶段曲线又趋于平缓。最后当H 增大到一定值m H 后,B 增加十分缓慢或基本不再增加,这时磁化达到饱和状态,称为磁饱和。达到磁饱和时的m H 和s B 分别称为饱和磁场强度和饱和磁感应强度,对应图3.26.1中的a 点。

磁性材料的基本特性及分类参数

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁

性材料的厚度t及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。 到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 2.常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类:

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线 在各类磁介质中,应用最广泛的是铁磁物质。在20世纪初期,铁磁材料主要用在电机制造业和通讯器件中,如发电机、变压器和电表磁头,而自20世纪50年代以来,随着电子计算机和信息科学的发展,应用铁磁材料进行信息的存储和纪录,例如现以成为家喻户晓的磁带、磁盘,不仅可存储数字信息,也可以存储随时间变化的信息;不仅可用作计算机的存储器,而且可用于录音和录像,已发展成为引人注目的系列新技术,预计新的应用还将不断得到发展。因此,对铁磁材料性能的研究,无论在理论上或实用上都有很重要的意义。 磁滞回线和基本磁化曲线反映了铁磁材料磁特性的主要特征。本实验仪用交流电对铁磁材料样品进行磁化,测绘的B-H曲线称为动态磁滞回线。测量铁磁材料动态磁滞回线的方法很多,用示波器测绘动态磁滞回线具有直观、方便、迅速及能在不同磁化状态下(交变磁化及脉冲磁化等)进行观察和测绘的独特优点。 一、实验目的 1.认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。 2.掌握铁磁材料磁滞回线的概念。 3.掌握测绘动态磁滞回线的原理和方法。 4.测定样品的基本磁化曲线,作μ-H曲线。 5.测定样品的H C、B r、H m和B m等参数。 6.测绘样品的磁滞回线,估算其磁滞损耗。 二、实验原理 1.铁磁材料的磁滞特性 铁磁物质是一种性能特异,用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。其特性之一是在外磁场作用下能被强烈磁化,故磁导率μ=B/H很高。另一特征是磁滞,铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B之间关系的特性。即磁场作用停止后,铁磁物质仍保留磁化状态,图1为铁磁物质的磁感应强度B与磁场强度H之间的关系曲线。 将一块未被磁化的铁磁材料放在磁场中进行磁化,图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=O,当磁场强度H从零开始增加时,磁感应强度B随之从零缓慢上升,如曲线oa所示,继之B随H迅速增长,如曲线ab所示,其后B的增长又趋缓慢,并当H 增至H S时,B达到饱和值B S,这个过程的oabS曲线称为起始磁化曲线。如果在达到饱和状态之后使磁场强度H减小,这时磁感应强度B的值也要减小。图1表明,当磁场从H S逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“O”点,而是沿另一条新的曲线SR下降,对应的B值比原先的值大,说明铁磁材料的磁化过程是不可逆的过程。比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这种现象称为磁滞。磁滞的明显特征是当H=O时,磁感应强度B值并不等于0,而是保留一定大小的剩磁Br。

磁导率

磁导率表示物质磁化性能的一个物理量,是物质中磁感应强度B与磁场强度H之比,又成为绝对磁导率。物质的绝对磁导率和真空磁导率(设为μ0=4*3.14*0.0000001H/m)比值称为相对磁导率,也就是我们一般意义上的磁导率。对于顺磁质μr>1,对于抗磁质μr<1,但它们都与1相差很小(例如铜的μr 与1之差的绝对值是0.94×10-5)。然而铁磁质的μr可以大至几万。 非铁磁性物质的μ近似等于μ0。而铁磁性物质的磁导率很高,μ>>μ0。铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。空气的相对磁导率为1.00000004;铂为1.00026;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为0.999971、0.999974、0.99990、0.999979、0.999982。 所以,铜虽然具有抗磁性,但相对磁导率也有0.99990;纯铁为顺磁性物质,其相对磁导率会达到400以上。所以用铜裹住铁并不能阻断磁力,而且是远远不能。在某些特殊情况下,铜的抗磁性就会表现出来,如规格很小的烧结钕铁硼磁体D3*0.8电镀镍铜镍后,磁通量会降低7-8%(当然,这个损失还包括倒角和镍层屏蔽导致的磁损)。 直截了当地讲,磁场无处不在,是不能阻断的。只不过各种物质导磁性有所差异,如空气、材料、铜、铝、橡胶、塑料等相对磁导率近似为1,它们对磁不感兴趣;而铁磁性材料如铸铁、铸钢、硅钢片、铁氧体、坡莫合金等材料具有良好的导磁性

磁性材料:

磁性材料: 概述:磁性是物质的基本属性之一.磁性现象是与各种形式的电荷运动相关联的,由于物质内部的电子运动和自旋会产生一定大小的磁场,因而产生磁性.一切物质都具有磁性.自然界的按磁性的不同可以分为顺磁性物质,抗磁性物质,铁磁性物质,反铁磁性物质,以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为磁性材料. 磁性材料的分类,性能特点和用途: 1铁氧体磁性材料,一般是指氧化铁和其他金属氧化物的符合氧化物.他们大多具有亚铁磁性. 特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用.饱和磁化强度低,不适合高磁密度场合使用.居里温度比较低. 2 铁磁性材料:指具有铁磁性的材料.例如铁镍钴及其合金, 某些稀土元素的合金.在居里温度以下,加外磁时材料具有较大的磁化强度. 3 亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度. 4 永磁材料:磁体被磁化厚去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大.可分为三类,金属永磁,例,铝镍钴,稀土钴,铷铁硼等. 铁氧体永磁,例,钡铁氧体,锶铁氧体,其他永磁,如塑料等. 5软磁材料:容易磁化和退磁的材料.锰锌铁氧体软磁材料,其工作频率在1K-10M之间.镍锌铁氧体软磁材料,工作频率一般在1-300MHZ 金属软磁材料:同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁, 铁铝合金, 铁钴合金,铁镍合金等,常用于变压器等. 术语: 1 饱和磁感应强度:(饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度.在实际应用中, 饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度. 2 剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度. 3 磁通密度矫顽力, 他是从磁性体的饱和磁化状态,沿饱和磁滞回线单调改变磁场强度, 使磁感应强度B减小到0时的磁感应强度. 4内禀矫顽力:从磁性体的饱和磁化状态使磁化强度M减小到0的磁场强度. 5磁能积:在永磁体的退磁曲线上的任意点的磁感应强度和磁场强度的乘积. 6 起始磁导率:磁性体在磁中性状态下磁导率的极限值.

无磁、抗磁、弱磁材料的磁导率测量

磁导率测量仪JDZ-2型号的使用说明 一、使用步骤: a 调“ 0 ” b测量无磁不锈钢 c标定1.22基准模块 三、导磁率测量仪使用说明: 导磁率测量仪工作原理是利用磁通门原理来实现对抗磁材料导磁率的测量, 具有操作简单、工作稳定可靠等特点,用于测量抗磁性材料的导磁率。 1工作原理

线路经振荡、分频、后一方面经功放电路后给探头初级提供激磁电流,另一 方面经倍频、移相后为相敏检波器提供相检参考信号,探头输出信号经选频放 大后送入相敏检波器对测量信号进 行检波,经有源滤波后送入显示电路 AC 220V 50Hz ±10% ; ±2.5% ; 1.00~2.00 ; 10~40 °C ; < 10W; 0~40 摄氏度,探头500毫米内无强磁场; 2.8测量方法:紧贴材料,对表面形状没有要求 3校准与测试 3.1接上电源插头,将电源同交流220V 接通,打开电源 开关”(仪器背面) 使仪器预热30分钟。 3.2插上导磁率探头,测量前首先利用探头自带调零器调零,使仪器指示在正、 负零(误差允许±0.003 )左右。 3.3测量前应对仪器进行校准,校准方法:探头调零后,将探头前端(磁钢部 分)垂直于校准标准样块中间部位,仪器指示值应为标准样块的给定值(误差 允许土 0.003 ),若仪器指示偏离该 值,可通过调节探头表面上的零位调节螺母调节到标准值。 3.4测量零件时,将探头端头垂直于被测物体,并轻轻接触被测物体表面,便 可对抗磁性材料进行导磁率测量。 3.5测量读数: 由于真空磁导率为1.00,测量读数应为 卩=1 +表头读数,如测量某材料导磁 率时仪器显示值为0.155,则材料导磁率为1.155。 3.6仪器超量程时显示“1或-1 ”。 4注意事项 4.1仪器所带测量探头属敏感器件,对铁磁物特别敏感,使用中或使用后应轻 拿轻放,不可敲打或撞击,不可用探头测量或接触铁磁物质,以免造成探头零 位漂移或测量灵敏度下降。 4.2机内线路精密,各电位器都与测量精度有关,出厂时经过严格校准,不要 随意打开机箱进行调节,一旦调节某个器件,仪器需经标准重新校准后方可使 用。 4.4为了保证仪器测量准确度,仪器使用一段时间后,可随时对仪器进行校准, 校准方法同 3.3 条。 4.5 仪器测量完毕后应及时套上探头防护盖,以防探头接触铁磁物。 4.6 不要把探头与铁磁物混放在一起。 注:该仪器测量的磁导率为相对磁导率。 2.1 工作电源 2.2 测量精度 2.3 测量范围 2.4 工作温度 2.5 消耗功率 2.7 测试环境 2技术指标

铁磁材料的磁滞回线和基本磁化曲线

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:铁磁材料的磁滞回线和基本磁化曲线学院:理学院专业班级:应用物理学152班学生姓名:学号: 5 实验地点:理生楼B208 座位号:23 实验时间:第六周星期五下午14点开始

一、实验目的: 1、掌握用磁滞回线测试仪测绘磁滞回线的方法。 2、了解铁磁物质的磁化规律,用示波器法观察磁滞回线,比较两种典型的铁磁物质的动态磁化特性。 3、测定样品的基本磁化曲线(B-H曲线),作μ -H 曲线。 4、测绘样品在给定条件下的磁滞回线,估算其磁滞损耗以及相关的、、、H、B等参量。 二、实验仪器: 磁滞回线测试仪、示波器。 三、实验原理: 1.铁磁材料的磁滞特性 铁磁物质是一种性能特异,在现代科技和国防上用途广泛的 材料。铁,钴,镍及其众多合金以及含铁的氧化物(铁氧体)均 属铁磁物质。其特征是在外磁场作用下能被强烈磁化,磁导率μ 很高。另一特性是磁滞,即磁场作用停止后,铁磁材料仍保留磁 化状态。图一为铁磁物质的磁感应强度Β 与磁场强度H 之间 的关系曲线。 图中的原点O表示磁化之前铁磁物质处于磁中性状态,即 B=H=O 。当外磁场H 从零开始增加时,磁感应强度B 随之 缓慢上升,如线段落0a 所示;继之B 随H 迅速增长,如ab 段 所示;其后,B 的增长又趋缓慢;当H 值增至Hs 时,B 的值达到Bs ,在S 点的Bs 和Hs,通常又称本次磁滞回线的Bm和Hm。曲线oabs 段称为起始磁化曲线。当磁场从Hs 逐渐减少至零时,磁感应强度B 并不沿起始磁化曲线恢复到o 点,而是沿一条新的曲线sr 下降,比较线段os 和sr,我们看到:H 减小,B 也相应减小,但B 的变化滞后于H 的变化,这个现象称为磁滞,磁滞的明显特征就是当H=0 时,B 不为0,而保留剩磁Br。 当磁场反向从o 逐渐变为-Hc时,磁感应强度B=O,这就说明要想消除剩磁,必须施加反向磁场,Hc 称为矫顽力。它的大小反映铁磁材料保持剩磁状态的能力,线段rc 称为退磁曲线。图一还表明,当外磁场按Hs →0→-Hc→-Hs →0 → Hc→ Hs次序变化时,相应的磁感应强度B则按闭合曲线srcs’r’c’s 变化时,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场 中时(如变压器铁心),将沿磁滞回线反复被磁化 →去磁→反向磁化→反向去磁,由于磁畴的存在, 此过程要消耗能量,以热的形式从铁磁材料中释 出。这种损耗称为磁滞损耗,可以证明,磁滞损 耗与磁滞回线所围面积成正比。 当初始态为H=B=O 的铁磁材料,在峰值磁场 强度H 由弱到强的交变磁场作用下磁化,可以得

磁导率-初始磁导率汇总

磁导率初始磁导率 如果没有别的因素限制,那么磁导率肯定越高越好。磁导率高,意味着所需要的线圈圈数可以很少,变压器和电感器的体积可以很小。 但现实是:磁导率越高,磁感应强度越高,而磁芯材料所能工作的磁感应强度范围是有限的,所以有时候我们不得不设法减小有效磁导率,以避免磁芯饱和AC滤波器的选择就灵活了.流过电流通常不大,没那么多要求,磁导率可以在10-12K都OK. 相同的磁密, 储能密度与磁导率呈反比, 电感如果是储能用, 那么就选低u的. 如果是作磁放, 那得选高u矩磁. 变压器, 原则上磁导率用大些, 以利于减小励磁电流, 励磁电流分量并不能传递到次级, 因此要越小越好. 但是也不是盲目的大, 太大也不好, 如磁集成LLC便需要具有相当大的励磁电流. 要求磁导率适中 选用较高磁导率的铁氧体磁芯,磁感应强度就会越大,这样所要求的线圈匝数就会越小,变压器体积就会相对更小。 磁导率高了,同样的电感量可以用更小的磁芯;但是,更容易饱和。 所以,要计算 选择高μ值的铁氧体,绕制匝数可能会少点,但是得注意电感量以及饱和问题。如果对质量因素有要求的话,绕线匝数也不是越少越好。 μ高的材料在同样尺寸、同样匝数的情况下,肯定电感量大。电感量大在大电流的情况下,反向电压就高,磁通密度也就上升了,磁心就容易饱和了

软磁材料为什么磁导率越高,能量存储越小 E=VB2/2u E=uH2/2 容量总会有限,导磁率高,励磁功率就小,用来做变压器是很好的,但作电流泵(flyback)用就不太适合了。 几句话讲明白,电感的能量为什么绝大部分存在气隙中? 电路磁路 电动势磁动势 电阻磁阻 电流磁通量 的砖不但引出来很多玉,最后还能引出相声段子。百家争鸣的确好,各抒己见,越辩越明。73楼greendot给出的式子很好,相当有说服力,为了更清楚明白的表示,我又更调理的写出来了,如下

磁性材料基本知识

磁性材料基本知识 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料.由于铁磁性颗粒很小(高频下使用的为0.5~5 微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材 料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定.主要用于高频电感.磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等. 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种. 磁芯的有效磁导率μe及电感的计算公式为: μe = DL/4N2S × 109 其中:D 为磁芯平均直径(cm),L为电感量(享),N 为绕线匝数,S为磁芯有效截面积(cm2). 常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成.在粉芯中价格最低.饱和磁感应强度值在1.4T左右;磁导率范围从22~100;初始磁导率μi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高. 铁粉芯是磁性材料四氧化三铁的通俗说法,主要应用于电器回路中解决电磁兼容性(EMC)问题.实际应用时,根据不同波段下对滤波要求不同会添加各种不同的其他物质(一般为企业机密). 电磁兼容是指电器回路中由于各种不同原因产生的杂波,这些杂波不仅对电器回路的正常运转有妨害,而且其辐射对人体有一定害处.所以各国(尤其是欧盟)对此有各种规定,即电磁兼容性(EMC). 电线上面的杂波主要通过磁环来解决其电磁兼容性问题.当一定波段的杂波通过磁环时,磁环的电磁特性导致这一波段的电流被转化为磁力以及部分热量从而被消耗掉.来达到降低杂波的目的. 磁环的材料目前比较多的是铁粉芯(价格低廉,应用广泛),高级的还有稀土材料等. 实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同.根据物质在外磁场中表现出的特性,物质可粗略地分为三类:顺磁性物质,抗磁性物质,铁磁性物质. 根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁场中的特性差别很大.这反映了分子电流假说的局限性.实际上,各种物质的微观结构是有差异的,这种物质结构的差异性是物质磁性差异的原因. 我们把顺磁性物质和抗磁性物质称为弱磁性物质部铁磁性物质称为强磁性物质.通常所说的磁性材料是指强磁性物质.磁性材料按磁化后去磁的难易可分为软磁性材料和硬磁性材料.磁化后容易去掉磁性的物质叫软磁性材料,不容易去碰的物质叫硬磁性材料.一般来讲软磁性材料剩磁较小.硬磁性材料剩磁较大. 磁性材料按化学成份分,常见的有两大类:金属磁性材料和铁氧体.铁氧体是以氧化铁为主要成分的磁性氧化物.软磁性材料的剩磁弱,而且容易去磁.适用于需要反复磁化的场合.可以用来制造半导体收音机的天线磁棒、录音机的磁头、电子计算机中的记忆元件,以及变压器、交流发电机、电磁铁和各种高频元件的铁芯等.常见的金属软磁性材料有软铁、硅钢、镍铁合金等,常见的软磁铁氧体有锰锌铁氧体、镍锌铁氧体等.硬磁性材料的剩磁强,而且不易退磁,适合制成永磁铁,应用在磁电式仪表、扬声器、话筒、永磁电机等电器设备中.常见的金属硬磁性材料有碳钢、钨钢、铝镍钴合金等,常见的硬磁铁氧体为钡铁氧体和锯铁氧体.Saturation (CoEv) 饱和 当磁化力(H)增加时,如果磁性材料中的磁通密度(B)没有相应地随之增加,这时称作饱和.饱和与磁芯的磁性有关.每种材料都只能储存一定数量的磁通密度.超出这个磁通密度,磁芯的导磁率将急遽下降,结果导致电感量下降.

隔磁材料

如果你要设计自己的磁屏蔽系统,你会发现以下的信息是很有用的。 磁屏蔽目的:通常是保护电子线路免于受到诸如永磁体、变压器、电机、线圈、电缆等产生磁场的干扰,当然屏蔽强的磁干扰源使它免于干扰附近的元器件功能也是一个重要的应用目的。 磁屏蔽材料参数及材料划分:磁屏蔽体由磁性材料制成,衡量材料导磁能力的参数是磁导率,通常以数字来表示相对大小。真空磁导率为1,屏蔽材料的磁导率从200到350000;磁屏蔽材料的另一个重要参数是饱和磁化强度。磁屏蔽材料一般分为三类,即高导磁材料、中导磁材料和高饱和材料。 高饱和磁导率材料的磁导率在80000-350000之间,经热处理后其饱和场可达7500Gs;中磁导率材料通常和高导材料一起使用,其磁导率值从12500-150000,饱和场15500Gs;高饱和场的磁导率值为200-50000,饱和场可达18000-21000Gs。 以下是一些常用量的定义: Gs:磁通密度的单位,相当于每平方厘米面积上有一条磁力线通过。 磁通量:由磁场产生的所有磁力线的总和。 饱和磁场:即材料磁感应强度渐趋于一恒定值时对应的磁场。 B:屏蔽体中的磁通密度,单位Gs。 d:屏蔽体直径(注:当屏蔽体为矩形时指最长边的尺寸)。 Ho:外场强度,单位Oe。 μ:材料磁导率。 A:衰减量(相对值)。 t:屏蔽体厚度。 磁场强度:屏蔽体中磁场强度估算用下面公式: B=2.5dHo/2t(Gs) 如用厚度为0.060″的材料制成直径为1.5″的屏蔽体,在80Gs的磁场中其内部磁场为2500Gs。 屏蔽体厚度:用以下公式估算: t=Ad/μ(英寸)

如用磁导率为80000的材料制成直径为1.5″的屏蔽体,当要求实现1000/1的衰减量时,屏蔽体的厚度为 t=1000×1.5/80000=0.019″ 厚度设计还应综合考虑性价比的因素,一般屏蔽材料的磁导率应不低于80000,否则就要增加厚度以达到同样的屏蔽效果,则会导致费用的增加。 当场强很强时,厚度的选取应使材料工作于磁导率最大的场强下。如当材料的磁导率在场强为2300-2500Gs时磁导率最大,则所需厚度为 t=1.25dHo/B(英寸) 如直径1.5″,长度6″的屏蔽体置于80Gs的磁场中,所需的厚度是0.060″。 磁场衰减率:用下式估算: A=μt/d 用此式对上面的数据计算可得到,当材料磁导率为350000时,其衰减率为14000。 磁通密度:被屏蔽空间内磁通密度为 B=Ho/A(Gs) 同样利用以上数据,则被屏蔽空间的磁场为0.0057Gs。 更多的设计要点: *开始设计前要正确估算干扰场的大小和频率,其次,正确评价能承受的干扰场的大小。 *用以屏蔽很强的磁场时,可采用多层屏蔽的结构。如果可能,两层屏蔽体间保留1/2″的间隙。 *在屏蔽如真空泵产生的强磁场时,要采用多层屏蔽结构。其中内层用低磁导率材料,中间层用中磁导率材料,外层用高磁导率材料。 *用单层结构屏蔽如CRTs等及其敏感的设备时,应在离设备5″处形成一个完整的屏蔽体;当型号很大时,只需对关键部分如磁轭等部位进行屏蔽即可。 *对于极低场的要求,通常采用3层屏蔽的方式,其中外层屏蔽用高磁导率材料,在内外屏蔽层间是Cu层。在Cu层上通以强的交流电流可对内屏蔽层消磁,同时Cu层还可以屏蔽静磁场的干扰。

磁性材料期末复习

一、名词解释 磁矩:反映磁偶极子的磁性大小及方向的物理量,定义为磁偶极子等效的平面回路内的电流和回路面积的乘积μ=i.s 磁化强度:定义为单位体积内磁偶极子具有的磁矩矢量和,是描述宏观磁体磁性强弱的物理量 磁场强度:单位正电荷在磁场中受到的力,用H表示 磁极化强度:单位体积内磁偶极矩的矢量和 磁感应强度:用来描述磁场强弱和方向的物理量,大小等于垂直于磁场方向长度为1m,电流为1A的导线所受力的大小; 可逆磁化:畴壁位移磁化过程中磁位能的降低和铁磁体内能的增加相等 不可逆磁化:每个磁化状态都处于亚稳态且磁化状态不随时间改变 涡流损耗:导体在非均匀磁场中移动或处在随时间变化的磁场中时,导体内的感生的电流导致的能量损耗 磁滞损耗:铁磁材料在磁化过程中由磁滞现象引起的能量损耗 交换作用:铁磁性物质中近邻原子之间通过电子间的静电交换作用实现的作用方式 超交换作用:反磁性物质中的磁性离子以隔在中间的非磁性离子为媒介实现的交换作用 磁化曲线:表征磁感应强度B,磁化强度M与磁场强度H之间的非线性关系的曲线 磁滞回线:在外加磁场H从正的最大到负的最大,再回到正的最大这个过程中,M-H或B-H形成了一条闭合曲线,称为磁滞回线 磁化率:置于外磁场中的磁体,其磁化率为磁化强度M与外磁场强度H的比值,是表征磁体磁性强弱的一个参量 磁导率:磁导率是表征磁体的磁性,导磁率及磁化难易程度的磁学量,是磁感应强度B与外磁场强度H 的比值 起始磁导率:磁中性化的磁性材料,当磁场强度趋近于零时磁导率的极限值 最大磁导率:对应基本磁化曲线上各点磁导率的最大值 退磁场:当一个有限大小的样品被外磁场磁化时,在他两端的自由磁极所产生的一个与磁化强度方向相反的磁场称为退磁场 退磁场Hd的强度与磁体的强度及形状有关,Hd=-NM 退磁因子:仅与材料形状有关的影响材料退磁场强度的参数 铁磁性:是指物质中相邻原子或离子的磁矩由于它们的相互作用而在某些区域中大致按同一方向排列,当所施加的磁场强度增大时,这些区域的合磁矩定向排列程度会随之增加到某一极限值的现象。 反铁磁性:在原子自旋(磁矩)受交换作用而呈现有序排列的磁性材料中,如果相邻原子自旋间是受负的交换作用,自旋为反平行排列,则磁矩虽处于有序状态(称为序磁性),但总的净磁矩在不受外场作用时仍为零。这种磁有序状态称为反铁磁性。 磁谱:指铁磁体在交变磁场中的复数磁导率的实部μ’和虚部μ“随频率变化的关系曲线 自发磁化:磁有序物质在无外加磁场的情况下,由于近邻原子间电子的交换作用或其他相互作用,使物质中各原子的磁矩在一定空间范围内呈现有序排列而达到的磁化,称为自发磁化

相关文档
相关文档 最新文档