文档库 最新最全的文档下载
当前位置:文档库 › 概率论大数定律及其应用

概率论大数定律及其应用

概率论大数定律及其应用
概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用

作者

摘要:历史上第一个定理属于,后人称之为“”。概率论中讨论的向的定律。概率论与数理的基本定律之一,又称弱大数理论。

大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。

关键词:弱大数定理伯努利大数定理随机变量数学期望概率

引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。

从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。

概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。这种稳定性与它在在实验进行中的个别特征无关,且不再是随机的。大数定律给出了稳定性的确切含义,并且给出了什么条件下才具有稳定性。那么,这对于我们解决理论与实际问题有哪些实际意义呢?这就是我们在下面将要了解到的,大数定律的某些应用。即,大数定律及其在理论与实际生活中的一些应用。

一方面,在理论上,大数定律可以看作是求解极限、重积分以及级数的一种新思路,另一方面,在实际生活中,保险动机的产生、保险公司财政稳定和保费的确定,我们都将看到大数定律的重要作用。

正文:发展历史:概率论与数理统计是研究随机现象的统计规律的科学,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来.从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近.人们在实践中观察其他一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性.这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的特征无关,且不再是随机的.深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么在什么条件下具有稳定性这就是大数定律要研究的问题.

1733年,德莫佛—拉普拉斯在分布的极限定理方面走出了根本性的一步,证明了二项分布的极限分布是正态分布。拉普拉斯改进了他的证明并把二项分布推广为更一般的分布。1900年,李雅普诺夫进一步推广了他们的结论,并创立了特征函数法。这类分布极限问题是当时概率论研究的中心问题,卜里耶为之命名“中心极限定理”。20世纪初,主要探讨使中心极限定理成立的最广泛的条件,二三十年代的林德贝尔格条件和费勒条件是独立随机变量序列情形下的显着进展。

伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理。因此概率论历史上第一个极限定理属于伯努利。它是概率论与数理统计学的基本定律之一,属于弱大数定律之一,当然也称为伯努利大数定律。

它可以通俗的理解,有些随机事件无规律可循,但不少却是有规律的,这些“有规律的随机事件”中在大量重复出现的条件下,往往呈现几乎必然的统计特性,这个规律就是大数定律。通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。

例如:在重复投掷一枚硬币的随机试验中,观测投掷n次硬币中出现正面的次数。不同的n次试验,出现正面的频率(出现正面次数与n之比)可能不同,但当试验的次数n越来越大时,出现正面的频率将大体上逐渐接近于21。

频率靠近概率的一种客观存在的,可以直接观察到的现象。而伯努利给这种现象给予了一种确切的含义。随着数学的发展,随机变量序列服从大数定律的证明,出现了更多更广泛的大数定律,例如切比雪夫大数定律,伯努利大数定律就是切比雪夫大数定律的一个特例。再到后面,出现独立同分布的辛钦大数定律等常用的大数定律。

主要含义:大数定律(law of large numbers),又称,是一种描述当试验次数很大时所呈现的概率性质的定律。但是注意到,虽然通常最常见的称呼是大数“定律”,但是大数定律并不是经验规律,而是了的定理。有些无规律可循,但不少是有规律的,这些“有规律的随机事件” 数学家伯努利在大量重复出现的条件下,往往呈现几乎必然的统计特性,这个规律就是大数定律。确切的说大数定律是以确切的数学形式表达了大量重复出现的的,即频率的稳定性和平均结果的稳定性,并讨论了它们成立的条件。简单地说,大数定理就是“当试验次数足够多时,事件发生的频率无穷接近于该事件发生的概率”。该描述即。

相关数学家:

拉普拉斯

拉普拉斯,1749年3月23日生于法国西北部卡尔瓦多斯的博蒙昂诺日,曾任巴黎数学教授,1795年任巴黎综合工科学校教授,后又在高等师范学校任教授。1799年他还担任过法国经度局局长,并在拿破仑政府中任过6个星期的内政部长,1816年被选为法兰西学院院士,1817年任该院院长,1827年3月5日卒于巴黎。

拉普拉斯在研究天体问题的过程中,创造和发展了许多数学的方法,以他的名字命名的、和,在科学技术的各个领域有着广泛的应用。

德莫佛

),法国数学家。德莫佛对数学最着名的贡献是德莫佛公式(de Moivre Formula)和德莫佛-拉普拉斯中心极限定理,以及他对正态分布和概率理论的研究。德莫佛还写了一本概率理论的教科书,The Doctrine of Chances,据说这本书被投机主义者(gambler)高度赞扬。德莫佛是和概率理论的先驱之一;他还最早发现了一个二项分布的近似公式,这一公式被认为是正态分布的首次露面。

大数定理的意义:在一个中,随着试验次数的增加,事件发生的频率趋于一个稳定值;同时,在对物理量的测量实践中,大量测定值的算术平均也具有稳定性。在数理统计中,一般有三个定理,贝努利定理和定理,如:反映和频率的稳定性。当n很大时,算术平均值接近;频率以概率收敛于事件的概率。

表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。就是说当n很大时,事件发生的频率于概率有较大偏差的可能性很小。由实际推断原理,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率。

大数定律的表现形式:

由于随机变量序列向常数的收敛有多种不同的形式,按其收敛为依概率收敛,以概率1收敛或均方收敛,分别有弱大数定律、强大数定律和均方大数定律。

定义1 设有一列随机变量1,2,ηηηK ,如果对于任意的0ε>,有()lim 1n n P ηηε→∞

-<=则

称随机变量序列

{}n η依概率收敛于η,记作(),p

n n ηη??

→→∞。 定义2 设有随机变量η和一列随机变量{}n η ,1,2ηη…..,若(){}lim 1n n P ηωη→∞

==成立,则称

{}n η几乎处处收敛于η,记作().,a e

n n ηη??

→→∞ 定义3 若12,,n ξξξ??????是随机变量序列,如果存在常数列1,2,a a ???,使得对任意的0ε

>,有

11lim 1n i n n i P a n ξε→∞

=??

-<= ???

∑ (8) 成立,则称随机变量序列

{}i ξ满足大数定律。

定义4 设有随机变量η和随机变量序列{}n η的r 阶原点矩r E η、r n E η(n=1,2……)存在,其

中r>0,若lim 0r

n n E ηη

→∞

-=则称n ηr 次平均收敛到η。记作 r

L

n ηη??→。

此时必有

r

r n E E ηη=。

当r=2时是常用的二阶矩,2

L

n

ηη??→称为均方收敛。

定义5 若12,,n ξξξ??????是随机变量序列,它们的数学期望(1,2,.....)i E i ξ=存在,0

ε?>有

则称随机变量序列12,,n ξξξ??????服从弱大数定律。

定义6 若12,,n ξξξ??????是随机变量序列,它们的数学期望(1,2,.....)i E i ξ=存在,0

ε?>有

()1lim 01n k k n i P E n ξξ→∞??-==????

∑或等价地.110n n a e

k k i i E n n ξξ-??

→∑∑, 则称12,,n ξξξ??????服从强大数定律。

上述两个大数定律要注意,强大数定律和弱大数定律区别不仅仅是一个法则的不同,不能简单的把极限符号lim n →∞

从概率号P ()中移出来,弱大数定律描述的是一列概率的收敛性,而强

大数定律说的是一列随机变量收敛到一个常数,也正是这点,保证了用事件出现的频率来作为事件概率的估计的正确性。

定理1 对任意的随机变量ξ,若E a ξ=,又D ξ存在,则对任意的正常数ε,有

()2

D P a ξ

ζεε-≥≤

, 则称此式子为切比雪夫不等式。

粗糙地说,如果D ξ越大,那么()P

a ζε-≥也会大一些。

大数定律形式有很多种,我们仅介绍几种最常用的大数定律。

定理2 (伯努利大数定律)设n μ是n 重伯努利实验中事件A 出现的次数,且A 在每次试验中出现的概率为p (0

?>,有

lim 1n n P p n με→∞

??

-<= ???

(5) 此定理表明:当n 很大时,n 重伯努利试验中事件A 发生的频率几乎等于事件A 在每次试验中发生的概率,这个定律以严格的数学形式刻画了频率的稳定性,因此,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率。

定理3 (切比雪夫大数定律) 设12,,n ξξξ??????是一列两两不相关的随机变量,又设它们的方差有界,即存在常数0C

>,使有,1,2,3i D C i ξ≤=???,则对于任意的0ε>,有

1111lim 1n n

i i n i i P E n n ξξε→∞==??-<= ???

∑∑ (9)

在上述的定理中,因为用到切比雪夫不等式,都有对方差的要求,其实方差这个条件并不是必要的。例如独立同分布时的辛钦大数定律。

该定律的含义是:当n 很大,服从同一分布的随机变量的将依概率

接近于这些随机变量的数学期望。

将该定律应用于,就会有如下结论:随着的增加,样本平均数将接近于总体平均数。从而为中依据样本平均数估计总体平均数提供了理论依据。

贝努里大数定律

设n μ是n 次独立试验中事件A 发生的次数,且事件A 在每次试验中发生的概率为P ,则对任意正数ε,有:

该定律是切比雪夫大数定律的特例,其含义是,当n 足够大时,事件A 出现的频率将几乎接近于其发生的概率,即频率的稳定性。

在中,用样本成数去估计总体成数,其理论依据即在于此。

定理4 (辛钦大数定律) 设12,,n ξξξ??????是独立同分布的随机变量序列,且有有限的数学期望

()1,2i E a i ξ==???,则对于任意的0ε>,有

11lim 1n i n i P a n ξε→∞

=??

-<= ???

∑ (10)

上式也可表示为1

1lim p

n i n i a n ξ→∞==∑或()11n p

i i a n n ξ=??

→→∞∑,并且称11n i i n ξ=∑依概率 收敛于.

定理5 (泊松大数定律)设12,,n ξξξ??????是相互独立的随机变量序列,

()1n n P p ξ==,

()0n n P q ξ==,其中1n n p q +=,则12,,n ξξξ??????服从泊松大数定律。

泊松大数定律是伯努利大数定律的推广,伯努利大数定律证明了事件在完全相同的条件下重复进行的随机试验中频率的稳定性;而泊松定理表明,当独立进行的随机试验的条件变化时,频率仍然具有稳定性:随着n 的无限增大,在n 次独立试验中,事件A 的频率趋于稳定在各次试验中事件A 出现概率的算术平均值附近。

定理6 (马尔科夫大数定律)对于随机变量序列12,,n ξξξ??????,若有 则有

大数定律的一些应用

大数定律本身便是概率论中非常重要的定理之一,而它与其他数学理论也有密不可分的联系,而且对这些数学理论分支有不可或缺的作用。

大数定律本身便是频率靠近概率的极限理论,是大量随机现象的平均结果稳定于平均值的极限理论。可以说大数定律是利用极限才得出的,同时利用大数定律可以来求解极限,这当然只是众多求极限方法之一,但也有它独特的简洁和巧妙。就以大数定律和极限这个概念的关系为例子,用它来对我们要求的重积分和极限相关的问题进行另一种方式的求解。极限伴随重积分出现的类型在高数中是常见的,在利用大数定律来求解这类重积分的极限的题目前,先介绍一个相关定理。

定理7(勒贝格控制收敛定理) 设(1)

{}n f 是可测集E 上的可测函数列;

(2)

()().n f x F x a e ≤于E (n=1,2,…..,)且()F x 在E 上可积分(称{}n f 为

()F x 所控制,而()F x 叫控制函数);

(3)()()n f x f x ?;

()f x 在E 上可积分且()()lim n E

E

n

f x dx f x dx =??;

例1:已知0a b >>,求1

1

1211

200......lim ..................a a a

n

n b b b n n

x x x dx dx x x x →∞++++++??的值。 解:设1x ,……n x ,为独立同分布的随机变量序列,(1)n x n ≥服从(0,1)上的均匀分布,

12,,......,a a a n

x x x 为独立同分布,12,,......,b b b

n x x x 为独立同分布。且 又 ()()()()2222222

111

11

211211a n n n n Dx a a D n n n a a a a ∞

∞∞

=====<∞++++∑∑∑ 由切比雪夫大数定律可知:当

()n x 是独立的同分布的随机变量序列,且2

1

n

n Dx n ∞

=<∞∑

,由前面知道是强大数定律可知,1111lim 01n n k k n k k P x Ex n n →∞==????

-== ? ?????

∑∑;

由此可知 1111lim 0n n a a k k n k k x Ex n n →∞==??-= ???

∑∑

即 1

11

lim 1n a k n k x n a →∞==+∑

又因为01,1,n x k ≤≤≥且a b >故有,1a

b

k

k

x x k <≥,因此11

n

n

a b

k

k

k k x x ==≤∑∑。 由此n ?,有

11

1112121110

001212..............................1............a a a a a a

n n

n n n b b b b b b n n

x x x x x x dx dx dx dx dx dx x x x x x x ++++++????≤????≤++++++??

?? 根据勒贝格控制收敛定理可知:

()()()()()1

1

112100121

............lim ......lim ............a b a a a

n n

n b b b b b n n n n x x x x x dx dx Pd x x x x x ωωωωω→∞→∞Ω+++++???=+++++???= ()()()()()11......lim ......a b

n b b n n x x Pd x x ωωωωω→∞Ω

++++?=()()1111b b Pd Pd a a ωωΩΩ++=++?? 即1

1

1210012 (1)

lim ............1a a a

n n b b b n n

x x x b dx dx x x x a →∞++++???=++++??。

可以看出,利用大数定律求解数学分析中的重积分和极限收敛问题有它简洁的一面,也体现了大数定律等概率论等知识的广泛联系和应用。

[7]

1、大数定律在级数上的应用

大数定律在求解无穷级数上也有很大的作用,它为一些定理和固定公式的理论证明提供另一种有趣而且也有用的办法。下面我们就引用一个很着名的问题来展现大数定律在级数中的应用:

伯努利是一位伟大而且着名的数学家,但是他也被一个在现在已经解决的问题难住了:一个求级数和的问题。

求自然数倒数平方的级数和:

2222

11111...........234n +

++++。 伯努利公开征求这个问题的求解方法。

三十年过后,先是欧拉利用猜度术的方法找出了它的结果,他是第一个找出答案的,但是却不能证明,只能是数据验证,当然,到现在为止,有了很多种证明的方法,其中一种便是利用了大数定律的原理来完成的。

下面先来看其他方法之一是如何证明2

222211111 (2346)

n π+++++=的设所有的排列为

2<3<5<7<……

1:A αβ与互素;

2:A αβ与的公因子有2; 3:A αβ与有公因子3;

………….

q :A αβ与有公因子q ;…….

因此12,3,,......,....q A A A A 是必然事件Ω,且知{},2,3,.....i A i =是相互独立的,设α中有因子

q ,那么α必定是q 的倍数,那也可知()1

q =q P

α是的倍数。

同理也有()1

q =q P

β是的倍数,那么()21

q =q P αβ、有公因子。由对立事件知道

()

21

1q

q P A =-

。根据对偶规律1212A A A A +=g ,根据他们的独立性,可知 根据欧拉的变换无穷乘积为级数的方法

()

12

2n 116

=

1P A n

π

==

∑.

下面我们就用大数定律的办法来求解这个级数的和。

从自然数中有放回任意取出两个数,设他们的最大公因子是n,事件数为

2n M ,ni B 表示第i 次取出n 的倍数事件(i=2,3,4,…..)。

根据第一次和第二次从自然数序列中有放回的随机取出两数是n 的倍数的条件下,这两数的最大公因子是n 的条件概率等于从自然数序列随机取出两数互素的概率。于是有

显然()2

1,2,...n M n =是互不相容的,且有2n 1

=n M ∞

=ΩU 。

ni B 与n 是相互独立的,()()1,1,2,...ni P B n n

=

=,()1221n n P B B n =

于是就有()212

2n 116

1

P M n

π∞

==

=

∑。

根据伯努利大数定律知道,概率可近似的利用频率来表示,因此在如此多的自然书中,随机的取出两数互素的概率为

2

6

π。于是知所求级数的和为

2222211111 (2346)

n π+++++=。

2、多项式逼近连续函数

分析中应用概率论的思想是非常美妙的构思,证明清晰明了。作者在文献[6 ] 中利用非齐次马氏链强大数定律构造了一类奇异单调函数, 而非借助于传统的Cantor 展式。尤其多项式逼近连续函数中也容易注意到近似多项式富有意义的构造。下面类似的方法可用来较易地构造一些熟悉的分析结果。

例2假设()f x 在闭区间[]

b a ,上连续,则存在一列多项式12(),(),,B x B x L 一致收敛于函数

()f x 。

证明:不妨设a=0,b=1。可引入新的变量u :x=(a b -)a u +,使u ∈[0,1],那么

由f(x)在[a ,b]上连续可知f(x)在[0,1]上一致连续且有界。即对于任意ε>0,存在δ>0,只要

2

1x x -<δ,总有

)

()(21x f x f -<

2

ε

,其中1x ,2x ∈[0,1],

此外,对于任意x ∈[0,1],有)(x f ≤k (k 为常数)。

设随机变量1ξ,2ξ…n ξ服从二项分布,则可建立多项式: n B (x)=Ef (

n 1

n ξ) =

∑=n

m n m

f 0

)(m m n x C m

n x --)

1(

其中x ∈[0,1],参数n 1≥。显然n B (0)= f(0),n B (1)= f(1)。由贝努力大数定律知: 1lim =??

????

<-∞

→εξx n

p n

n ,x ∈[0,1]。

由于

n

m 0

=∑

m

m n x C m n x --)1(=1,

故有:

n B (x) —)(x f =

∑=-n

m x f n m f 0

)]()([m

m n x C m n x --)1( =

<--δx n

m

x f n

m f )()(m m n x C m n x --)1(+∑

≥--δx n

m

x f n

m f )()(m m n x C m n x --)1( < 2

ε+2k ∑≥---δx n

m

m

n m m n

x x c

)

1(=2ε

+2kP ??

????≥-δξx n

n 。 而对于任意x ∈[0,1],n

n ξx p

→,可见存在N ,使当n>N 时,

P ??

????≥-δξx n

n

≤k 4ε,

从而,当n>N 时,对于一切x ∈[0,1],有:

)()(x f x B n -<

k k

242

?+

ε

ε

=2ε+2ε

即)(x B n 关于x ∈[0,1]一致收敛于)(x f 。

从上可以看出大数定律在极限、重积分、级数以及多项式逼近中都有重要应用,其实概率论学科和数学分析只见是相互渗透的,大数定律在数学理论中的应用也不仅仅这么狭窄,它在求很多高等数学的问题上也有很好的催化作用,大数定律在信息论中也有不俗的表现,比如在信息序列的渐近等分性质就是一个体现。下面主要看大数定律在实际生活中的精彩的表现,它涉及到很多与我们贴身的行业。

[8]

3、大数定律在保险业的应用 保险动机的产生

现代保险业已经是社会非常重要的一环,而大数定律就是这大厦最重要的基石之一,下面就看看大数定律是如何撑起这座保险业大厦的。

保险业是根据大数定律的法则,集中众多企业或者个人的风险,建立抵御风险的社会机制。但是保险业的产生不仅仅是为了避险,当然也有利润这只无形的手的驱使,有利润才能保证保险业真正的发展下去,壮大起来。同时大数定律不仅仅用于计算保险公司避险需要的客户数,也需要用来计算产生的利润的合理范围。为了抵御风险,保险公司需要大数目的客户,那么这些企业或者个人是如何愿意自己交出保险费投保的呢?其实这也是企业或者个人为了自己的利益着想,不但是避险,也是一种投资,这就是保险业能够产生发展的一个基础。

例如某企业有资金Z 单位,而接受保险的事件具有风险,当风险发生时遭受的经济损失为1Z 个单位,那么在理性预期的条件下,该企业只能投入的资金1Z Z -单位。假设企业投入资金与所得利润之间的函数关系为()f Z ,显然有()()f Z f Z K --,当1K Z =时为预期风险条件下利润损

失额。当

()()0f Z f Z K --≥时,企业就需要有避险的需求,且随差额的增大而增大。这就是企

业的避险需求,也是保险业产生的基础。

具有同种类风险,且风险的发生相互独立的众多企业,当风险发生的时候,需要一定的经济补偿,以使损失最小或得以继续某项生产活动,在这里看来,风险的发生,在整体上看是必然的,但从局部看,是随机的,所以这种补偿在风险没有发生时是一种预期。

假设这种随机现象为(1,2,....,)i X i n =,则i X 的概率分布为:

上表中,P 为风险发生的概率,1为风险发生时企业的损失额。那么知道该事件的数学期望为

()1i E X Z P =。

根据切比雪夫大数定律,当1Z 有限时,0ε

?>,

111lim 0n i n i P X Z P n ε→∞

=??

-≥= ???

∑. 0ε?>,上述式子可以表述为:n 个具有某种同类风险,且风险的发生是相互独立的,当风险

发生时预计得到补偿的平均值与其各自的期望值之差,可以像事先约定的那样小,以致在企业生产过程中可以忽略不计。

定理6在n 重伯努利实验中,事件A 在每次试验中出言的概率为p ,(01)p <<,n μ为n 此试验中出现A 的次数,则

2

2

lim

t

x

n

P x e dt

-

→∞

??

<=

??

?

?。

定理7设随机变量Λ

Λ

n

X

X

X,

2

1

,相互独立,服从同一分布,且具有数学期望和方差()()()Λ,2,1

,2=

=

=k

X

D

X

E

k

k

σ

μ。则随机变量

的分布函数()X

F

n

对于任意x满足

根据上述中心极限定理,由事先约定的0

β>,则

这样,由事先给定的P

εβ

、、确定出参加某种风险保障的企业最小数目n.

例如:当=0.01=0.0012

P

ε、,则当约定=0.001

β时,一定有n130

≥,也就是说当n130

时,上述的结果成立。

依据上述结果,从两个方面来看,

从微观上看,因为01

P

<<,则

11

Z PZ

>,由前面说的企业是看利润递增的原则,显然有

()()

11

f Z Z f Z PZ

-<-。此时企业产生参加社会保险的动机,也就是企业参加社会保险比自保更有利。

从宏观上看,如果有n个具有同类风险的企业存在且都实行自保,显然在理性预期的条件下,为抵御风险而失去的利润总额为

()()

()

11

1

n

i i

i

D f Z f Z Z

=

=--

∑。

其中()

i

f Z表示第i个企业的利润函数(i=1,2,…..n).

而这n企业全部参加社会保险后,为了抵御风险而失去的利润总额为

()()

()

21

1

n

i i

i

D f Z f Z PZ

=

=--

∑。

概率论基础结课论文则由于参加社会保险而产生的社会总效益为:

由于()()

11

f Z Z f Z PZ

-<-,i=1,2,……n.

所以此效益随着n的增大而增大。[3]

综上所述,企业参加社会保险的动机便是在于参加社保比自保更加的有利,利润的驱使,这也是企业参加保险的重要动机,因此保险业这个行业以存在和发展,也发展了众多的保险公司。

保险公司同样也需要评估是否可保的问题,上面的叙述可以得知,可保的条件有:

1、风险事故造成的损失应当是可以估计的。

2、有大量独立的同质风险单位存在,即是各风险单位遭遇风险事故造成损失的概率和损失规模大致相近,同时各风险单位要相互独立,相互的发生不会产生影响。这些都是大数定律的基本要求。

大数定律是保险业经营的一个重要数理基础,大数定律的原作,可以将个别风险单位遭遇损失的不确定性,转化为风险单位集合的损失的确定性。由于与损失金额的预测具有相关性,大数定律的运用直接关系到补偿或给付的实现程度与保险经营的稳定性。下面分成几个方面来阐述大

大数定律作为保险业经营的一个重要的数理基础,其对于指导保险公司费率制定、确定最低保单数及降低每个被保险人的平均危险值等方面,都起着重要作用。

结论:本文论述了有关大数定律的几个定理和应用,分别在理论上和实践上论述了大数定律的实际作用。

在理论上,利用大数定律的思想,我们可以得出求解极限、重积分以及级数的一种新思路,为我们解决一些数学分析中的难题提供了理论上的指导;另一方面,在实际生活中,保险体现“我为人人,人人为我”的互助思想,它是依据大数定律合理分摊、化整为零这一科学的数理计算方法,大数定律是保险业存在、发展的基础。从保险动机的产生、保险公司财政稳定和保费的确定中,大数定律起到不可或缺的作用。大数定律为促进人类社会和谐又好又快发展有着不可估量的价值。

参考文献

【1】魏华林,林保清,主编.保险学【M】.北京:高等教育出版社,2006.

【2】章志敏.一个级数求和的概率算法【J】.山东曲阜师范学院..

【3】薛蓓蕾.人身保险中的数学计算【J】.哈尔滨高等专科学校学报.1999.

【4】王东红.大数定律和中心极限定理在保险业中的应用【J】数学的实践和认识.(10):128-133 【5】何英凯.大数定律与保险财政稳定性研究【J】.税务与经济,2007,15(4):65-67.

概率论大数定律及其应用

概率论基础结课论文题目:独立随机序列的大数事件的定理与应用 作者 摘要:历史上第一个定理属于,后人称之为“”。概率论中讨论的向的定律。概率论与数理的基本定律之一,又称弱大数理论。 大数定律以严格的数学形式表达了随机现象最根本的性质—平均结果的稳定性,它是概率论中一个非常重要的定律,是随机现象统计规律性的具体表现,应用很广泛。本文介绍了几种常用的大数定律,并分析了它们在理论与实际中的应用。 关键词:弱大数定理伯努利大数定理随机变量数学期望概率 引言:“大数定律”本来是一个数学概念,又叫做“平均法则”。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律,通俗的说,这个定律就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。比如,我们向上抛一枚硬币,硬币落下时哪一面朝上本身是偶然的,但当我们向上抛的硬币的次数足够多时,达到上万次甚至几十万几百万时之后,我们就会发现,硬币朝上的次数大约占总数的二分之一。偶然之中包含着必然。 从概率的统计定义中可以看出:一个事件发生的频率具有稳定性,即随着试验次数的增多,事件的频率逐渐稳定在某个常数附近,人们在实践中观察其他的一些随机现象时,也常常会发现大量随机个体的平均效果的稳定性。这就是说,无论个别随机个体以及它们在试验进行过程中的个别特征如何,大量随机个体的平均效果与每一个体的个别特征无关,而且结果也不再是随机的。深入考虑后,人们会提出这样的问题:稳定性的确切含义是什么?在什么条件下具有稳定性?这就是我们大数要研究的问题。 概率与统计是研究随机现象的统计规律的学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。然而,在大量重复试验或观察中,我们会发现,一个事件发生的频率具有稳定性,它的稳定性会随着试验次数的增多表现得越来越明显。这种稳定性与它在在实验进行中的个别特征无关,且不再是随机的。大数定律给出了稳定性的确切含义,并且给出了什么条件下才具有稳定性。那么,这对于我们解决理论与实际问题有哪些实际意义呢?这就是我们在下面将要了解到的,大数定律的某些应用。即,大数定律及其在理论与实际生活中的一些应用。 一方面,在理论上,大数定律可以看作是求解极限、重积分以及级数的一种新思路,另一方面,在实际生活中,保险动机的产生、保险公司财政稳定和保费的确定,我们都将看到大数定律的重要作用。

概率论的起源与发展

概率论的起源与发展 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷骰子是他们常用的一种赌博方式。 因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大? 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。 这是什么原因呢?后人称此为著名的德·梅耳问题。又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得6局便算赢家。如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本? 诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。 参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。 帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。这本书迄今为止被认为是概率论中最早的论著。因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。这一时期被称为组合概率时期,计算各种古典概率。 在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成

概率论与数理统计发展史

概率论与数理统计发展简史 姓名:苗壮学号:1110810513 班级:1108105 指导教师:曹莉 摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献. 关键词:概率论、数理统计、发展史 正文: 1.概率论的发展 17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论. 早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验. 促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了. 不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论. 荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括. 继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础. 1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.

概率论发展简史

一、概率论发展简史 1(20世纪以前得概率论 概率论起源于博弈问题。15—16世纪,意大利数学家帕乔利(L、Pacioli,1445-1517)、塔塔利亚(N、Tartaglia,1499-1557)与卡尔丹(G、cardano,1501-1576)得著作中都曾讨论过俩人赌博得赌金分配等概率问题.1657年,荷兰数学家惠更斯(C、Huygens,1629-1695)发表了《论赌博中得计算》,这就是最早得概率论著作.这些数学家得著述中所出现得第一批概率论概念与定理,标志着概率论得诞生.而概率论最为一门独立得数学分支,真正得奠基人就是雅格布?伯努利(Jacob Bernoulli,1654-1705)。她在遗著《猜度术》中首次提出了后来以“伯努利定理”著称得极限定理,在概率论发展史上占有重要地位。 伯努利之后,法国数学家棣莫弗(A、de Moivre,1667-1754)把概率论又作了巨大推进,她提出了概率乘法法则,正态分布与正态分布率得概念,并给出了概率论得一些重要结果。之后法国数学家蒲丰(C、de Buffon,1707—1788)提出了著名得“普丰问题”,引进了几何概率.另外,拉普拉斯、高斯与泊松(S、D、Poisson,1781-1840)等对概率论做出了进一步奠基性工作。特别就是拉普拉斯,她就是严密得、系统得科学概率论得最卓越得创建者,在1812年出版得《概率得分析理论》中,拉普拉斯以强有力得分析工具处理了概率论得基本内容,实现了从组合技巧向分析方法得过渡,使以往零散得结果系统化,开辟了概率论发展得新时期。泊松则推广了大数定理,提出了著名得泊松分布。

19世纪后期,极限理论得发展称为概率论研究得中心课题,俄国数学家切比雪夫对此做出了重要贡献。她建立了关于独立随机变量序列得大数定律,推广了棣莫弗—拉普拉斯得极限定理。切比雪夫得成果后被其学生马尔可夫发扬光大,影响了20世纪概率论发展得进程. 19世纪末,一方面概率论在统计物理等领域得应用提出了对概率论基本概念与原理进行解释得需要,另一方面,科学家们在这一时期发现得一些概率论悖论也揭示出古典概率论中基本概念存在得矛盾与含糊之处。这些问题却强烈要求对概率论得逻辑基础做出更加严格得考察。 2(概率论得公理化 俄国数学家伯恩斯坦与奥地利数学家冯?米西斯(R、von Mises,1883—1953)对概率论得严格化做了最早得尝试。但它们提出得公理理论并不完善。事实上,真正严格得公理化概率论只有在测度论与实变函数理论得基础才可能建立。测度论得奠基人,法国数学家博雷尔(E、Borel,1781-1956)首先将测度论方法引入概率论重要问题得研究,并且她得工作激起了数学家们沿这一崭新方向得一系列搜索。特别就是原苏联数学家科尔莫戈罗夫得工作最为卓著.她在1926年推倒了弱大数定律成立得充分必要条件。后又对博雷尔提出得强大数定律问题给出了最一般得结果,从而解决了概率论得中心课题之一——大数定律,成为以测度论为基础得概率论公理化得前奏。 1933年,科尔莫戈罗夫出版了她得著作《概率论基础》,这就是概率论得一部经典性著作。其中,科尔莫戈罗夫给出了公理化概率论得一系列基本概念,提出了六条公理,整个概率论大厦可以从这六条公

概率论发展史

概率论的大厦是建筑在微积分的地基之上的,例如在函数关系的对应下,随机事件先是被简化为集合,继之被简化为实数,随着样本空间被简化为数集, 概率相 应地由集函数约化为实函数.以函数的观点衡量分布函数)(x f,)(x f的性质是十分良好的: 单调有界、可积、几乎处处连续、几乎处处可导. 因之, 微积分中有关函数的种种思想方法可以通畅无阻地进入概率论领域. 随机变量的数字特征、概率密度与分布函数的关系、连续型随机变量的计算等, 显然借鉴或搬运了微积分的现有成果. 又如概率论中运用微积分的基础----极限论的地方也非常多, 诸如分布函数的性质、大数定律、中心极限定理等.总之,微积分的思想方法渗透到了概率论的各个方面, 换言之, 没有微积分的推动, 就没有概率论的公理化与系统化, 概率论就难以形成一门独立的学科. 微积分与概率论的亲缘关系, 决定了概率论的确定论的特征. 但是作为微积分的一门后继课程, 概率论并非按微积分中的思维方法发展下去,而是另辟蹊径, 其发展路径与微积分大相径庭, 最终成为了随机数学的典型代表, 具备了与微积分相当的地位. 更因其非线性、反因果的非理性特征, 显得比经典的微积分更具有时代精神. 而作为确定性数学典型代表的微积分对概率论的发展具有很大作用, 因此讨论微积分在概率论中的地位, 探究概率论与微积分的联系及方法的相互应用 0 引言 概率论与数学分析是数学的两个不同分支,数学分析是确定性数学的典型代表,概率论则是随机数学的典型代表。由于两者所研究的方向不同,故它们的发展道路大相径庭,但是在各自的发展过程中二者却又紧密地结合在一起,数学分析的发展为概率论奠定了基础,而概率论中随机性、反因果论也逐渐滲透到数学分析当中,推动着数学分析的发展。研究概率论与数学分析两者之间的相互关系,并寻绎概率论在解决数学分析中某些比较困难的问题的方法、思想,是很有意义的。 1 数学分析对概率论的渗透与推动 1933 年,苏俄数学家柯尔莫哥洛夫以集合论、测度论为依据,导入了概率论的公理化体系,概率论得以迅猛发展,在其迅猛发展的道路上,数学分析的思想与方法随处可见。 1.1 集合论与概率论的公理化体系 由于数学的研究对象一般都是具有某种性质或结构的集合,所以集合论是整个数学体系的基础。集合论是在19 世纪数学分析的严密化过程当中培育出来的,两者之间是源和流的关系; 又由于勒贝格积分建立了集合论与测度论的联系,进而形成了概率论的公理化体系; 因而集合论对概率论的滲透,可视为微积分对概率论的一次较有力的推动 数学分析中主要有黎曼积分和勒贝格积分两种。黎曼积分处理性质良好的函数时得心应手,但对于级数、多元函数、积分与极限交换次序等较为棘手的问题时,常常比较困难。勒贝格积分的出现,使黎曼积分遇到的难题迎刃而解,微积分随之进化到了实变函数论的新阶段。有了勒贝格积分理论以后,集合测度与事件概率之间的相似性便显示出来了。不仅如此,测度论中的几乎处处收敛与依测度收敛,实质上就是弱大数定律与强大数定律中的收敛。1933 年,苏俄数学家柯尔莫哥洛夫,建立了在测度论基础上的概率论的公理化体系[2],统一了原先概率的古典定义、几何定义及频率定义纷争不一的局面。他建立的公理化体系,具备

概率论发展简史 (2)

一、概率论发展简史 1(20世纪以前的概率论 概率论起源于博弈问题。15-16世纪,意大利数学家帕乔利 (L.Pacioli,1445-1517)、塔塔利亚(N.Tartaglia,1499-1557)和卡尔丹 (G.cardano,1501-1576)的着作中都曾讨论过俩人赌博的赌金分配等概率问题。1657年,荷兰数学家惠更斯(C.Huygens,1629-1695)发表了《论赌博中的计算》,这是最早的概率论着作。这些数学家的着述中所出现的第一批概 率论概念与定理,标志着概率论的诞生。而概率论最为一门独立的数学分支,真正的奠基人是雅格布?伯努利(Jacob Bernoulli,1654-1705)。他在遗着《猜度术》中首次提出了后来以“伯努利定理”着称的极限定理,在概率论发展史 上占有重要地位。 伯努利之后,法国数学家棣莫弗(A.de Moivre,1667-1754)把概率论又作 了巨大推进,他提出了概率乘法法则,正态分布和正态分布率的概念,并给 出了概率论的一些重要结果。之后法国数学家蒲丰(C.de Buffon,1707-1788) 提出了着名的“普丰问题”,引进了几何概率。另外,拉普拉斯、高斯和泊松 等对概率论做出了进一步奠基性工作。特别是拉普拉斯,他是严密的、系统 的科学概率论的最卓越的创建者,在1812年出版的《概率的分析理论》中,拉普拉斯以强有力的分析工具处理了概率论的基本内容,实现了从组合技巧 向分析方法的过渡,使以往零散的结果系统化,开辟了概率论发展的新时期。泊松则推广了大数定理,提出了着名的泊松分布。 19世纪后期,极限理论的发展称为概率论研究的中心课题,俄国数学家切比雪夫对此做出了重要贡献。他建立了关于独立随机变量序列的大数定律,

概率论的发展史

概率论的发展史 摘要:概率论是一门研究随机现象的数学规律的学科。它起源于十七世纪中叶,当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。费马、帕斯卡、惠更斯对这个问题进行了首先的研究与讨论,科尔莫戈罗夫等数学家对它进行了公理化。后来,由于社会和工程技术问题的需要,促使概率论不断发展,隶莫弗、拉普拉斯、高斯等著名数学家对这方面内容进行了研究。发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及生产生活实际等诸多领域中起着不可替代的作用。 关键词:概率论公理化随机现象赌博问题 17世纪资本主义经济的发展和文艺复兴运动的兴起,给欧洲数学注入了新的活力,欧洲数学家们开始以前所未有的热情投入到数学科学的研究中去。在这一个世纪里,他们不仅建立起了以解析几何和微积分为代表的变量数学,进一步研究现实世界中的必然现象及其规律,而且还开始了对偶然现象的研究,这就是所谓的概率论。记得大数学家庞加莱说过:“若想预见数学的将来,正确的方法是研究它的历史和现状。” 一、概率论的起源 概率论是一门研究随机现象的数学规律的学科。十分有趣的是,这样一门重要的数学分支,竟然起源于对赌博问题的研究。 1653年的夏天,法国著名的数学家、物理学家帕斯卡(Blaise Pascal,1623——1662)前往浦埃托镇度假,旅途中,他遇到了“赌坛老手”梅累。为了消除旅途的寂寞,梅累向帕斯卡提出了一个十分有趣的“分赌注”的问题。问题是这样的——一次,梅累与其赌友赌掷骰子,每人押了32个金币,并事先约定:如果梅累先掷出三个6点,或其赌友先掷出三个4点,便算赢家。遗憾的是,这场赌注不算小的赌博并未能顺利结束。当梅累掷出两次6点,其赌友掷出一次4点时,梅累接到通知,要他马上陪同国王接见外宾。君命难违,但就此收回各自的赌注又不甘心,他们只好按照已有的成绩分取这64个金币。这下可把他难住了。所以,当他碰到大名鼎鼎的帕斯卡,就迫不及待地向他请教了。然而,梅累的貌似简单的问题,却真正难住他了。虽然经过了长时间的探索,但他还是无法解决这个问题。 1654年左右,帕斯卡与费马在一系列通信中讨论了类似的“合理分配赌金”的问题。该问题可以简化为: 甲、乙两人同掷一枚硬币,规定:正面朝上,甲得一点;若反面朝上,乙得一点,先积满3点者赢取全部赌注。假定在甲得2点、乙得1点时,赌局由于某种原因中止了,问应该怎样分配赌注才算公平合理。 帕斯卡:若在掷一次,甲胜,甲获全部赌注,两种情况可能性相同,所以这两种情况平均一下,乙胜,甲、乙平分赌注。甲应得赌金的3/4,乙得赌金的1/4。 费马:结束赌局至多还要2局,结果为四种等可能情况: 情1234

概率论基本知识(通俗易懂)

第一章概率论的基本概论 确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等 随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。 由此产生的概念有:随机现象,随机事件,随机试验。 例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。 例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。 随机现象的结果(随机事件)的随机度如何解释或如何量化呢? 这就要引入”概率”的概念。 概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。

§1.1随机试验 以上试验的共同特点是: 1.试验可以在相同的条件下重复进行; 2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发

生哪一个可能结果在试验之前不能预言。 我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。我们把满足上述三个条件的试验叫随机试验,简称试验,记E 。 §1.2样本空间与随机事件 (一) 样本空间与基本事件 E 的一个可能结果称为E 的一个基本事件,记为ω,e 等。 E 的基本事件全体构成的集,称为E 的样本空间,记为S 或Ω, 即:S={ω|ω为E 的基本事件},Ω={e}. 注意:ω的完备性,互斥性特点。 例:§1.1中试验 E 1--- E 7 E 1:S 1={H,T} E 2:S 2={ HHH,HHT,HTH,THH, HTT,THT,TTH,TTT } E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0 ≥t } E 7:S 7={()y x , 10T y x T ≤≤≤} (二) 随机事件

概率论与数理统计概率历史介绍

概率论与数理统计概率历史介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

概率论的那些事儿

概率论的那些事 院系:自动化测试与控制系姓名:XXX 学号:1130110XXX 导师:XXXX

摘要:概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。 关键字:概率论博弈发展生活 发展史 概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。另一方面,由于数学家参与讨论分赌本问题导致惠根斯完成了《论赌博中的计算》一书,由此奠定了古典概率论的基础。使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布伯努利。他的主要贡献是建立了概率论中的第一个极限定理《伯努利大数定理》。之后,法国数学家棣莫弗在他的著作《分析杂论》中提出了著名的《棣莫弗—拉普拉斯定理》。接着拉普拉斯在1812年出版了《概率的分析理论》,首先明确地对概率作了古典的定义。经过高斯和泊松等数学家的努力,概率论在数学中地位基本确立。到了20世纪的30年代,通过俄国数学家柯尔莫哥洛夫在概率论发展史上的杰出贡献,完全使概率论成为了一门严谨的数学分支。近代又出现了理论概率及应用概率论的分支,概率论被广泛的应用到了不同范筹和不同的学科。今天概率论已经成为一个非常庞大的数学分支。研究事物发生究数字重复的几率. 随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和p.s.拉普拉斯又导出了第二个 基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数 学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方 面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。在总体上,概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡 尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些 简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则 是玩家连续掷4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用2 个骰子连续掷24 次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

概率论与数理统计第五章 大数定律及中心极限定理

概率论与数理统计作业 班级 姓名 学号 任课教师 第五章 大数定律及中心极限定理 教学要求: 一、了解大数定律的直观意义; 二、掌握Chebyshev 不等式; 三、了解Chebyshev 大数定理和贝努里大数定理; 四、会用中心极限定理估算有关事件的概率. 重点:中心极限定理. 难点:切比雪夫不等式、大数定律、中心极限定理. 综合练习题 一、选择题 1.设12,,,n X X X 是独立同分布的随机变量序列,且 1,2,,i n = .令∑==n i i n X Y 1 ,1,2,,i n = ,()x Φ为标准正态分布函数,则 ()=?? ????????≤--∞ →11lim p np np Y P n n (B ). (A )0 ; (B )()1Φ; (C )()11Φ-; (D )1.6 . 2.设()x Φ为标准正态分布函数,0,1,i A X A ?=? ?事件不发生, 事件发生, ()100,,2,1 =i ,且 ()8.0=A P ,10021,,,X X X 相互独立.令∑==100 1 i i X Y ,则由中心极限定理知Y 的分布函 数()y F 近似于(B ). (A )()y Φ; (B )?? ? ??-Φ480y ; (C )()8016+Φy ; (D )()804+Φy . 3.设随机变量 ,,,,21n X X X 相互独立,且i X () ,,,2,1n i =都服从参数为 2 1

的指数分布,则当n 充分大时,随机变量∑==n i i n X n Z 1 1的概率分布近似服从(B ). (A )()4,2N ; (B )??? ??n N 4,2; (C )?? ? ??n N 41,21; (D )()n n N 4,2. 二、填空题 1.设随机变量 ,,,,21n X X X 相互独立且同分布,它们的期望为μ,方差为2 σ, 令∑==n i i n X n Z 1 1,则对任意正数ε,有{}=≤-∞→εμn n Z P lim 1 . 2.设 ,,,,21n X X X 是独立同分布的随机变量序列,且具有相同数学期望和方差 ()μ=i X E ,()02>=σi X D ,() ,2,1=i , 则对任意实数x , =??? ? ??? ???????≤-∑=∞ →x n n X P n i i n σμ1lim ()x Φ. 3.设()1-=X E ,()4=X D ,则由切比雪夫不等式估计概率{}42P X -<<≥ 9 5 . 4.设随机变量[]1,0~U X ,由切比雪夫不等式可得≤??????≥- 3121X P 4 1. 5.设随机变量() 2.0,100~B X ,应用中心极限定理可得{}≈≥30X P 0062.0.(其中 ()()9938.05.2=Φ) 三、应用题 1. 100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%, 求任一时刻有70至86台车床在工作的概率. 解:设?? ?=台车床没有工作 第台车床正在工作 第i i X i .0.1(100,,2,1 =i ),且()8.0,1~B X i , 则100台车床中在任一时刻正在工作的机床台数为10021X X X X +++= ,且()80=X E ,()16=X D ,(其中10021,,,X X X 独立同分布),于是由德莫弗-拉普拉斯中心极限定理近似可得 ()???? ??-≤-≤-=≤≤168086168016 80708670X P X P

从身边实例探究概率的起源与发展

从身边实例探究概率的起源与发展 ——感悟数学之美,体验智慧飞扬 摘要:从生活中常见的“有奖抽签”入手,引出对概率问题的探索。将概率的发展历程分为四个阶段,分别介绍各个阶段的主要成就及代表人物。最后结合探究概率起源与发展的经历,简要概括个人对数学之美的感悟。 关键词:抽签;概率;起源;发展 生活中我们经常看到这样的情景:街头有人席地设摊,招牌上醒目地写着:“有奖抽签销售”,任何人都可以免费从摊主小布口袋中的20个小球(其中有10个红球,10个蓝球)中摸出10个,除摸得5红5蓝这种情况外,其他各种情况均可马上获得奖金(或实物)。奖金设置如下:摸得10红或10蓝者奖50元;摸得9红1蓝或9蓝1红者奖25元;摸得8红2蓝或8蓝2红者奖5元;摸得7红3蓝或7蓝3红者奖1.5元;摸得6红4蓝或6蓝4红奖0.5元。但摸得5红5蓝者必须用6元钱向摊主购买两双袜子。① 很多路人都会被这“优厚的待遇”所冲昏头脑,心想这种抽签不是明摆着给顾客送钱吗?于是一时窃喜,连忙参加这一看上去稳赚不赔的抽签活动。可是冷静下来想一想,这种免费抽签究竟谁获利呢?摊主究竟是真傻呢还是大智若愚呢?要研究这个问题,就会利用到概率知识。那么什么是概率呢?概率是怎样发展起来的呢?根据笔者所搜集的资料,本文主要从这两方面来探究概率的起源与发展。 概率论是一门从数量侧面研究随机现象规律的数学分支。其理论严谨,应用广泛,发展迅速。从历史发展的角度,概率的发展史大致可分为四个阶段,即方法积累阶段、理论概括阶段、系统整理阶段和公理体系阶段。以下我将分别介绍这四个阶段概率论的发展概况,代表人物,主要成就以及四个阶段之间的理论继承与创新关系。 第一阶段:概率论的萌芽——方法积累阶段 说到概率论的起源,就不得不提到历史上著名的“赌徒的难题”。公元1651年,赌徒德·梅尔向数学家帕斯卡请教一个亲身所遇的“分赌金”问题。问题是这样的:一次德·梅尔和赌友掷骰子,各押赌注32个金币,德·梅尔若先掷出三次“6点”,或赌友先掷出三次“4点”,就算赢了对方。赌博进行了一段时间,德·梅尔已掷出了两次“6点”,赌友也掷出了一次“4点”。这时,德·梅尔奉命要立即去晋见国王,赌博只好中断。那么两人应该怎么分这64个金币的赌金呢? 赌友说,德·梅尔要再掷一次“6点”才算赢,而他自己若能掷出两次“4点”也就赢了。这样,自己所得应该是德·梅尔的一半,即得64个金币的三分之一,而德·梅尔得三分之二。德·梅尔争辩说,即使下一次赌友掷出了“4点”,两人也是秋色平分,各自收回32个金币,何况那一次自己还有一半的可能得16个金币呢?所以他主张自己应得全部赌金的四分之三,赌友只能得四分之一②。 德·梅尔的问题居然把帕斯卡给难住了。他为此苦苦想了三年,终于在1654年悟出了一点儿道理。于是他把自己的想法写信告诉他的好友,当时号称数坛“怪杰”的费尔马,两人对此展开热烈的讨论。他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。这些问题后来被荷兰科学家惠更斯获悉,他独立地进行了研究。帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌金问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。1657年,他将自己的研究成果写成了专著《论掷骰子游戏中 ①引自《谁获利?》,论文网,2000年 ②引自《概率发展简史》

概率论的起源和发展

概率论的起源和发展 概率论是一门既古老又年轻的学科。说它古老,是因为产生概率的重要因素---赌博游戏已经存在了几千年,概率思想早在文明早期就己经开始萌芽了。而说它年轻,则是因为它在十八世纪以前的发展极为缓慢,现代数学家和哲学家们往往忽略了那段历史,他们更愿意把1654年帕斯卡(Pasac)l和费马(Fomrat)之间的七封通信看作是概率论的开端。这样,概率论的“年龄”就比数学大家族中的其它多数成员小很多。一般认为,概率论的历史只有短短的三百多年时间。虽然在早期概率论的发展非常缓慢,但是十八世纪以后,由于社会学,天文学等其它学科的研究需要,使得概率本身的理论得到了迅速发展,它的思想和方法也逐渐受到了其它学科的重视和借鉴。在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用非常广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1、机会的早期计算 古希腊人从航海实践中发现了许多概率经验规律, 古犹太人在纪元之初就有概率加法定律和乘法定律的应用记录。但是由于结果不确定的特点, 人们一直认为随机现象好似运气都由天神决定, 其规则是世俗不可想象的。能够刺激人们思考概率的事情很多, 但最终孕育概率论的却是庸俗的骰子赌博。公元 960 年左右, 怀特尔德大主教计算出掷三个骰子时不计次序所能出现的不同组合有 56 种。十三世纪左右拉丁诗歌《维图拉》指出这 56 种组合出现的机会不是相同的: 3 枚骰子点数一样, 每个点数只有一种方式; 2 枚骰子点数一样而另一枚不一样, 则有 3 种方式; 如果 3 枚都不一样就有 6 种方式。但是这些经验并没有引起更多的思考, 机会的计算仍处于直觉的、散乱的经验水平上。 卡尔扎诺是一位医学博士, 曾在米兰讲授数学, 写过多部医学、数学等方面的著作。他认为赌博是一种社会病, 也有理由作为可以医治的疾病来研究。约在1564 年, 他集中了自己的智慧和赌博经验, 用拉丁文写出著名的《论机会游戏》, 揭示了赌博中的不确定性原理, 成为概率论前史的重要人物。书中, 卡尔扎诺强调赌博的基本原则是同等条件,“如果它们有利于对手, 那么你是傻瓜, 如果有利于自己, 那么你就不公平”。骰子应该是“诚实的”, 几个诚实的骰子联合起来仍然是诚实的, 下注应该根据这种诚实性。等可能思想的提出是卡尔扎诺的贡献之一, 为理解和解决复杂的赌博问题提供了依据。他定义了胜率(有利结果数与不利结果数之比) 表示机会的大小, 计算出了多种赌博的全部可能结果数和有利结果数, 由于当时组合数学还很贫乏, 他的计算在方法上与《维图拉》基本相同。卡尔扎诺还思考了独立事件的乘法法则, 在一番错误推理后他发现了正确方法, 例如一次的胜率是 3:1, 连续两次的胜率是 9:7。卡尔扎诺是第一个深入讨论概率问题的人, 他提出了考虑随机问题的基本原则, 建立了胜率概念和一些运算法则, 对概率理论的形成具有开创性贡献。但是他也犯了不少错误, 例如他认为在掷两个骰子时, 36 次投掷有 1 次机会出现双 6, 平均起来 18次投掷中, 出现双 6 的机会是 50%。这种推理意味着36 次投掷中必定出现一次双 6, 他没有意识到自己的错误。由于该书只有很少部分讨论机会计算, 其等可能思想

概率论中的大数定律及中心极限定理

概率论中的大数定律及中心极限定理 唐南南 摘要 概率论是从数量上研究随机现象的规律的学科,概率论的特点是先提出数学模型,然后去研究它的性质,特点和规律。它在自然科学,技术科学和社会科学等科学中有广泛的应用。而大数定律和中心极限定理的内容是概率论中极限理论极为重要的一部分内容。在这篇文章中,我们从贝努力试验中的频率出发,讨论了独立随机变量和分布的极限问题。在一定条件下,这些分布弱收敛于退化分布,这就是大数定律。在另一些条件下,这些分布弱收敛于N(0,1)分布,这一类收敛于N(0,1)分布的定理统称为中心极限定理.大数定律说明了随机现象都具有稳定性而中心极限定理是研究相互独立随机变量序列{}i x 的部分和∑== n i i n x S 1 的分布,在适当条件下向正态分布收放的问题。在这篇文章 里,我们只介绍了一些定理的提出,内容以证明以及在其他学科上的应用,而大数定律和中心极限定理还有许多更深入,更广泛的内容,限于篇幅这里就不再介绍了。掌握定理的结论是重要的,这些结论一方面使频率稳定于概率,n 次观察的算术平均值稳定于数学期望都有了明确的含义和理论依据;另一方面,又将给数理统计中大样本的统计推断等提供理论依据。 关键词 大数定律 中心极限定理 随机现象 随机变量 引言 大数定律和中心极限定理是概率论中重要的一部分内容,但对读者来说,多数人对于这部分内容感到很难掌握,这篇文章就是对这部分内容进行浅入的分析,但对其内容进行详细的说明,而且进行了归纳性的总结,指出了各定律之间的联系及其差别,希望通过本篇文章内容的介绍,能使读者对于这部分知识有一个清晰的印象,能整体地把握这部分内容。 一 、大数定律 (一)、问题的提法(大数定律的提法) 重复实验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表现。人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;由频率的性质推断概率的性质,并在实际应用中(当n

概率论发展简史及应用

理化生教学与研究386 2013赵?璇?钟?莹 概率论发展简史及应用 概率论发展简史及应用 赵 璇 钟 莹 (沈阳师范大学) 一、概率论的起源 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷色子(又名骰子)是他们常用的一种赌博方式。利用色子赌博的方式可谓五花八门。很自然,赌徒们最关心的就是:如何在赌博中不输! 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族公子哥儿——德·梅尔,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。 这是什么原因呢?后人称此为著名的德·梅尔问题。随后法国数学家帕斯卡、费马及荷兰数学家惠更斯基于排列组合方法,研究利用古典概型解决一些如“分赌注问题”、“赌徒输光问题”等。 到了18、19世纪,随着科学文明的发展,人类面临和要解决的问题也越来越多。后来,人们注意到之前为解决赌博问题而提出的那些方法不仅仅可以用在解决赌博问题上,还可以应用于人口统计、误差理论、产品检验和质量控制等。到后来原先的古典概型已不足以解决这诸多领域中了,人们迫切需要新的理论去解决更多的问题。也就在这时期,作为使概率论成为数学的一分支的的奠基人,瑞士数学家伯努利,建立了概率论中第一个极限定理(即伯努利大数定律),阐明了事件发生的频率稳定于它的概率。 概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。1906年,俄国数学家马尔科夫(Markov)提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦(Khinchine)又提出一种在时间中均匀进行着的平稳过程理论。 20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下柯尔莫哥洛夫(Kolmogorov)1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支。 二、概率论的发展 现在,概率论与以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及工农业生产等诸多领域中都起着不可或缺的作用。 数学家们通过大量的同类型随机现象的研究,从中揭示出概率论某种确定的规律,而这种规律性又是许多客观事物所具有的,所以概率论应用也随之扩宽了。众所周知,接种牛痘是增强机体抵抗力、预防天花等疾病的有效方法,然而,当牛痘开始在欧洲大规模接种之际,它的副作用引起了人们的争议。为了探求事情的真相,伯努利家族的另一位数学家丹尼尔·伯努利根据大量的统计数据,应用概率论的方法,得出了接种牛痘能延长人的平均寿命三年的结论,从而消除了人们的恐惧与怀疑。直观地说,卫星上天、宇宙飞船遨游太空等都有概率论的一份功劳;及时准确的天气预报、考古研究等更离不开概率论与数量统计;电子技术的发展、人口普查及教育等同概率论与数理统计也是密不可分的。 根据概率论中用投针试验估计π值思想产生的蒙特卡罗方法,借助电子计算机这一工具,使这种方法在核物理、表明物理等学科的研究中起着重要的作用。概率论理论严谨,应用广泛,这一数学分支正日益受到人们的重视,以后将会随着科学技术的发展而得到发展。 三、概率论在现代社会发展中的应用 概率论进入其他科学领域的趋势在不断发展。发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及生产生活实际等诸多领域中都起着不可替代的作用。下面简略介绍一下概率论本身在现代的应用情况。 物理方面,放射性衰变、粒子计数器等问题的研究,都要用到泊松过程和更新理论。化学反应动力学中,研究化学反应的时变率及影响这些时变率的因素问题、自动催化反应等一些连锁反应的动力学模型,都要以生灭过程(马尔柯夫)来描述。许多服务系统,如电话通信、购货排队等等,都可用一类概率模型来描述。在社会科学领域,特别是经济学中研究最优决策和经济的稳定增长等问题,也大量采用概率论方法。同时它对各种应用数学如统计学、运筹学、生物学、经济学和心理学的数学化起着中心作用。 概率论已获得当今社会的广泛应用,正如拉普拉斯所说:“生活中最重要的问题,其中绝大多数在实质上只是概率的问题。”概率已成为日常生活的普通常识的今天,对现实生活中的概率问题进行研究就更显得十分重要。“在过去半个世纪中, 概率论从一个较小的、孤立的课程发展成为一个与数学许多其它分支相互影响, 内容宽广而深入的学科。” 因此,我们必须把概率论作为必备工具, 是科学研究与应用的需求。 现在,概率论已发展成为一门与实际紧密相连的理论严谨的数学科学。它内容丰富,结论深刻,有别开生面的研究课题,由自己独特的概念和方法,已经成为了近代数学一个有特色的分支。 四、结论 本文就概率论的发展简介,具体从他的起源、发展、理论基础及其进一步发展作出了详细的论述。从而得知;概率论是一门研究随机现象中的数量规律的科学。随机现象在自然界和人类生活中无处不在,随着人类社会的进步,科学技术的发展,经济全球华的日益快速进程,概率论在众多领域内扮演着重要的角色。在实际生活中尤为广泛的应用。 摘?要:概率论是一门研究随机现象的数学规律的学科,已有300余年的历史。它起源于十七世纪中叶,当时数学家们首先思考概率论的问题,却是来自赌博的问题。德梅雷、帕斯卡、费尔马等人首先对这个问题进行了研究与讨论,后来伯努利提出了大数定律,高斯和泊松进一步的推理论证。由于社会的发展和工程技术问题的需要,促使概率论不断发展,许多科学家进行了研究。发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及生产生活实际等诸多领域中起着不可替代的作用。 关键词:概率论;发展;应用 参考文献: [1] 刘秀芳.概率论基础[M].北京.科学出版社. 1982 [2] 杨振明.概率论[M].北京.科学出版社. 1999 [3] 张景中.趣味随机问题[M].北京.科学出版社 [4] 孙荣恒.应用概率论[M].北京.科学出版社 [5] 茆诗松 程依明 濮晓弄.北京.概率论与数理统计[M].高等教育出版社.2004

相关文档
相关文档 最新文档