文档库 最新最全的文档下载
当前位置:文档库 › 化工原理课程设计模板

化工原理课程设计模板

化工原理课程设计模板
化工原理课程设计模板

化工原理课程设计

题目:苯―甲苯精馏分离板式塔设计

学院:

系别:

班级:

学生姓名:

学号:

指导教师:

设计时间:

《化工原理课程设计》任务书

专业班级:

一、设计题目:苯―甲苯精馏分离板式塔设计

二、设计任务及操作条件

1、设计任务:

生产能力:(进料量) 90000 吨/年

操作周期: 7200 小时/年

进料组成:苯含量为40%(质量分数)

塔顶产品组成: 98%(质量分数)

塔底产品组成: 2% (质量分数)

2、操作条件

操作压力常压

进料热状态泡点进料

单板压降:≤0.7 kPa

3、设备型式板式精馏塔:筛板

4、厂址大连市

三、设计内容:

1、设计方案的选择及流程说明

2、工艺计算

3、主要设备工艺尺寸设计

(1)塔径及提馏段塔板结构尺寸的确定

(2)总塔高、总压降及接管尺寸的确定

4、设计结果汇总

5、工艺流程图及精馏塔工艺条件图

6、设计评述及感想

四、参考资料

[1].陈敏恒,丛德兹等.化工原理(上、下册)(第二版).北京:化学工业出版社,2000

I

II [2].柴诚敬,刘国维,李阿娜.化工原理课程设计.天津:天津科学技术出版社,1995 五、格式基本要求

(1) 纸型:A4纸,单面打印或双面打印皆可;

(2) 页边距:上3.5cm ,下2.5cm ,左2.5cm 、右2.5cm ; (3) 页眉:2.5cm ,页脚:2cm ,左侧装订; (4) 字体:正文全部宋体、小四;

(5) 行距:多倍行距:1.25,段前、段后均为0,取消网格对齐选项。 (6) 包括封面、任务书、目录等,内容大概15~20页

六、主要基础数据 1、苯和甲苯的物理性质

2、常压下苯—甲苯的气液平衡数据

以上为实验数据,也可用Antoine 公式计算:

C

t B

A P +-

=)(log

3、液相密度,kg/m 3

4、液体的表面张力,10-3N/m

5、液体粘度,10-3Pa·s

6、液体汽化热

III

目录

《化工原理课程设计》任务书................................................................................................. I 第一章设计方案的选择及流程说明.. (1)

概述 (1)

设计方案确定 (2)

第二章工艺计算 (4)

一、相平衡 (4)

二、物料衡算和操作线方程 (5)

三、理论板数的计算 (7)

理论塔板数的确定 (7)

四、塔板效率的确定 (8)

五、实际塔板数的求算 (9)

六、精馏塔的工艺条件及有关物性数据的计算 (9)

第三章主要设备工艺尺寸设计 (12)

3.1塔径及提馏段塔板结构尺寸的确定 (12)

3.2塔板的流体力学校核 (14)

3.3塔板的负荷性能图 (16)

3.4总塔高、总压降及接管尺寸的确定 (18)

第四章辅助设备选型与计算 (20)

一、塔体总结构 (20)

二、冷凝器 (20)

三、再沸器 (21)

第五章设计结果汇总 (22)

第六章工艺流程图及精馏塔工艺条件图 (24)

第七章设计评述及感想 (25)

一、对本设计的评价 (25)

二、设计感想 (25)

参考文献 (25)

IV

第一章设计方案的选择及流程说明

概述

精馏原理

利用从塔底部上升的含轻组分较少的蒸气,与从塔顶部回流的含重组分较少的液体逆流接触,同时进行多次部分汽化和部分冷凝,使原料得到分离。

同时进行多次部分汽化和部分冷凝是在精馏塔中实现的。塔板上有一层液体,气流经塔板被分散于其中成为气泡,气、液两相在塔板上接触,液相吸收了气相带入的热量。使液相中的易挥发组分汽化,由液相转移到气相;同时,气相放出了热量,使气相中的难挥发组分冷凝,由气相转移到液相。部分汽化和部分冷凝的同时进行是汽化、冷凝潜热相互补偿。精馏就是多次而且同时进行部分汽化和部分冷凝,使混合液得到分离的过程。

精馏塔选定

精馏是气液两相之间的传质过程,而传质过程是由能提供气液两相充分接触的塔设备完成,并要求达到较高的传质效率。根据塔内气液接触部件的结构型式,可分为板式塔和填料塔两大类。板式塔内设置一定数量塔板,气体以鼓泡或喷射形式穿过板上液层进行质量、热量传递,气液相组成呈阶梯变化,属于逐级接触逆流操作过程。填料塔内装有一定高度的填料层,液体自塔顶填料表面下流,气体逆流而上,与液相接触进行质量、热量传递,气液相组成沿塔高连续变化,属于微分接触操作过程。我们选择的是板式塔。

板式塔大致可分为两类:一类是有降液管的塔板,如泡罩、浮阀、筛板等;另一类是无降液管塔板,如栅板、穿流式波纹板等。工业上应用较多的是前者。这里,我们选择的是具有降液管的筛板塔。筛板塔是在塔板上钻有均匀分布的筛孔,上升气流经筛孔分散、鼓泡通过板上液层,形成气液密切接触的泡沫层(或喷射的液滴群)。

筛板塔的优点是结构简单,制造维修方便,造价低,相同条件下生产能力高于浮阀塔。其缺点是稳定操作范围窄,小孔径筛板易堵塞,不适宜处理粘性大的、脏的和带固体粒子的液料。但设计良好的筛板塔仍具有足够的操作弹性,对易阻塞的物系可采用大孔径筛板。

工业上对塔设备的主要要求:(1)生产能力大;(2)传质、传热效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量小;(6)制造安装容易,操作维修方便。此外还要求不易堵塞、耐腐蚀等。

实际上,任何塔设备都难以满足上述所有要求,因此,设计者应根据塔型特点、物系性质、生产工艺条件、操作方式、设备投资、操作与维修费用等技术经济评价以及设计经验等因素,依矛盾的主次,综合考虑,选择适宜的塔型。

设计方案确定

1.精馏流程的确定

精馏装置包括精馏塔、原料预热塔、蒸馏釜(再沸器)、冷凝器、釜液冷却器和产品冷却器等设备。热量自塔釜输入,物料在塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。在此过程中,热能利用率很低,为此,在确定装置流程时应考虑余热的利用,注意节能。

另外,为保持塔的操作稳定性,流程中除用泵直接将物料送入塔内外,也可采用高位槽送料以免受泵操作波动的影响。

塔顶冷凝装置根据生产情况以决定采用分凝器或全凝器。一般,塔顶分凝器对上升蒸气虽有一定增浓作用,但在石油等工业中获取液相产品时往往采用全凝器,以便于准确地控制回流比。若后继装置使用气态物料,则宜用分凝器。

总之,确定流程时要较全面、合理地兼顾设备、操作费用,操作控制及安全等诸多因素。

2.操作压强的选择

精馏操作可在常压、减压和加压下进行。操作压强常取决于冷凝温度。一般,除热敏性物料外,凡能通过常压蒸馏不难实现分离要求,并能用江河水或循环水将馏出物冷凝下来的系统,都采用常压蒸馏;对热敏性物料或混合液沸点过高的系统则宜采用减压蒸馏;对常压下馏出物的冷凝温度过低的系统,需提高塔压或采用深井水、冷冻盐水作为冷却剂;而常压下呈气态的物料必须采用减压蒸馏。

我们要分离的物系——苯-甲苯采用常压蒸馏即可。 进料热状态的选择

进料热状态—进料热状态参数q 表达,即: q=

每摩尔进料的气化潜热

蒸汽所需热量

使每摩尔进料变成饱和

进料状态与塔板数、塔径、回流比及塔的热负荷都有关。进料状态有五种,即 q>1.0时,为低于泡点温度的冷液进料; q=1.0为泡点下的饱和液体; q=0为露点下的饱和蒸气;

1>q>0为介于泡点与露点间的气液混合物;

q <0为高于露点的过热蒸气进料。

为使塔的操作稳定,免受季节气温的影响,精馏段、提馏段采用相同塔径以便于制造,则常采用饱和液体(泡点)进料,但需要增设原料预热器。本方案采用泡点进料即q=1.0。

3.加热方式

蒸馏大多采用间接蒸汽加热,设置再沸器。

4.回流比的选择

选择回流比,主要从经济观点出发,力求使设备费和操作费用之和最低。一般经验值为R=(1.1~2.0)R

min。

5.热能利用

精馏过程的特性是反复进行部分汽化和部分冷凝,因此,热效率低。一般进入再沸器能量的95%以上被塔顶冷凝器中的冷水或空气带走。在设计过程中应考虑热能利用的问题。如塔顶蒸汽冷凝放出大量热量,但能位较低,不可直接用来作为塔底热源。如采用热泵技术是塔顶蒸汽经绝热压缩,提高温度用于塔釜加热,既节省了大量的加热蒸汽或其它热源,又节省了塔顶冷凝水或其他冷源。

第二章工艺计算

一、相平衡

由任务书中给出的常压下苯—甲苯的气液平衡数据

图1

二、物料衡算和操作线方程

1、全塔物料衡算

总物料 F = D + W 易挥发组分 Fx F =Dx D + Wx W

式中 F 、D 、W ——分别为进料、馏出液和釜液的流量,kg/h ;

x F 、x D 、x W ——分别为进料、馏出液和釜液中易挥发组分的组成,质量分数。 已知 F = 90000*1000/7200 = 12500kg/h

x F = 0.40 x D = 0.98 x W = 0.02 由此可得 D =4947.9 kg/h W = 7552.1kg/h 当用摩尔分数表示时有

x F =

92

/6078/4078

/40+=0.440

x D =92/278/9878

/98+

=0.983

x W =92/9878/278

/2+

=0.024

平均摩尔分子量 M F =78×0.440 + 92 ×(1-0.440)= 85.84 kg/kmol M D =78×0.983 + 92 ×(1-0.983)= 78.24 kg/kmol M W =78×0.024+ 92 ×(1-0.024)= 91.66 kg/kmol 则 F = 12500/ 85.84 = 145.62kmol/h

D =4947.9 /78.11 = 63.35 kmol/h

W = 7552.1/91.83 = 82.24kmol/h 2、精馏段物料衡算——精馏段操作线方程 Y n+1 = LX n /(L+D)+DX D /(L+D) L 为精馏段内回流液流量,kg/h ; L = R*D

X n 为精馏段内第n 层理论板下降的液相组成,质量分数; Y n+1为精馏段内第n+1层理论板上升的蒸气组成,质量分数。 令 R = L/D

有 Y = RX/(R+1) + X D /(R+1) 式中R 为回流比。

R min = (X D -Y q )/( Y q -X q) 因泡点进料 X q =X F = 0.440

Y q=αX F/(1+(α-1)X F)

由于相对挥发度与平衡组分的气液组成有一个关系式

Y =αX/[1 + (α-1)X]

整理得1/X于1/Y的一个线性关系,斜率为α将y=a*x/1+(a-1)*x)化为y(1-x)=ax(1-y) 令Y=y(1-x),X=x(1-y),做图,过圆点,斜率就是a

(线性拟合法)将y=a*x/(1+(a-1)*x)

化为

令Y=y(1-x),X=x(1-y),做图,过圆点,斜率就是a

Y 0 0.07779946 0.12975437 0.15128901 0.14025425 0.09579798 X 0 0.19771211 0.32558735 0.37212795 0.33827134 0.22746451

求得α=2.45 y q=0.658 R min =1.49

取R=2R min =3

故精馏段操作线方程为Y n+1 = 0.75X n + 0.25

相平衡方程:Y n=2.45X n/(1+1.45X n) 所以X n=Y n/(2.45-1.45Y n)

3、提馏段物料衡算——提馏段操作线方程

Y n+1= (RD+F)X n /((R+1)D )– (F-D)x w/(( R+1)D)(q=1)

L = R*D= 3 ×63.35 = 190.05 kmol/h

F =145.62kmol/h

W = 82.24kmol/h

故提馏段操作线方程为Y n+1 = 1.325X n -0.008

4、进料方程

由于采用泡点进料方式,故进料方程即q线方程为垂直于x轴的直线即

X= 0.440

三、理论板数的计算

理论塔板数的确定

根据逐板求算法计算结果如下表所示:

精馏塔所需的理论塔板数为19块,其中到第11块时X

根据相平衡数据及所求的操作线方程做出图2。

精馏段操作线方程为Y n+1 = 0.75X n + 0.25

提馏段操作线方程为Y n+1 = 1.325X n -0.008

对角线方程为Y = X

进料方程为X= 0.440

图2

四、塔板效率的确定

根据塔顶、塔底液相组成x D =0.992, x W =0.012查图1,求得塔顶温度为80.46℃,塔底温度为109.78℃,得塔的平均温度为t

平均

=95.12℃。该温度下苯的黏度μ苯

=0.267 mPa*s ,甲苯的黏度μ

甲苯

=0.275mPa*s ,故该温度下液相平均黏度μm=0.70μ

苯+(1-0.70)μ

甲苯

=0.7*0.267 +0.3*0.275 =0.269mPa*s。

故E T=0.17-0.616lg0.269=0.786=78.6%

五、实际塔板数的求算

精馏段实际塔板数N

= 10/0.786=12.72≈13

精馏段实际塔板数N

= 9/0.786 = 11.45≈12

总的实际塔板数 N

P

= 13 + 12 = 25

六、精馏塔的工艺条件及有关物性数据的计算

以提馏段为例进行计算

1、操作压力的计算

设表压为4kPa

塔顶操作压力P D = 101.3 + 4 =105.3 kPa

每层塔板压降ΔP = 0.7kPa

进料板压力P F = 105.3 + 0.7 ×(13 -1)= 113.7 kPa 塔釜操作压力P W = 113.7 + 0.7 ×(12 - 1)= 121.4 kPa 提馏段平均压力P m = (113.7 + 121.4)/2 = 117.6 kPa 2.操作温度的计算

由苯和甲苯的t-x-y 图可得

进料板温度t F = 100.8℃

塔釜温度t W = 109.8℃

提馏段平均温度t M = (100.8+109.8)/2=105.3℃

3.平均摩尔质量计算

进料板平均摩尔质量计算

由于泡点进料,X F = 0.239,查平衡曲线可知Y F =0.517

气相M VFm = 0.239×78 + (1-0.239)×92=88.66 kg/kmol

液相M LFm = 0.517×92 + (1-0.517)×78=85.24 kg/kmol

提馏段平均摩尔质量

气相M Vm =(88.66+78.41)/2=83.54 kg/kmol

液相 M Lm =(84.76+91.83)/2= 88.30 kg/kmol 4.平均密度计算 (1)气相平均密度

有理想气体状态方程计算,即

ρ

Vm =P m *M Vm /RT m = 117.6

×83.54/[8.314×(273.2+105.3)] = 3.11kg/m 3

(2)液相平均密度的计算 液相平均密度的计算可依下式计算

Lm

1

ρ=

LA

A

a ρ+

LB

B

a ρ (a 为质量分率)

进料板液相平均密度计算 由t F = 100.8℃,查资料可知

ρA =792.5kg/m 3 ρ B =790.3 kg/m

3

由加料板液相组成 X F =0.239

a A = 0.239×78/(0.239×78+(1-0.239)×92)=0.210

ρ

LFm = 1/(0.210/792.5+0.790/790.3)= 790.8 kg/m

3

塔釜液相平均密度计算 由t W = 109.8℃,查资料可得

ρA =780.3kg/m 3 ρ B =780.3 kg/m

3

塔釜的液相组成 X W =0.012

a A = 0.012×78/(0.012×78+(1-0.012)×92)=0.010 ρ

LWm = 1/(0.010/780.3+0.990/780.3)= 780.3 kg/m

3

提馏段液相平均密度为

ρ

Lm = (790.8+780.3)/2 = 785.6 kg/m

3

5.液体平均表面张力的计算 液相平均表面张力依下式计算,即

ζ

Lm =

∑X i ζi

进料板液相表面张力的计算 由t F = 100.8℃,查资料可知

ζA=18.76 mN/m ζB= 19.82 mN/m

ζLFm = 0.239×18.76 +0.761×19.82= 19.57 mN/m 塔釜液相表面张力的计算

由t W = 109.8℃,查资料可得

ζA=17.66 mN/m ζB= 18.41 mN/m

ζLWm = 0.012×17.66 +0.988×18.41= 18.40 mN/m 提馏段液相平均表面张力为

ζLm =(19.57+18.40)/2=18.98 mN/m

6.液相平均粘度的计算

液相平均粘度依下式计算,即

lgμ

Lm = ∑X

i

lgμ

i

进料板液相平均黏度的计算

由t W = 109.8℃,查资料可知

μA =0.253mPa*s μB =0.263 mPa*s 带入上述方程解得

μLFm =0.261 mPa*s

塔釜液相平均黏度的计算

由t F = 100.8℃,查资料可知

μA =0.233mPa*s μB =0.254 mPa*s 带入上述方程解得

μLWm =0.254 mPa*s

提馏段液相平均黏度为

μLm =(0.261+0.254)/2=0.258 mPa*s

第三章主要设备工艺尺寸设计

完成精馏操作的塔设备,称为精馏塔。也是本次设计的主要设备。这里的工艺尺寸设计主要涉及到塔高、塔径、塔板布置、溢流装置、鼓泡区安排等计算,塔板的流体力学校核以及塔板负荷性能图的绘制等。

3.1塔径及提馏段塔板结构尺寸的确定

塔径

提馏段的气液相体积流率为

Vs = VM Vm/3600ρVm = 101.69×83.54/(3600×3.11) = 0.759 m3/s

L h = L M Lm /3600ρLm =72.30×88.3/(3600×785.6)=0.0062m3/s

由u max = C((ρL–ρV)/ρV)1/2 C = C20(ζL/20)0.2

图的横坐标为

L h/V S(ρL/ρV)1/2 = (0.0062/0.759)×(785.6/3.11)1/2=0.130

取板间距h T=0.40m,板上液层高度h L=0.06m,则

h T-h L =0.40 – 0.06m=0.34m

查得C20 = 0.064

C = 0.064×(18.98/20)0.2 = 0.0633

u max = 0.0633×((785.6-3.11)/3.11)1/2 =1.004 m/s

取安全系数为0.7,则空塔气速为

u = 0.7 u max = 0.7×1.004 =0.703 m/s

D =[(4Vs)/(πu)]1/2 = [4×0.759 /(π×0.703]1/2=1.17m

按标准塔径圆整后为 D = 1.4 m

塔截面积为

A t = πD2 = π×1.42/4 =1.539m2

实际空塔气速为

u = Vs/ A T =0.759/ 1.539=0.493m/s

精馏塔有效高度

精馏段有效高度为

Z

精 = (N

-1)h

T

=(13-1)×0.4 = 4.8m

Z

提 = (N

-1)h

T

=(12-1)×0.4 = 4.4m

在进料板上方开一人孔,其高度为0.8m,

故精馏塔的有效高度为

H = Z精 + Z提+0.8 = 4.8 + 4.4 +0.8 =10m

溢流装置计算

因塔径D= 1.4m,可选用单溢流弓形降液管,采用凹形受液盘。各项计算如下:(1)堰长l w

取l w= 0.6 D= 0.6×1.4=0.84 m

(2)溢流堰高度h W

选用平直堰,堰上液层高度h ow

h ow =0.00284E(L h/l W)2/3

近似取E=1,则

h ow =0.00284(0.0062×3600/0.84)2/3 =0.0256

取板上清夜层高度h L = 0.06m

故h w = 0.06 -0.0256 =0.0344

(3)弓形降液管宽度W d和截面积A f

由l W/D = 0.66

查图可知

A f/A T = 0.0722 W d/D =0.124

故A f = 0.0722 A T = 0.0722×1.539 = 0.1111m2

W d = 0.124D = 0.124×1.4 =0.174m

验算液体在降液管中停留时间为

η= 3600 A f H T/L h =3600×0.4×0.1111 /(0.0062×3600) =7.168s > 5s 故降液管设计合理

(4)降液管底隙高度h o

h o = L S/(3600l w u o,)

取u o,=0.08m/s

则h o = 0.0062×3600/(3600×0.84×0.08 )=0.027

h w - h o = 0.0344 – 0.0 27=0.00 74>0.006m

故降液管底隙高度设计合理。

选用凹形受液盘,深度h W,= 0.05m。

塔板布置

(1)塔板的分块

因D>0.8m,故塔板采用分块式。查表可知,塔板分为三块。

(2)边缘区宽度确定

取W s = W s,= 0.065m,W c = 0.035m

(3)开孔区面积计算

开孔面积A a按下式计算

A a = 2(x(r2-x2)1/2 +πr2sin-1(x/r)/180

其中x =D/2 -(W d+W s)= 1.4/2 – ( 0.174 + 0.065) = 0.461m

r = D/2 – W c = 1.4/2 – 0.065 = 0.635m

故A a=2×[0.461×(0.6352-0.4612)1/2+π×0.6352 sin-1(0.461/0.635)/180]=0.783m2(4)筛孔计算及其排列

本例所处理的物系无腐蚀性,可选用δ= 0.003m碳钢板,取筛孔直径d o=0.005m 筛孔按正三角形排列,取孔中心距t为

t = 3d==0.015m

筛孔数目n为

n =1.155A a/t2 =1.155 ×0.783/0.0152 =4020

开孔率为

θ= 0.907(d o/t)2 =10.1%

每层塔板上的开孔面积A o为

A o =θA a =0.0791m2

气体通过阀孔的气速为

u o = V s/A o =0.759/0.0791=9.60m/s

3.2塔板的流体力学校核

一、气体通过筛板压降相当的液柱高度h

p

(1)干板压降相当的液柱高度h c计算

干板阻力由下式计算

h c =0.051(u o/c o)2(ρV/ρL)

由d o/δ=5/3 = 1.67 查图可知c o = 0.84

故h c= 0.051×(9.60/0.84)2×(3.11/785.6)=0.0264m

(2)气体通过液层的压降相当的液柱高度h l计算

可由下式计算

h l = εo h L

u a = V s/(A T-A f)=0.759/(1.539-0.111)=0.648m/s

F u =u a(ρV)1/2=0.648×3.111/2=1.143

查图可知εo =0.64

h l =0.64×0.06=0.0384m

(3)液体表面张力的阻力h

ζ计算

hζ= 4ζ/(ρL gd o )=4×18.98×10-3/(785.6×9.81×0.005)=0.00197m

故h p = 0.0264+0.0384+0.00197 = 0.067m

单板压降ΔP p = h pρL g =0.067×785.6×9.81=516.35Pa<0.7kPa

二、雾沫夹带量ev的验算

依式e v =(5.7×10-6/ζ)(u a /(H T-h f))3.2

=(5.7×10-6/18.98×10-3)(0.648/(0.4-2.5×0.06))3.2

=0.0063kg液/kg气<0.1kg液/kg气

故在设计负荷下不会发生过量雾沫夹带。

三、漏液的验算

依式u ow = 4.4×0.84((0.0056+0.13×h L-hζ)ρL/ρV)1/2

=4.4×0.84((0.0056+0.13×0.06-0.00197)785.6/3.11)1/2

=6.28m/s

筛板的稳定系数K=u o/ u ow =9.60/6.28=1.53>1.5

故在设计负荷下不会产生过量漏液。

四、泛液验算

为防止降液管液泛的发生,应使降液管中清夜层高度H d≤Θ(H T+h w)

依式H d = h p +h L +h d可计算降液管中清夜层高度

h d =0.153(L s/(l w*h o))2=0.153×(0.0062/(0.84×0.031))2=0.0087m

H d =0.067+0.06 +0.0087 =0.136m

化工原理课程设计

绪论 1.1换热器在工业中的应用 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可或缺的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化元件诞生。随着研究的深入,工业应用取得了令人瞩目的成就,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T型翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张情况。 换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。 随着环境保护要求的提高,近年来加氢装置的需求越来越多,如加氢裂化,煤油加氢,汽油、柴油加氢和乳化油加氢装置等建设量增加,所需的高温、高压换热器数量随之加大。螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器、蜜蜂盖板式换热器技术发展越来越快,不仅在承温、承压上满足装置运行要求,而且在传热与动力消耗上发展较快,同时亦适用于乙烯裂解、化肥中合成氨、聚合和天然等场合,可满足承压高达35MPa,承温达700℃的使用要求。在这些场合,换热器占有的投资占50%以上。 1.2换热器的研究现状 20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型、高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展、私有化比例的加大,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。能源的日趋紧张、全球环境气温的不断升高、环境保护要求的提高和换热器及空冷式换热器及高温、高压换热器带来了日益广阔的应用前景。在地热、太阳能、核能、余热回收、风能的利用上,各国政府都加大了投入资金力度。 国内各研究机构和高等院校研究成果不断推陈出新,在强化传热元件方面华南理工

化工原理课程设计报告

课程设计任务书 设计题目:水冷却环己酮换热器的设计 一、设计条件 1、处理能力53万吨/年 2、设备型式列管式换热器 3、操作条件 a.环己酮:入口温度120℃,出口温度为43℃ b.冷却介质:自来水,入口温度20℃,出口温度40℃ c.允许压强降:不大于1×105Pa d.每年按330天计,每天24小时连续运行 4、设计项目 a.设计方案简介:对确定的工艺流程及换热器型式进行简要论述。 b.换热器的工艺计算:确定换热器的传热面积。 c.换热器的主要结构尺寸设计。 d.主要辅助设备选型。 e.绘制换热器总装配图。 二、设计说明书的内容 1、目录; 2、设计题目及原始数据(任务书); 3、论述换热器总体结构(换热器型式、主要结构)的选择; 4、换热器加热过程有关计算(物料衡算、热量衡算、传热面积、换热管型号、壳体直 径等); 5、设计结果概要(主要设备尺寸、衡算结果等); 6、主体设备设计计算及说明;

目录 1. 前言 (1) 1.换热器简介 (1) 2. 列管式换热器分类: (2) 2. 设计方案简介 (2) 2.1换热器的选择 (2) 2.2流程的选择 (2) 2.3物性数据 (2) 3. 工艺计算 (3) 3.1试算 (3) 3.1.1计算传热量 (3) 3.1.2计算冷却水流量 (3) 3.1.3计算两流体的平均传热温度 (3) 3.1.4计算P、R值 (3) 3.1.5假设K值 (4) 3.1.6估算面积 (5) 3.1.7拟选管的规格、估算管内流速 (5) 3.1.8计算单程管数 (5) 3.1.9计算总管数 (5) 3.1.10管子的排列 (6) 3.1.11折流板 (6) 3.2核算传热系数 (6) 3.2.1计算管程传热系数 (6) 3.2.2计算壳程传热系数 (7) 3.2.3污垢热阻 (7) 3.2.4计算总传热系数 (7) 3.3核算传热面积 (7) 3.3.1计算估计传热面积 (7) 3.3.2计算实际传热面积 (8) 3.4压降计算 (8) 3.4.1计算管程压降 (8) 3.4.2计算壳程压降 (8) 3.5附件 (9) 3.5.1接管 (9) 3.5.2拉杆 (9) 4. 换热器结果一览总表 (10) 5. 设计结果概要 (11) 1.结果 (11) 6. 致谢 (12)

化工课程设计小结

化工原理课程设计小结 随着毕业日子的到来,课程设计也接近了尾声。经过几周的奋战我的课程设计终于完成了。在没有做课程设计以前觉得课程设计只是对这几年来所学知识的单纯总结,但是通过这次做课程设计发现自己的看法有点太片面。课程设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。通过这次课程设计使我明白了自己原来知识还比较欠缺。自己要学习的东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低。通过这次课程设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。 在这次课程设计中也使我们的同学关系更进一步了,同学之间互相帮助,有什么不懂的大家在一起商量,听听不同的看法对我们更好的理解知识,所以在这里非常感谢帮助我的同学。 我的心得也就这么多了,总之,不管学会的还是学不会的的确觉得困难比较多,真是万事开头难,不知道如何入手。最后终于做完了有种如释重负的感觉。此外,还得出一个结论:知识必须通过应用才能实现其价值!有些东西以为学会了,但真正到用的时候才发现是两回事,所以我认为只有到真正会用的时候才是真的学会了。 在此要感谢我们的指导老师罗老师、朱老师和李老师对我们悉心的指导,感谢老师们给我们的帮助。在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富,使我终身受益。 课程设计报告主要包括以下几个方面. 1.封面(根据自己的个性设计)2.目录3.主界面(介绍这次设计的课题、人员、目标、任务、人员分工)4.主要过程(要告诉别人你的这个作品该怎么用)5.程序流程图(用图来表示主要过程)6.核心源程序(你觉得这个作品它具备的主要功能是什么,就将实现这个功能的代码给COPY下来)7.主要函数(你程序代码里用的函数中你觉得重要的或是难的)8.心得9.附录(你完成这次课程设计参考的书,这个可以多写一点,以示用心认真) 我第一次做课程设计时写报告就是这么写的.你参考参考.希望能对你有些帮助

化工原理课程设计最终版

青岛科技大学 化工课程设计 设计题目:乙醇-正丙醇溶液连续板式精馏塔的设计指导教师: 学生姓名: 化工学院—化学工程与工艺专业135班 日期:

目录一设计任务书 二塔板的工艺设计 (一)设计方案的确定 (二)精馏塔设计模拟 (三)塔板工艺尺寸计算 1)塔径 2)溢流装置 3)塔板分布、浮阀数目与排列 (四)塔板的流体力学计算 1)气相通过浮阀塔板的压强降2)淹塔 3)雾沫夹带 (五)塔板负荷性能图 1)雾沫夹带线 2)液泛线 3)液相负荷上限 4)漏液线 5)液相负荷上限 (六)塔工艺数据汇总表格 三塔的附属设备的设计 (一)换热器的选择 1)预热器 2)再沸器的换热器 3)冷凝器的换热器 (二)泵的选择 四塔的内部工艺结构 (一)塔顶 (二)进口 ①塔顶回流进口 ②中段回流进口 (三)人孔 (四)塔底 ①塔底空间 ②塔底出口 五带控制点工艺流程图 六主体设备图 七附件 (一)带控制点工艺流程图 (二)主体设备图 八符号表 九讨论 十主要参考资料

一设计任务书 【设计任务】设计一板式精馏塔,用以完成乙醇-正丙醇溶液的分离任务 【设计依据】如表一 表一 【设计内容】 1)塔板的选择; 2)流程的选择与叙述; 3)精馏塔塔高、塔径与塔构件设计; 4)预热器、再沸器热负荷及加热蒸汽消耗量,冷凝器热负荷及冷却水用量,泵的选择; 5)带控制点工艺流程图及主体设备图。 二塔板的工艺设计 (一)设计方案的确定 本设计的任务是分离乙醇—正丙醇混合液,对于二元混合物的分离,应采用连续精馏流程,运用Aspen软件做出乙醇—正丙醇的T-x-y 相图,如图一:

图一:乙醇—正丙醇的T-x-y相图 由图一可得乙醇—正丙醇的质量分数比为0.5:0.5时,其泡点温度是84.40o C (二)精馏塔设计模拟 1.初步模拟过程 运用Aspen软件精馏塔Columns模块中DSTWU模型进行初步模拟,并不断进行调试,模拟过程及结果如下:

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

2017化工课程设计心得体会范文

2017化工课程设计心得体会范文 2017化工课程设计心得体会范文一 化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法。 本次化工原理课程设计历时两周,是上大学以来第一次独立的工业化设计。从老师以及学长那里了解到化工原理课程设计是培养我们化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。由于第一次接触课程设计,起初心里充满了新鲜感和期待,因为自我认为在大学里学到的东西终于可以加以实践了。可是当老师把任务书发到手里是却是一头雾水,完全不知所措。可是在这短短的三周里,从开始的一无所知,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。我的课程设计题目是苯――氯苯筛板式精馏塔设计图。在开始时,我们不知道如何下手,虽然有课程设计书作为参

考,但其书上的计算步骤与我们自己的计算步骤有少许差异,在这些差异面前,我们显得有些不知所措,通过查阅《化工原理》,《化工工艺设计手册》,《物理化学》,《化工原理课程设计》等书籍,以及在网上搜索到的理论和经验数据。我们慢慢地找到了符合自己的实验数据。并逐渐建立了自己的模版和计算过程。在这三周中给我印象最深的是我们这些“非泡点一族”在计算进料热状况参数q时,没有任何参考模板,完全靠自己捉摸思考。起初大家都是不知所措,待冷静下来,我们仔细结合上课老师讲的内容,一步一步的讨论演算,经大家一下午的不懈努力,终于把q算出来了。还有就是我们在设计换热器部分,在试差的过程中,我们大部分人都是经历了几乎一天多的时间才选出了合适的换热器型号,现在还清楚的记得我试差成功后那激动的心情,因为我尝到了自己在付出很多后那种成功的喜悦,因为这些都是我们的“血泪史”的见证哈。 在此感谢我们的杜治平老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;这次课程设计的细节和每个数据,都离不开老师您的细心指导。而您开朗的个性和宽容的态度,帮助我能够很顺利的完成了这次课程设计。同时感谢同组的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。由于本人的设计能力有限,在设计过程中难免出现错误,恳请老师们多多指教,我十分乐意接受你们的批评与指正,本人将万分感谢。 2017化工课程设计心得体会范文二

化工原理课程设计报告样本

化工原理课程设计报告样本

《化工原理课程设计》报告 48000吨/年乙醇~水精馏装置设计 年级 专业 设计者姓名 设计单位 完成日期年月日 7

目录 一、概述 (4) 1.1 设计依据 (4) 1.2 技术来源 (4) 1.3 设计任务及要求 (5) 二:计算过程 (6) 1. 塔型选择 (6) 2. 操作条件的确定 (6) 2.1 操作压力 (6) 2.2 进料状态 (6) 2.3 加热方式 (7) 2.4 热能利用 (7) 3. 有关的工艺计算 (7) 3.1 最小回流比及操作回流比 的确定 (8) 3.2 塔顶产品产量、釜残液量及 7

加热蒸汽量的计算 (9) 3.3 全凝器冷凝介质的消耗量9 3.4 热能利用 (10) 3.5 理论塔板层数的确定 (10) 3.6 全塔效率的估算 (11) 3.7 实际塔板数P N (12) 4. 精馏塔主题尺寸的计算 (12) 4.1 精馏段与提馏段的体积流 量 (12) 4.1.1 精馏段 (12) 4.1.2 提馏段 (14) 4.2 塔径的计算 (15) 4.3 塔高的计算 (17) 5. 塔板结构尺寸的确定 (17) 5.1 塔板尺寸 (18) 5.2 弓形降液管 (18) 5.2.1 堰高 (18) 5.2.2 降液管底隙高度h019 7

5.2.3 进口堰高和受液盘 19 5.3 浮阀数目及排列 (19) 5.3.1 浮阀数目 (19) 5.3.2 排列 (20) 5.3.3 校核 (20) 6. 流体力学验算 (21) 6.1 气体通过浮阀塔板的压力 降(单板压降) h (21) p 6.1.1 干板阻力 h (21) c 6.1.2 板上充气液层阻力1h (21) 6.1.3 由表面张力引起的阻 (22) 力h 6.2 漏液验算 (22) 6.3 液泛验算 (22) 6.4 雾沫夹带验算 (23) 7. 操作性能负荷图 (23) 7.1 雾沫夹带上限线 (23) 7

化工原理课程设计

安阳工学院课程设计说明书 课程名称:化工原理课程设计 设计题目:列管式换热器 院系:化学与环境工程学院 学生姓名:赵安顺 学号:201005020025 专业班级:应用化学一班 指导教师:路有昌

列 设计一台列管式换热器 一、设计任务及操作条件 (1)处理能力 2.5×105 t/a热水 (2)设备型式列管式换热器 (3)操作条件 ①热水:入口温度80℃,出口温度60℃. ②冷却介质:循环水,入口温度32℃,出口温度40℃. ③允许压降:不大于105Pa. ④每年按300天计算,每天24小时连续运行. 二、设计要求及内容 (1)根据换热任务和有关要求确认设计方案; (2)初步确认换热器的结构和尺寸; (3)核算换热器的传热面积和流体阻力; (4)确认换热器的工艺结构. 摘要:通过对列管式换热器的设计,首先要确定设计的方案,选择合适的计算步骤。查得计算中用到的各种数据,对该换热器的传热系数传热面积工艺结构尺寸等等要进行核算,与要设计的目标进行对照是否能满足要求,最终确定换热器的结构尺寸为设计图纸做好准备和参考,来完成本次课程设计。 关键词:标准方案核算结构尺寸

目录 一.概述 (4) 二.方案的设计与拟定 (4) 三.设计计算 (8) 3.1确定设计方案 (9) 3.1.1选择换热器的类型 (9) 3.1.2流动空间及管子的确定 (9) 3.2确定物性数据 (9) 3.3初选换热器规格 (10) 3.3.1热流量 (10) 3.3.2冷却水用量 (10) 3.3.3平均温度差 (10) 3.3.4换热器规格 (11) 3.4核算总传热系数 (11) 3.4.1计算管程传热系数 (11) 3.4.2 计算壳程传热系数 (12) 3.4.3 确定污垢热阻 (13) 3.3.4 总传热系数 (13) 3.5计算压强降 (14) 3.5.1计算管程压强降 (14) 3.5.2计算壳程压强降 (14)

最新17-18化工原理课程设计任务题目40+40+40-doc

化工原理课程设计任务书示例一 1 设计题目分离苯―甲苯混合液的浮阀板式精馏塔工艺设计 2 设计参数 (1)设计规模:苯――甲苯混合液处理量________t/a (2)生产制度:年开工300天,每天三班8小时连续生产 (3)原料组成:苯含量为40%(质量百分率,下同) (4)进料状况:热状况参数q为_________ (5)分离要求:塔顶苯含量不低于_____%,塔底苯含量不大于_____% (6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的某地 3 设计要求和工作量 (1)完成设计说明书一份 (2)完成主体精馏塔工艺条件图一张(A1) (3)完成带控制点的工艺流程简图(A2) 4 设计说明书主要内容(参考) 中文摘要,关键词 第一章综述 1.精馏原理及其在工业生产中的应用 2.精馏操作对塔设备的要求(生产能力、效率、流动阻力、操作弹性、结构、造价和工艺特性等) 3.常用板式塔类型及本设计的选型

4.本设计所选塔的特性 第二章工艺条件的确定和说明 1.确定操作压力 2.确定进料状态 3.确定加热剂和加热方式 4.确定冷却剂及其进出、口温度 第三章流程的确定和说明(附以流程简图) 1.流程的说明 2.设置各设备的原因(精馏设备、物料的储存和输送、必要的检测手段、操作中的调节和重要参数的控制、热能利用) 第四章精馏塔的设计计算 1.物料衡算 2.回流比的确定 3.板块数的确定 4.汽液负荷计算(将结果进行列表) 5.精馏塔工艺尺寸计算(塔高塔径溢流装置塔板布置及浮阀数目与排列) 6.塔板流动性能校核(液沫夹带量校核、塔板阻力校核、降液管液泛校核、液体在降液管中停留时间校核以及严重漏液校核) 7.塔板负荷性能图 8.主要工艺接管尺寸的计算和选取(进料管、回流管、釜液出口管、塔顶蒸汽管、塔底蒸汽管、人孔等) 9.塔顶冷凝器/冷却器的热负荷

最新《化工原理课程设计-年产量112000吨NaOH水溶液蒸发装置的设计》

湖南师范大学 《化工原理》课程设计说明书 设计题目年产量112000吨NaOH水溶液蒸发装置的设计学生姓名周鹏 指导老师罗大志 学院树达学院 学号 200721180135 专业班级 07制药工程1班 完成时间2009年10月

《化工原理》课程设计成绩评定栏 评定基元评审要素评审内涵 满 分指导教师 实评分 评阅教师 实评分 设计说明书,40% 格式规范 设计说明书是否符 合规定的格式要求 5 内容完整 设计说明书是否包 含所有规定的内容 5 设计方案 方案是否合理及符 合选定题目的要求 10 工艺计算 过程 工艺计算过程是否 正确、完整和规范 20 设计图纸, 40% 图纸规范图纸是否符合规范 5 标注清晰标注是否清晰明了 5 与设计吻合 图纸是否与设计计 算的结果完全一致 10 图纸质量 设计图纸的整体质 量的全面评价 20 平时成绩, 10% 上课出勤上课出勤考核 5 制图出勤制图出勤考核 5 答辩成绩, 10% 内容表述答辩表述是否清楚 5 回答问题回答问题是否正确 5 100 综合成绩成绩等级

指导教师评阅教师答辩小组负责人 (签名) (签名) (签名) 年月日年月日年月日 说明: 评定成绩分为优秀(90-100),良好(80-89),中等(70-79),及格(60-69)和不及格(<60) 目录 1前言 (1) 2设计任务 (2) 2.1设计任务 (2) 2.2操作条件 (2) 3设计条件及设计方案说明 (3) 4物性数据及相关计算 (3) 4.1估计各效蒸发量和完成液浓度 (3) 4.2估计各效蒸发溶液的沸点和有效总温度差 (4) 4.3加热蒸汽消耗量和各效蒸发水量的初步计算 (7) 4.4蒸发器传热面积的估算 (8) 4.5有效温度的再分配 (8) 4.6重复上述计算步骤 (9) 4.7计算结果列表 (12) 5主体设备计算和说明 (12) 5.1加热管的选择和管数的初步估计 (13) 5.2循环管的选择 (13) 5.3加热管的直径以及加热管数目的确定 (13)

化工原理课程设计报告(换热器)

《化工原理课程设计任务书》(1) 一、设计题目: 设计一台换热器 二、操作条件: 1.苯:入口温度80℃,出口温度40℃。 2.冷却介质:循环水,入口温度35℃。 3.允许压强降:不大于50kPa。 4.每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 1. 99000吨/年苯 五、设计要求: 1.选定管壳式换热器的种类和工艺流程。 2.管壳式换热器的工艺计算和主要工艺尺寸的设计。 3.设计结果概要或设计结果一览表。 4.设备简图。(要求按比例画出主要结构及尺寸) 5.对本设计的评述及有关问题的讨论。 一、选定管壳式换热器的种类和工艺流程 1.选定管壳式换热器的种类 管壳式换热器是目前化工生产中应用最广泛的传热设备。与其他种类的换热器相比,其主要优点是:单位体积具有的传热面积较大以及传热效果较好;此外,结构简单,制造的材料范围较广,操作弹性也较大等。因此在高压高温和大型装置上多采用管壳式换热器。 管壳式换热器中,由于两流体的温度不同,管束和壳体的温度也不相同,因此他们的热膨胀程度也有差别。若两流体的温度差较大(50℃以上)时,就可能由于热应力而引起设备变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。根据热补偿方法的不同,管壳式换热器有下面几种形式。

(1)固定管板式换热器 这类换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一些列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或是管子从管板上松脱,甚至毁坏换热器。 为了克服温差应力必须有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60-70℃和壳程流体压强不高的情况下。一般壳程压强超过0.6MPa时,补偿圈过厚,难以伸缩,失去温差补偿作用,就要考虑其他结构。其结果如下图所示: (2)浮头式换热器 换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以使管子受热或冷却时可以自由伸缩,但在这块管板上连接一个顶盖,称之为“浮头”,所以这种换热器称为浮头式换热器。其优点是:管束可以拉出,以便清洗;管束的膨胀不受壳体约束,因此当两种换热器介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点是结构复杂,造价高。其结构如下: (3) U型管换热器 这类换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。其结构如下图所示: (4)填料函式换热器 这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低廉。但壳程内介质有外漏的可能,壳程中不应处理一易挥发、易燃易爆和有毒的介质。其结构如下: 由设计书的要求进行分析: 一般来说,设计时冷却水两端温度差可取为5℃~10℃。缺水地区选用较大的温度差,水资源丰富地区选用较小的温度差。青海是“中华水塔”,水资源 相对丰富,故选择冷却水较小的温度差6℃,即冷却水的出口温度为31℃。T m -t m =80+4025+31 -=32 22 ℃<50℃,且允许压强降不大于50kPa,可选择固定管板式换 热器。 2.工艺流程图 主要说明:由于循环冷却水较易结垢,为便于水垢清洗,所以选定循环水走管程,苯走壳程。如图所示,苯经泵抽上来,经加水器加热后,再经管道从接管C进入换热器壳程;冷却水则由泵抽上来经管道从接管A进入换热器管程。两物质在换热器中进行换热,苯从80℃被冷却至40℃之后,由接管D流出;循环冷却水则从25℃变为31℃,由接管B流出。 二、管壳式换热器的工艺计算和主要工艺尺寸的设计 1.估算传热面积,初选换热器型号 (1)基本物理性质数据的查取

化工原理课程设计——换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

化工原理课程设计

化工原理课程设计 设计题目:列管式换热器的设计 指导教师 专业班级 学生姓名 学 号 2009 年 1 月 5 日 目录 1.设计任务书及操作条件 2.前言 2.1 设计方案简介 2.2工艺流程草图及说明 3 工艺设计及计算 3.1、铺助设备计算及选型 3.2、设计结果一览表 4.设计的评述 5、主要符号说明

6、参考文献 7.主体设备条件图及生产工艺流程图(附后) 1.设计任务书及操作条件 (1)处理能力:1×104吨/年正己烷。 (2)设备型式:列管式换热器 (3)操作条件 1 正己烷(含水蒸汽20%):入口温度1000C, 出口温度350C。 2 冷却介质:循环水,入口温度250C,出口温 度350C。

3 允许压降:不大于105Pa。 4 每年按330天计。 5 建厂地址广西 (三)设计要求 1.选择适宜的列管式换热器并进行核算。 2.要进行工艺计算 3.要进行主体设备的设计(主要设备尺寸、衡算结果等) 4.编写任务设计书 5.进行设备结构图的绘制(用420*594图纸绘制装置图一张) 2.前言

2.1 设计方案简介 固定管板式换热器 换热管束固定在两块管板上,管板又分别焊在外壳的两端,管子、管板和壳体都是刚性连接。当管壁与壳壁的壁温相差大于50℃时,为减小或消除温差产生的热效应力,必须设有温差补偿装置,如膨胀节。 固定管板式换热器结构比较简单,制造简单,制造成本低,管程可用多种结构,规格范围广,在生产中广泛应用。因壳侧不易清洗,故不适宜较脏或有腐蚀性的物流的换热,适用于壳壁与管壁温差小于70℃、壳程压力不高、壳程结垢不严重、并可用化学方法清洗的场合。 本设计任务为正己烷冷却器的设计,两流体在传热过程中无相的变化,且冷、热流体间的温差不是太大或温差较大但壳程压力不高的场合。当换热器传热面积较大,所需管子数目较多时,为提高管流速,常将换热管平均分为若干组,使流体在管内依次往返多次,即为多管程,从而增大了管内对流传热系数。固定管板式换热器的优点是结构简单、紧凑。在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。 2.2工艺流程草图及说明 工艺流程草图附后 流程图说明: 正己烷和循环冷却水经泵以一定的流速(由泵来调控)输入换热器中经换热器进行顺流换热。正己烷由100℃降到35℃,循环冷水由25℃升到35℃,且35℃的冷水回到水槽后,由于冷水的量多,回槽的水少,且流经管路时也有被冷凝,因此不会引起槽中水温太大的变化从而使水温保持25℃左右。 3 工艺设计及计算 (1) 确定设计方案 1. 选择换热器的类型 两流体温度变化情况:热流体进口温度100℃,出口温度35℃;冷

天津大学化工原理课程设计

《化工原理》课程设计报告 真空蒸发制盐系统卤水分效预热器设计 学院天津大学化工学院 专业化学工程与工艺 班级 学号 姓名 指导教师

化工流体传热课程设计任务书 专业化学工程与工艺班级姓名学号(编号) (一)设计题目:真空蒸发制盐系统卤水分效预热器设计 (二)设计任务及条件 1、蒸发系统流程及有关条件见附图。 2、系统生产能力:40 万吨/年。 3、有效生产时间:300天/年。 4、设计内容:Ⅱ效预热器(组)第 3 台预热器的设计。 5、卤水分效预热器采用单管程固定管板式列管换热器,试根据附图中卤水预热的温度要求对预热器(组)进行设计。 6、卤水为易结垢工质,卤水流速不得低于0.5m/s。 7、换热管直径选为Φ38×3mm。 (三)设计项目 1、由物料衡算确定卤水流量。 2、假设K计算传热面积。 3、确定预热器的台数及工艺结构尺寸。 4、核算总传热系数。 5、核算压降。 6、确定预热器附件。 7、设计评述。 (四)设计要求 1、根据设计任务要求编制详细设计说明书。 2、按机械制图标准和规范,绘制预热器的工艺条件图(2#),注意工艺尺寸和结构的清晰表达。

设计说明书的编制 按下列条目编制并装订:(统一采用A4纸,左装订) (1)标题页,参阅文献1附录一。 (2)设计任务书。 (3)目录。 (4)说明书正文 设计简介:设计背景,目的,意义。 由物料衡算确定卤水流量。 假设K计算传热面积。 确定预热器的台数及工艺结构尺寸。 核算总传热系数。 核算压降。 确定预热器附件。 设计结果概要或设计一览表。 设计评述。 (5)主要符号说明。 (6)参考文献。 (7)预热器设计条件图。 主要参考文献 1. 贾绍义,柴诚敬. 化工原理课程设计. 天津: 天津大学出版社, 2002 2. 柴诚敬,张国亮. 化工流体流动和传热. 北京: 化学工业出版社, 2007 3. 黄璐,王保国. 化工设计. 北京: 化学工业出版社, 2001 4. 机械制图 自学内容: 参考文献1,第一章、第三章及附录一、三; 参考文献2,第五~七章; 参考文献3,第1、3、4、5、11部分。

化工设计课程学习总结范文三篇

化工设计课程学习总结范文三篇 化工设计课程学习总结范文三篇 本学期顺利完成了化学工程与工艺专业共100名同学的化工原 理课程设计,总体来看学生的工艺计算、过程设计及绘图等专业能力得到了真正有效的提高,可以较好地把理论学习中的分散知识点和实际生产操作有机结合起来,得到较为合理的设计成果,达到了课程综合训练的目的,提高了学生分析和解决化工实际问题的能力。同时,在设计过程中也存在者一些共性的问题,主要表现在: 一、设计中存在的问题 1.设计过程缺乏工程意识。 学生在做课程设计时所设计的结果没有与生产实际需要作参考,只是为了纯粹计算为设计,缺乏对问题的工程概念的解决方法。 2.学生对单元设备概念不强。 对化工制图、设备元件、材料与标准不熟悉,依葫芦画瓢的不 在少数,没有达到课程设计与实际结合、强化“工程”概念的目的。

绘图能力欠缺,如:带控制点工艺流程图图幅设置、比例及线型选取、文字、尺寸标注以及设备、仪表、管件表示等绘制不规范。 3.物性参数选择以及计算。 在化工原理课程设计工程中首要的问题就是物性参数选择以及 计算,然而学生该开始并不清楚需要计算哪些物性参数以及如何计算。这对这些问题,指导老师应在开课之初给学生讲一下每个单元操作所需的物性参数,每个物性参数查取方法以及混合物系物性参数的计算方法,还有如何确定体系的定性温度。 二、解决措施 1.加强工程意识。 设计过程中鼓励学生多做深层次思考,综合考虑经济性、实用性、安全可靠性和先进性,强化学生综合和创新能力的培养;引导学生积极查阅资料和复习有关教科书,学会正确使用标准和规范,强化学生的工程实践能力。为了增强学生的工程意识提出以下措施:一是在化工原理课程讲述过程中应加强对学生工程意识的培养,让同学明确什么是工程概念,比如:理论上的正确性,技术上的可行性,操作上的安全性,经济上的合理性,了解工程问题的计算方法。比如试差

化工原理课程设计

化工原理课程设计设计题目:空气中丙酮的回收工艺操作 学院:化学化工学院 班级:化工 0902 姓名(学号):侯祥祥 3091303039 朱晓燕 3091303036 熊甜甜 3091303035 周利芬 3091303033 指导教师:吴才玉 2012年01月

化工原理课程设计 目录 一、前言 (3) 二、设计内容 (5) (一)设计对象 (5) (二)工艺路线设计 (5) 1.路线选择 (5) 2.流程示意图 (8) 3.流程说明 (9) (三)工艺的设计计算 (10) 1.物料衡算 (10) 2.热量衡算 (12) (四)设备的设计计算 (21) 1.主要参数 (21) 2.直径 (21) 3.附加条件 (21) (五)设备示意图 (23) 三、总结体会 (24) 四、参考文献 (29) 五、附录 (31)

江苏大学化学化工学院

化工原理课程设计 前言 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设 计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使 用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画 出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还 要考虑生产上的安全性、经济合理性。 在化工生产中,常常需要进行混合物的分离以达到提纯或回收有用组分的 目的,吸收和精馏两个单元操作为此提供了重要措施。气体吸收过程是化工生 产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在 特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。精馏是常用 的液体混合物的分离操作,它利用液体混合物中各组分挥发度的不同并借助于 多次部分汽化和部分冷凝,从而达到轻重组分分离的目的。 塔设备是一种重要的单元操作设备,其作用实现气—液相或液—液相之间 的充分接触,从而达到相际间进行传质及传热的过程。它广泛用于吸收、精馏、萃取等单元操作,随着石油、化工的迅速发展,塔设备的合理造型设计将越来 越受到关注和重视。塔设备一般分为连续接触式和阶跃接触式两大类。前者的 代表是填料塔,后者的代表则为板式塔。在本次课程设计中,吸收操作采用的 是填料塔,而精馏操作采用的则为板式塔。 填料塔的基本特点是结构简单,压力降小,传质效率高,便于采用耐腐蚀 材料制造等,对于热敏性及容易发泡的物料,更显出其优越性。过去,填料塔 多推荐用于0.6~0.7m以下的塔径。近年来,随着高效新型填料和其他高性能 塔内件的开发,以及人们对填料流体力学、放大效应及传质机理的深入研究, 使填料塔技术得到了迅速发展。 筛板塔是1932年提出的,当时主要用于酿造,其优点是结构简单,制造 维修方便,造价低,气体压降小,板上液面落差较小,相同条件下生产能力高 于浮阀塔,塔板效率接近浮阀塔。其缺点是稳定操作范围窄,小孔径筛板易堵塞,不适宜处理粘性大的、脏的和带固体粒子的料液。但设计良好的筛板塔仍

《化工原理》课程设计实践教学总结

《化工原理》课程设计实践教学总结 摘要:化工原理课程设计是综合运用化工原理及相关基础知识的实践性教学环节。设计过程中指导教师指引学生在设计过程中既要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。通过课程设计使学生初步掌握化工设计的基础知识、设计原则及方法。 关键词:化工原理;课程设计;实践;可行性 中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)22-0205-02 《化工原理》是化学工程与工艺专业的必修专业课程之一,理论课之后国内大部分高校的本科人才培养计划中安排了实践教学环节――《化工原理》课程设计。我们学校的化学工程与工艺专业培养计划也如此。《化工原理》课程设计是培养化工专业学生综合运用所学的理论知识,树立正确的设计思想,解决常规化工设计中一些实际问题的一项重要的实践教学。其出发点是通过课程设计提高学生搜集资料、查阅文献、计算机辅助绘图、分析与思考解决实际生产问题等能力。笔者从事了3届的课程设计教学,从中总结了许多宝贵的经验和教学方法,以期提高教学效果。现将笔者的教学体会作一介绍。 一、课程设计题目应具有普遍性、代表性

我校化学工程与工艺专业的《化工原理》课程设计一般为二周时间。课程设计基本要求是通过这一设计过程使每个学生都受到一定程度的训练,使将来在不同岗位就业的学生都能受益,都能解决这类工程的实际问题,并可以举一反三。所以课程设计的选题需要我们指导老师慎重,尽量选择化工行业中最普遍且最具代表性的单元操作进行设计。根据以往的教学的经验,题目的选取应从以下几个方面考虑: 1.课程设计题目尽可能接近实际生产,截取现有的某化工项目中的某一操作单元为设计模型,比如某合成氨厂的传热单元的设计,流体输送过程中离心泵的设计,管壳式换热器等等。这样学生在课程设计过程中有参照体系,不至于出现不合理的偏差。 2.课程设计题目应该围绕着常见的化工操作单元进行展开,比如我们都知道在讲授《化工原理》理论知识时其中的单元操作有流体输送、传热、精馏、吸收、萃取等等。一个课程设计题目应该包括2~3个常见的单元操作,从而实现某一简单的化工任务。 3.课程设计题目中涉及的物质尽可能常见易得。因为完成虚拟的生产任务过程中需要这些物质的物性参数进行核算,常见易得的物质能够降低学生在查阅参数方面的工作量。比如,如果我们设计分离任务尽量选择苯-甲苯,或甲醇-水等这样的体系,因为这些混合体系的参数大部分工具

化工课程设计心得体会

化工课程设计心得体会 篇一:化工原理课程设计心得 小结;本次化工原理课程设计历时两周,是学习化工原理以来第一次独立的工业设计。化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形;理解计算机辅助设计过程,利用编程使计算效率提高。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性和经济合理性。 在短短的两周里,从开始的一头雾水,到同学讨论,再进行整个流程的计算,再到对工业材料上的选取论证和后期的程序的编写以及流程图的绘制等过

程的培养,我真切感受到了理论与实践相结合中的种种困难,也体会到了利用所学的有限的理论知识去解决实际中各种问题的不易。 我们从中也明白了学无止境的道理,在我们所查找到的很多参考书中,很多的知识是我们从来没有接触到的,我们对事物的了解还仅限于皮毛,所学的知识结构还很不完善,我们对设计对象的理解还仅限于书本上,对实际当中事物的方方面面包括经济成本方面上考虑的还很不够。 在实际计算过程中,我还发现由于没有及时将所得结果总结,以致在后面的计算中不停地来回翻查数据,这会浪费了大量时间。由此,我在每章节后及时地列出数据表,方便自己计算也方便读者查找。在一些应用问 题上,我直接套用了书上的公式或过程,并没有彻底了解各个公式的出处及用途,对于一些工业数据的选取,也只是根据范围自己选择的,并不一定符

合现实应用。因此,一些计算数据有时并不是十分准确的,只是拥有一个正确的范围及趋势,而并没有更细地追究下去,因而可能存在一定的误差,影响后面具体设备的选型。如果有更充分的时间,我想可以进一步再完善一下的。 通过本次课程设计的训练,让我对自己的专业有了更加感性和理性的认识,这对我们的继续学习是一个很好的指导方向,我们了解了工程设计的基本内容,掌握了化工设计的主要程序和方法,增强了分析和解决工程实际问题的能力。同时,通过课程设计,还使我们树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,加强工程设计能力的训练和培养严谨求实的科学作风更尤为重要。 我还要感谢我的指导老师***老师对我们的教导与帮助,感谢同学们的相互支持。限于我们的水平,设计中难免有不足和谬误之处,恳请老师批评指正。

相关文档
相关文档 最新文档