文档库 最新最全的文档下载
当前位置:文档库 › pH值对氧化镁晶体生长的影响

pH值对氧化镁晶体生长的影响

pH值对氧化镁晶体生长的影响

pH值对氧化镁晶体生长的影响

以氯化镁(分析纯)为原料,反向滴加到氨水中制备普通氧化镁,然后在200℃反应釜中对普通氧化镁进行水热改性。通过扫描电镜(SEM),X射线多晶衍射仪(XRD),全自动氮物理吸附仪(BET)和激光粒度仪等对样品进行表征分析,得到不同pH条件下晶体生长情况和产品收率。

结果表明,常温沉淀过程中pH值为10.0时,产品收率高,粒径分布均匀,分散性好。并且分析了pH值对氧化镁晶体生长作用机理。

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

关于环境因素对植物生长影响或者作用的论文

第一节植物分类概述(1 学时)一、分类原则1.人为分类2.自然分类3.细胞遗传学——物种生物学4.化学分类学5.数量分类学二、分类单位和命名1.植物分类的基本单位2.命名原则三、界和门的划分1.界的划分:二界说、新二界说、三界说、五界说、六界说2.植物门的划分:菌藻植物、苔藓植物、蕨类植物、种子植物 第二节原核生物 (1 学时)一、细菌门1.细菌的主要特征2.细菌的分类3.细菌的繁殖方式二、蓝藻门1.蓝藻与细菌的区别2.蓝藻的主要特征3.原核生物的生活史第三节真核藻类和真菌、地衣(1 学时)一、藻类(Algae) 1.藻类的主要特征2.藻类的种类、门类3.藻类的繁殖方式二、真菌(Fungi) 1.真菌的主要特征2.真菌的种类3.真菌的繁殖方式4.真菌的演化历史三、地衣

1.地衣的主要特征:形态、结构、繁殖等特点2.地衣的种类3.地衣的生境与分布第四节苔藓和蕨类植物(1 学时)一、苔藓植物1.苔藓植物的主要特征2.苔藓植物的分类3.苔藓植物的繁殖方式4.苔藓植物的分布与生境二、蕨类植物1.蕨类植物的主要特征2.蕨类植物的分类概况3.蕨类植物的繁殖方式4.蕨类植物的生境与分布第五节种子植物(1 学时)一、裸子植物1.裸子植物的生活史2.裸子植物的主要特征3.裸子植物的分类及主要代表类型二、被子植物1.被子植物的生活史2.被子植物的的主要特征3.被子植物的主要分类系统 第二章植物生活和环境(9 学时)——植物生态类群的分化本章的教学目的与要求:掌握植物个体与环境条件之间的相互关系,掌握环境和生态因素的概念,了解生态因素对植物作用的特点;掌握各生态因素对植物的影响以及植物对生态因素生态适应特点。重点:环境与生态因素的概念、植物对各生态因子的生态适应特征。难点:植物适应性的形成。第一节概述(1 学时)一、环境与生态因子1.基本概念:环境、环境因子、生态因子、非生态因子、生态环境、小生境、

氢氧化镁阻燃剂

氢氧化镁阻燃剂 简介 氢氧化镁简称MH,分子式Mg(OH)2,分子量重58.33.白色粉末,相对密度2.39。折射率1.561-1.581。在300℃以下稳定,320℃开始分解,生成氧化镁和水,430℃时分解速度最快,490℃时分解完结。溶于烯酸和铵盐溶液,不溶于水、乙醇。氢氧化镁不仅有阻燃作用,还有一眼功能,无毒、无腐蚀性,多种性能优于氢氧化铝,安全廉价,属于环保型无机阻燃剂。 阻燃机理 氢氧化镁在受热时(340-490度)发生分解吸收燃烧物表面热量到阻燃作用;同时释放出大量水分稀释燃物表面的氧气,分解生成的活性氧化镁附着于可燃物表面又进一步阻止了燃烧的进行。氢氧化镁在整个阻燃过程中不但没有任何有害物质产生,而且其分解的产物在阻燃的同时还能够大量吸收橡胶、塑料等高分子燃烧所产生的有害气体和烟雾,活性氧化镁不断吸收未完全燃烧的熔化残留物,从使燃烧很快停止的同时消除烟雾、阻止熔滴,是一种新兴的环保型无机阻燃剂。 分类 阻燃剂按化学成份可以分为有机阻燃剂和无机阻燃两大类。有机阻燃剂又分为磷系和卤系两个系列。由于有机阻燃剂存在着分解产物毒性大、烟雾大等缺点,正逐步被无机阻燃剂所替代。

无机阻燃剂主要品种有氢氧化铝、氢氧化镁、红磷、氧化锑、氧化锡、氧化钼、钼酸铵、硼酸锌等,其中以氢氧化铝和氢氧化镁因分解吸热量大,并产生H2O可起到隔绝空气作用,其分解后氧化物又是耐高温物质,故二种阻燃剂不仅可起到阻燃作用,而且可以起到填充作用,它所具有不产生腐蚀性卤气及有害气体、不挥发、效果持久、无毒、无烟、不滴等特点。 涂料等高分子材料中,特别是对矿用导风筒涂覆布、PVC整芯运输带、阻燃胶板、蓬布、PVC电线电缆料、矿用电缆护套、电缆附件的阻燃、消烟抗静电,可代替氢氧化铝,具有优良的阻燃效果。 种类间比较 目前国内氢氧化铝用量较多,但随着高聚物加工温度的提高,氢氧化铝易分解,降低阻燃作用,氢氧化镁较氢氧化铝具有如下优点: ①氢氧化镁热分解温度达330℃,比氢氧化铝高100℃,故有利于塑料加工温度的提高,加快挤塑速度,缩短模塑时间; ②氢氧化镁与酸的中和能力强,可较快地中和塑料燃烧过程产生的酸性气体SO2、NOx、CO2等; ③氢氧化镁分解能高,有利于吸收燃烧热,提高阻燃效率; ④氢氧化镁抑烟能力强、硬度小,对设备摩擦小,有助于延长生产设备

肥料对植物生长的影响

肥料对植物生长的影响 植物除了从土壤中吸收水分外,还要吸收矿质元素和氮素以及有机物质,以维持正常的生命活动。所以,土壤中矿质元素和有机物质的多少直接影响植物的生长和发育。在栽培条件下,肥料的种类和使用量可改变土壤中养分的比例关系,为植物生长提供良好的养分环境。1.氮 1.1氮对植物生长的影响 根系吸收氮肥主要是无机态氮,即铵态氮和硝态氮。也可吸收一部分有机态氮,如尿素。氮是蛋白质(包括一些酶和辅酶)、核酸、磷脂的主要成分,他们是原生质、细胞核和生物膜的重要组成部分,在植物生命活动中具有特殊的作用。氮也是某些植物激素的成分,他们对生命具有调节作用。氮是叶绿素的成分,与光合作用有密切关系。因此氮的多少会直接影响细胞分裂和生长。当氮肥供应充足时,枝叶繁茂,植株高大,分枝能力强,果实活种植中蛋白质含量高。植物的必须元素中,除碳、氢、氧外,氮的需求量最大。因此在农业生产中要特别需要氮肥的供应,常用人粪尿、尿素、硝酸铵、硫酸铵碳酸氢铵等肥料,主要提供氮元素。 缺氮时,蛋白质、核酸、磷脂等合成受阻,植物生长矮小、分枝能力弱,叶片小而薄,花果少且易脱落。缺氮,叶绿素合成受阻,枝叶变黄,甚至干枯,导致产量降低。氮在植物体内移动性大,老叶中的氮分解后可运输到幼嫩组织中去重复利用,所以缺氮时叶片发黄,并由下部叶片开始逐渐向上。 氮过多时,叶片大而深绿,柔软披散,植株徒长。另外,氮素过多时,体内含糖量相对不足,茎干中的机械组织不发达,易倒伏和被病虫危害。 1.2氮的测定 1.2.1肥料中硝态氮含量测定 1.2.1.1还原法 复混肥料中硝态氮和铵态氮在检测中的差别是两者样品在处理过程。前者需要通过铬粉(不含酰氨态氮时用定氮合金)还原处理,使硝态氮还原成铵态氮;后者对试样不需作还原处理。目前,肥料中硝态氮含量的测定常用定氮合金法(德瓦达合金还原法)和铬-盐酸还原法。 两种方法的原理基本相同,一般采取三步检测:第一步,在样品处理中使用铬粉(不含酰氨态氮时用定氮合金)还原硝态氮后,按标准检测方法检测复混肥试样中总氮含量;第二步,在试样处理过程中不使用还原剂,按标准检测方法检测复混肥试样中不含硝态氮时复混肥料中的总氮含量;第三步,用第一步检测结果减去第二步检测结果,即可得出复混肥料中硝态氮含量。 1.2.1.2高效液相色谱法 通常测定硝态氮的方法有:气体法、还原法、重量法、扣除法、比色法、紫外线吸收法。高效液相色谱法测定肥料中的硝态氮含量,其原理是硝酸根在紫外光区190~240nm有较强吸收,通过色谱柱分离后在紫外分光光度计上检测硝酸根含量,再将其换算为氮含量。 高效液相色谱法使用C18柱,以0.04molL-1磷酸二氢钾水溶液为流动相,在230nm波长下测定硝态氮含量,相关系数为0.9997,最低检测浓度为1×106mgmL。此法具有准确度和精密度高,定量分析简便、快捷、准确的特点。 1.2.2复合肥料中总氮测定 1.2.2.1凯氏定氮法 测定原理:将硝酸盐在酸性介质环境中还原成铵盐;在触媒存在下,用浓硫酸进行消化,将有机态氮或尿素态氮和氰氨态氮转化为硫酸铵;将从碱性溶液中蒸馏出的氮,吸收在硼酸溶液中;在甲基红、甲酚绿混合指示剂存在下,用硫酸或盐酸标准溶液进行滴定分析。 凯氏定氮法测定复合肥料总氮含量的实测结果与理论值非常接近,该方法检测速度快,消耗

植物生长五大要素

~~ 植物生长五大要素~~ 1.光线。 2.温度。 3.湿度。 4.空气。 5.土壤。 ~~1.[光线]~~ 光线就是光照,绿色植物中的叶绿素是由光线的光合作用.水分和二氧化碳制造而成, 所以植物没有光线就不能生存。 观赏花木从需光的程度,大致分为三大类: 阳性植物类.阴性植物类.中性植物类等。 如果我们能够谻豝植物是属于那一类,即可按其光线的需要,栽植在适当的位置,生育才能正常。 反之,栽植的地点不符合光线的需求,生长必会逐渐转劣,甚至罗患病害而亡。 A. 阳性植物类(观花植物占大多数) 阳性植物需光量多,栽培地点日照要充足,日照不足则生育不良, 此类植物不适合做室内植物。 在观赏植物中,以观花为主的草花类.球根花卉类.木本花卉类或庭园树等,大多数是阳性植物, 如鸡冠花.百日草.大波斯菊.松叶牡丹.金鱼草.爆竹红.矮牵牛.三色菫.孤挺花.郁金香.水仙.玫瑰.九重葛.紫薇等。 少数是观叶植物,如彩叶草.雁来红.红苋草.绿苋草.草坪类等。 B. 阴性植物类(观叶植物占大多数) 阴性植物需光量较少,在强烈光线下,容易产生日烧.脱水枯萎等伤害, 喜欢在日照不足或有遮荫的散漫柔和光照下生长,这类植物耐阴性强,适合做室内植物。

此类植物以观叶植物占大多数,如粗肋草类.蔓绿绒类.黄金葛类.椒草类.万年青类.竹芋类.蕨类等。 极少数是观花植物,如非洲菫.大岩桐.金鱼花.口红花.观赏凤梨类等。 C. 中性(阳阴性)植物类 此类植物介于阳性植物与阴性植物之间,对于光线的适应性较强,在强光下或阴蔽处均能生存, 也适合当室内植物,如朱蕉类.竹蕉类.榕树.马拉巴栗.鹅掌藤等。 D. 植物对光周性的影响 植物对于每日光线照射时间的长短,也会影响生长和开花,这种现象称为光周性,简单归纳为三大类: 1.) 短日照植物: 每天日照缩短在12小时以下,花芽才容易分化开花者,如秋末.冬初至早春开花的圣豵红.螃蟹兰.菊花.长寿花等。 2.) 长日照植物: 每天日照超过12小时以上,花芽才能分化开花者,如春末至夏季开花的金鱼草.球根海棠.翠菊等。 3.) 中性植物: 每天日照之长短,都与开花无关者,这类植物全年不分季节均能开花,如洋绣球.水仙花.三色菫等。 由以上得知植物对每天日照的反应,我们可用电照方法或覆盖遮光方法,延长或缩短光照时数,调解开花期。 E. 光周性花卉种类表

氢氧化镁

氢氧化镁综合介绍 基本介绍: 氢氧化镁(化学式:Mg(OH)2、分子量58.32)是镁的氢氧化物,为白色晶体或粉末,难溶于水,广泛用作阻燃剂、抗酸剂和胃酸中和剂。氢氧化镁在水中的悬浊液称为氢氧化镁乳剂,简称镁乳,用于中和过多的胃酸和治疗便秘。水溶液,呈碱性。用做分析试剂,还用于制药工业。 物化性质: 白色晶体或粉末。水溶液呈碱性。2.36g/cm3。溶于稀酸和铵盐溶液,几乎不溶于水和醇。在水中的溶解度(18℃)为0.0009g/100g 。易吸收空气中的二氧化碳。在碱性溶液中加热到200℃以上时变成六方晶体系结晶。在350℃分解而成氧化镁和水。高于500℃时失去水转变为氧化镁。沸水中碳酸镁可转变为溶解性更差的氢氧化镁。粒径1.5-2μm ,目数10000,白度≥95。 生产工艺: 1、水镁石磨细法 由于由天然水镁石磨细生产氢氧化镁只是一个物理过程,因此需要较纯净的天然水镁石资源。天然矿物水镁石的主要成分是氢氧化镁, 是一种层状结构的氢氧化物, 属于三方晶系, 常见的构造有块状、球状及纤维状, 是迄今自然界发现的含镁量最高的一种矿物。水镁石磨细法制备氢氧化镁, 是将水镁石粉碎成水镁石粉 ( 150μm ) , 再将水镁石粉气流粉碎至 1~ 26μm 粉体 ( 由表面活性剂改性的氢氧化镁 ) 。该氢氧化镁制造工艺简单, 价格也较低。该方法生产的是重质氢氧化镁。 2、化学合成法 化学合成法是利用含有氯化镁的卤水、卤矿等与苛性碱类物质在水介质中反应, 生成氢氧化镁浆料, 经过滤、洗涤、干燥制得氢氧化镁。化学合成法中应用较多的方法包括氢氧化钙法、氨法、氢氧化钠法。采用这些方法生产的是轻质氢氧化镁。氢氧化钙法又称石灰乳法, 是以 Ca(OH)2为沉淀剂, 是一种传统的制备 方法。该法优点是原料易得, 生产工艺简单, 成本较低。但是, 由于所得产品粒度小 (可达 0. 51μm 以下) , 聚附倾向大, 难于沉降、过滤及洗涤, 并且易吸附硅、钙、铁等杂质离子,因此产品纯度低, 只适用于对纯度要求不太高的行业, 如烟气脱硫和酸性废水中和等。 氢氧化钠法是采用氯化镁水溶液与烧碱反应制备氢氧化镁。该方法优点是操作简单, 产物的形貌、粒度分布及纯度、晶体结构均易于控制, 适宜制备高纯微细产品。但是, 烧碱的使用会使成本增大;另外, 由于粒度较细, 过滤有一定困 难。用氢氧化钠沉淀卤水生成碱式氯化镁沉淀, 如果要得到氢氧化镁需要在高压 釜中再进行水热处理, 使之转化成氢氧化镁晶体。由于氢氧化钠是强碱, 如果条件控制不当会使生成的氢氧化镁形成胶体, 给产物性能的控制带来困难, 同时 也易带入较多的Na 和 Cl 。与氨法比较, 该方法的母液回收不如氨法容易。 + - +

缺磷对植物生长的影响(1)(1)

磷 元 素 对 植 物 生 长 的 影 响 磷元素对植物生长的影响

摘要:应用溶液培养技术,对番茄幼苗进行缺磷培养,溶液中磷元素的多少必然使植物发生相应的生理生化反应并影响其生长发育而产生相应症状。记录植株的生长情况,元素缺乏症的症状及出现的部位。测量植株的根茎长度、叶子数目及大小。结果显示:磷元素在在植物生长过程中是必不可少的,能促进植物的正常健壮生长,在缺磷的营养液中培养的番茄幼苗,老叶受影响,植株深绿色并出现红或紫色,叶柄短而且纤弱。 关键词:溶液培养,番茄苗,缺磷,红紫色,株高 引言 目前世界上已有许多国家把溶液培养应用到生产上,应用溶液培养进行无污染蔬菜的栽培生产。我国有些单位已将这些方法应用于水稻育苗、花卉栽培和蔬菜生产,同时溶液培养是研究植物矿质营养最基本和最有用的方法,它在阐明植物的必须元素以及奠定施肥的理论基础方面起着重要的作用。在发育过程中,各个营养元素执行一定的生理功能,当植物长期缺少某种元素时,相应地要在形态结构与生理功能等方面发生反应,出现症状。 一、实验目的:熟悉植物的林元素缺乏症的典型症状以及掌握溶液培养技术。 二、实验原理:植物的生长发育,除需要充足的阳光和水分外,还需要矿质元素,否则植物就不能很好地生长发育甚至死亡。应用溶液培养技术,可以观察矿质元素对植物生长的必需性;用溶液培养做植物的营养实验,可以避免土壤里的各种复杂因素。 另外,生物膜结构的组成成分磷脂中含有磷元素,磷元素是DNA和RNA的组成成分,磷元素又是ATP和NADPH的组成元素。磷元素还直接参与糖类的合成和分解,如果植株缺磷后会表现出相应的症状。 三、器材与试剂 1、实验仪器:分析天平、培养缸(瓷质)、移液管、烧杯、量筒 2、实验试剂:按下表分别配置的贮备液(所用药品均须分析试剂级)。

影响农作物生长的主要气象要素

影响农作物生长的主要气象要素 天气与气候对农作物生长具有十分显著的影响,无论是季节的循环还是区域间的不同所造成的地域性差异都会给农作物生长带来直接的影响。本文主要是针对影响农作物生长的主要气象要素进行分析,从而更好的了解不同气象要素变化对农作物生长的影响以及如何应对这种影响。 一、温度影响 温度是农业气象观测中的一项重要指标,温度决定了农作物的光合作用效率,决定了农作物的产量。在农业气象观测中,要做好作物生长三基点的观测,即最适宜温度、最低温度和最高温度。在最适宜温度时,农作物的生长速度最快;在最高温度和最低温度时,其生长基本停止。同时做好昼夜温差的观测,白天光合作用有机物质累积量越大,农作物的产量就越高。在一定的温度范围内,白天的温度越高,其光合作用越强;晚上的温度越低越好,因为温度低可以降低呼吸作用消耗。在选择农作物品种是,要明确该作物是否能适应当地的温度。 农业界限温度标志某些重要物候现象或农事活动之开始、终止或转折点的日平均温度。稳定大于0℃的时期为适宜农耕期,其初日与终日和土壤结冻与解冻相近;稳定大于5℃的时期为越冬作物生长活动期(冬小麦生长活动的起始温度为3℃)和喜凉早春作物的播种期;稳定大于10℃的时期为越冬作物生长活跃期和喜温作物生长活动期,其初日是水稻、棉花等喜温

作物开始播种日期;稳定大于15℃的时期是喜温作物适宜生长期和茶叶的可采摘期,其初日是水稻适宜移栽期,终日是冬小麦的适宜播种期;稳定大于20℃的时期是喜温作物旺盛生长期和耐寒的晚稻安全齐穗期,其初日是水稻分蘖迅速增长开始期,终日是耐寒的水稻安全齐穗大秋作物灌浆的下限日期。 二、光照影响 影响作物生长的光照因素有光照时间和光照强度,2者缺一不可。根据农作物对于光周期的反应不同,可以分为长日照作物和短日照作物以及中间性作物。长日照作物对于每天光照时间要求较多,一般超过14 ~17 h 才会形成花芽,日照愈长,发育愈快,如小麦、马铃薯、油菜等;而短日照作物需要每天的日照时间一般不超过12h,日照愈短,发育愈快,如水稻、玉米、大豆等;中间性作物对日照长短不敏感没有要求,如荞麦、茄子等。 光照是农作物进行光合作用的能量来源,是叶绿体发育和叶绿素合成的必要条件,光能调节农作物体内某些酶的活性,因此光照对农作物的生长发育影响很大。光照与农作物光合作用没有固定的比例关系,但是在一定光照强度范围内,在其他条件满足的情况下,随着光照强度的增加,光合作用的强度也相应的增加。但光照强度超过光的饱和点时,光照强度再增加,光合作用强度不增加。光照强度过强时,会破坏原生质,引起叶绿素分解,或者使细胞失水过多而使气孔关闭,造成光合作用减弱,甚至停止。光照强度弱时,农作物光合作用制造有机

园林植物的影响因素

第五章园林植物的影响因素 植物为活的有机体,在生长发育过程中,不断受到内在因素的影响,同时受外界条件的综合影响,较明显者为:温度、水分、土壤、空气、人类活动等。 一、温度 随海拔升高、纬度(北半球)北移而降低; 随海拔降低、纬度(北半球)南移而升高。 南---------北:常绿----落叶 阔叶----针叶 (一)温度三基点 1、温度变化----影响植物的光合作用、呼吸作用、蒸腾作用等生理作用。 (1)最低温度 (2)最适温度 (3)最高温度 2、一般植物0—35oC范围内,温度上升,生长加速, 温度下降,生长减缓 (二)温度的影响 1、温度影响植物的休眠和萌芽 2、低温使植物遭受寒害和冻害 3、高温影响植物质量 4、温度与物候的关系 5、温度与各气候带的植物景观 (1)寒温带针叶林景观 (2)温带针阔叶混交林景观 (3)暖温带落叶阔叶林景观 (4)亚热带常绿阔叶林景观 (5)热带季雨林、雨林景观 二、水分 1、水的作用: (1)影响植物的光合作用、呼吸作用、蒸腾作用等生理作用 (2)植物生存的物质条件之一

(3)影响植物的形态结构、生长发育、繁殖、种子传播的生态因子之一 (4)可形成特殊的植物景观 2、植物分类(依植物对水分变化的适应能力) (1)旱生植物:少量水分即可满足生长发育 树干矮小、树冠稀疏、根系发达、夜小而厚, 有的退化成针状,表面有角质层或生绒毛 如:仙人掌 (2)湿生植物:与(1)对立 一般根系不发达,生长发育需要大量水分抗旱能力差 如:秋海棠、酢浆草 (3)中生植物:介于(1)(2)之间 如:水淹可正常生长:旱柳、乌桕、水杉 水淹会死亡:梧桐、桃、李、木瓜、雪松(4)水生植物:植物的全部或部分必须在静水或流水中生长 如:王莲 三、光照 (一)植物对光照的要求,通过以下两点表示 (1)光补偿点 (2)光饱和点 (二)植物分类(依光照强度) (1)阳性植物:要求较强光照,不耐庇荫 (2)阴性植物:要求较弱光照 (3)中性植物(耐荫植物) 备注:耐荫是相对的,与纬度、气候、年龄、土壤密切相关 四、土壤(植物生长发育的基质) (一)土壤物理性质的影响 主要指土壤的机械组成 (二)土壤厚度的影响 涉及土壤水分、养分多寡及承重问题 (三)土壤酸碱度(PH) 影响矿物质养分溶解、转化、吸收 (四)植物分类

缺磷对植物生长的影响

缺磷对植物生长的影响 王林青 2009014040313 【河北农业大学农学院植物科学与技术专业0903 】 摘要:环境中磷元素的多少必然使植物发生相应的生理生化并影响其生长发育而产生相应症状。磷素的缺乏会影响核蛋白形成,抑制细胞分裂与增殖,使作物生长发育延缓或停止。玉米缺磷,苗期生长缓慢,叶片呈紫红色,生长速率下降;根冠比改变;根的活力及物质合成受影响,从而影响到植物生长及粮食产量[1-2]。本实验以沈玉26品种为材料,运用培养液为基础进行植物溶液缺磷培养。以茎高,根冠比,叶绿素含量等确定植株的光和能力及生长情况。本实验表明:磷素在植物生长过程中是必不可少的元素,能促进植物的正常健壮生长,缺乏磷元素会导致植物生长缓慢或停滞,影响作物产量。在实验中出现的症状可以指导实际生产合理施肥。 关键词:玉米磷缺素培养根冠比叶绿素缺素症状 引言:玉米是世界第三大粮食作物,也是我国主要的粮食作物,饲料作物及工业原料是改善人民生活和出口外贸的重要资源之一,对农业和畜牧业具有十分重要的意义[3]。缺磷是限制玉米生产的重要因素之一。磷作为植物生长发育所必需的大量元素之一,它不仅是核酸和生物膜的重要组分,而且在能量代谢、光合作用、呼吸作用、酶活性调节、氧化还原反应、信号传导和碳代谢等方面也扮演重要角色[2]。环境中磷元素的多少必然使植物发生相应的生理生化并影响其生长发育而产生相应症状。为了提高玉米的产量和品质,在农业栽培技术和作物育种上开展各项研究的同时掌握作物个体发育对外界环境条件

营养需求极为重要,磷是自然生态系统中存在的必需元素,它既是植物体内许多重要的有机化合物的组成成分,在结构和生理上起着重要作用,同时又以多种方式参与植物体内的各种生理代谢过程,对促进植物生长发育和新陈代谢以及作物的早熟高产优质都起着重要作用[4]。缺少磷元素时,植物生长缓慢,叶小,分枝或分蘖减少,植株矮小,叶色暗绿,抗性减弱。 本实验通对玉米幼苗在缺磷的生长状况,地上与地下部分的形态观察及生理指标和叶绿素的含量的测定,做出实验分析,以证明磷元素是玉米生长必需的重要元素,对玉米的生长有重要作用,也可通过玉米缺磷表现指导施肥。 内容: 1.材料与方法 1.1材料 实验材料为沈玉26号玉米品种及其生长幼苗 1.2方法 1.2.1播种 在花盆中加满蛭石,选择饱满的沈玉26号种子4-6粒分散种在花盆中,每3个花盆放在1个托盘中,向托盘内加适量自来水,待种子发芽。 1.2.2移栽 移栽前向托盘内加入少量自来水,右手捏住幼苗基部,左手将花盆拿起倒扣,右手将幼苗取出,平展放于桌上,在两个托盘中选取6

缺磷对植物生长的影响

缺磷对植物生长的影响 Revised by BLUE on the afternoon of December 12,2020.

磷 元 素 对 植 物 生 长 的 影 响 磷元素对植物生长的影响 摘要:应用溶液培养技术,对番茄幼苗进行缺磷培养,溶液中磷元素的多少必然使植物发生相应的生理生化反应并影响其生长发育而产生相应症状。记录植株的生长情况,元素缺乏症的症状及出现的部位。测量植株的根茎长度、叶子数目及大小。结果显示:磷元素在在植物生长过程中是必不可少的,能促进植物的正常健壮生长,在缺磷的营养液中培养的番茄幼苗,老叶受影响,植株深绿色并出现红或紫色,叶柄短而且纤弱。

关键词:溶液培养,番茄苗,缺磷,红紫色,株高 引言 目前世界上已有许多国家把溶液培养应用到生产上,应用溶液培养进行无污染蔬菜的栽培生产。我国有些单位已将这些方法应用于水稻育苗、花卉栽培和蔬菜生产,同时溶液培养是研究植物矿质营养最基本和最有用的方法,它在阐明植物的必须元素以及奠定施肥的理论基础方面起着重要的作用。在发育过程中,各个营养元素执行一定的生理功能,当植物长期缺少某种元素时,相应地要在形态结构与生理功能等方面发生反应,出现症状。 一、实验目的:熟悉植物的林元素缺乏症的典型症状以及掌握溶液培养技术。 二、实验原理:植物的生长发育,除需要充足的阳光和水分外,还需要矿质元素,否则植物就不能很好地生长发育甚至死亡。应用溶液培养技术,可以观察矿质元素对植物生长的必需性;用溶液培养做植物的营养实验,可以避免土壤里的各种复杂因素。 另外,生物膜结构的组成成分磷脂中含有磷元素,磷元素是DNA和RNA的组成成分,磷元素又是ATP和NADPH的组成元素。磷元素还直接参与糖类的合成和分解,如果植株缺磷后会表现出相应的症状。 三、器材与试剂 1、实验仪器:分析天平、培养缸(瓷质)、移液管、烧杯、量筒 2、实验试剂:按下表分别配置的贮备液(所用药品均须分析试剂级)。 3、实验材料:番茄种子 四、实验步骤

氮磷钾对植物作用

目录 1. 1 氮 2. 2 磷 3. 3 钾 氮磷钾氮 编辑 是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。 氮素是植物体内蛋白质、核酸和叶绿素的组成成分[1],叶绿素a和叶绿素b;都是含氮化合物。绿色植物进行光合作用,使光能转变为化学能,把无机物(二氧化碳和水)转变为有机物(葡萄糖)和氧气,是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造“粮食”的工厂。氮也是植物体内维生素和能量系统的组成部分。 氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长快,能有更多的叶面积用来进行光合作用。 此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。这就使得我们能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科作物则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,生长量增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用甜菜,氮素过多时,有时表现为叶子的生长量显著增加,但具有经济价值的块根产量却少得使人失望。 我国土壤全氮含量的分布 植物养分的主要来源是土壤。我国土壤全氮含量的基本分布特点是:东北平原较高,黄淮海平原、西北高原、蒙新地区较低,华东、华南、中南、西南地区中等。大体呈现南北较高,中部略低的分布。但南方略高主要指水稻土,旱地含氮量很低。 一般认为土壤全氮含量<0.2%即有可能缺氮,我国大部分耕地的土壤全氮含量都在 0.2%以下,这就是为什么我国几乎所有农田都需要施用化学氮肥的原因。 我国农田相对严重缺氮的土壤主要分布在我国的西北和华北地区。如果把土壤全氮含量等于0.075% 作为严重缺氮的界限,严重缺氮耕地超过面积一半的有山东、河北、河南、陕西、新疆等五个省区。 氮磷钾磷 编辑

影响植物生长的因素概论

影响植物生长的因素无非就以下几个 一土壤 家庭栽培宜选用排水良好、疏松透气、富含有机质的土壤。栽种前应清除杂草和虫卵,并充分曝晒。如果是黏性较大的土壤,可掺入适量的细砂石、珍珠岩、蛭石或腐殖质等加以改善。土壤酸碱度对花卉影响也很大。一般草花简易使用泥炭和珍珠岩的混合。 二水分 家庭种花多以盆栽为主,浇水应遵循间干间湿的原则,不干不浇、浇则浇透,让土壤有干湿循环。但在实际操作中,还应结合植物的自身特性以及周围环境的具体情况,不要千篇一律。夏天高温天气则尤其应避免使土壤过度湿润,以免因高温高湿而诱发各种病害。 三温度 非常关键,人的适宜温度也是植物生长的最适宜温度。上海地区大部分植物夏季请适当降温,冬季请移到室内。 四光照 注意看清每一种花种植资料里对于光照的说明,比如“全日照”、“半日照”等,以便给植物选择正确的摆放或栽培位置。如果错误选择日照条件,比如将需要全日照的矮牵牛栽种在光照不足的地方,则容易出现徒长并且花量稀少;而喜半荫的非洲凤仙如果长时间接受强

光照射,则容易使叶片灼伤、掉蕾。各种花对光的需求不同,顺应植物的生长状况摆放会让植物长得更好。 五施肥 施肥可分为基肥(也称底肥)和追肥。基肥是在植物换盆或定植时施放在土壤底部,提供花草生长所需的基本营养并改良土质。基肥可以是有机肥料(腐熟的动物粪肥、骨粉、油粕等)也可以是化学肥料(复合肥、奥绿控释肥等)。而追肥则是在植物生长过程中视需要而施放,一般以化学肥料为主。可以将颗粒状肥料撒于土壤表面,或是沿花盆边缘挖浅沟放入,或是用水溶性的液肥直接灌根或叶面喷施。植物的枝叶生长阶段,应施入以氮为主的肥料(例如花多多10号),而花期所使用的肥料中,应有较高的磷含量(例如花多多2号)。施肥宜在傍晚进行,遵循“薄肥勤施”的原则,施肥前盆土应稍干, 或稍稍松土

水合二氧化钛(偏钛酸)煅烧

水合二氧化钛(偏钛酸)煅烧 煅烧是水合二氧化钛转变成二氧化钛的过程,这一步操作过程的要求是:(a)通过脱水脱硫使物料达到中性;(b)最好使希望的晶型得到100%的转化;(c)粒子成长大小均匀整齐,对颜料级钛白粉要求在0.2~0.3μm之间;(d)粒子的形状最好近似球型;(e)要求煅烧后生成的二氧化钛没有晶格缺陷,物理化学性质稳定。 水合二氧化钛的煅烧是一个强烈的吸热反应,工业上一般在回转窑内进行,采用直接内加热,其化学反应式如下: 但是水合二氧化钛的煅烧绝非是上述反应中的加热脱水和脱硫的过程,它还涉及到TiO2粒子的成长、聚集和晶型转化等过程,因此随着煅烧温度的提高,二氧化钛的各种物性也随之发生变化。 一般水合二氧化钛在150~300℃之间是脱去游离水和结晶水的过程,650℃左右为脱硫过程,700~950℃期间开始锐钛型向金红石型转化,在碱金属催化剂(盐处理剂)的存在下,转化温度可降低,转化速率可加快。 在煅烧过程中二氧化钛的相对密度,随着晶型结构的改变而变化,从600℃的3.92(锐钛型)到1000~1200℃金红石型的4.25,加入促进剂后金红石型的转化温度可降低至 850~900℃。 折射率也随煅烧温度的改变而改变,通过煅烧可以使无定晶型的水合二氧化钛1.8的折射率,转化成锐钛型时的2.55和金红石型的2.71。 在煅烧过程中二氧化钛的粒径也不断发生变化,水合二氧化钛通常是0.6~0.7μm的微晶胶体的聚集体,它们是由3~10mμm的微晶组成,在煅烧时不断增大,至750℃时这些微晶体一般都长大到0.2~0.4μm,同时粒子的表面积减少到1/10~1/20,在转化成一定晶型后这些颜料粒子的大小基本上不发生太大的变化,但是继续升高温度长时间的煅烧,粒子会进一步聚集在一起成为大颗粒。 煅烧的结果使二氧化钛获得必要的颜料性能(消色力、遮盖力等),同时二氧化钛的光化学活性减弱,在酸中的溶解度降低,化学性质趋于稳定。上图是水合二氧化钛和石英对比的差热分析,从图中可以看出由于脱水所产生的吸热过程发生在150℃,脱硫的吸热过程发生

金红石型纳米二氧化钛制备中的若干影响因素

第31卷第4期 2004年北京化工大学学报 JOURNAL OF BEI J IN G UN IV ERSIT Y OF CHEMICAL TECHNOLO GY Vol.31,No.4 2004 金红石型纳米二氧化钛制备中的若干影响因素 侯 强 郭 奋 (北京化工大学教育部超重力工程研究中心,北京 100029) 摘 要:实验以TiCl 4为原料,采用液相沉积法在低温条件下直接制备了金红石型纳米二氧化钛。重点研究了反应物浓度、温度、p H 值、添加剂和煅烧等条件对产物形貌和尺寸的影响。经透射电子显微镜(TEM )、X 2射线衍射 (XRD )和比表面分析(BET ),得到的样品为金红石型,其粒子近似呈球形,通过控制反应条件可以得到不同粒径的 分散均匀的纳米二氧化钛粉体。关键词:液相沉积法;二氧化钛;金红石型中图分类号:TM201 收稿日期:2003212223 第一作者:男,1978年生,硕士生3通讯联系人 E 2mail :guof @https://www.wendangku.net/doc/0816958570.html, 金红石型纳米二氧化钛在精细陶瓷,高档涂料,防晒化妆品等许多领域有极广泛的用途[124]。金红石型是最稳定的晶型,结构致密,与锐钛型相比有较高的硬度、密度、介电常数与折光率。但是,传统金红石型二氧化钛的制备需经高温固相反应,经历由无定形→锐钛矿→金红石的转化过程。通常情况下,锐钛型到金红石型TiO 2的相转变温度为400~1000℃,转变温度与反应条件及前驱物结构密切相 关。通常认为钛盐(TiCl 4和Ti (SO 4)2)溶液室温水解产物如不经热处理为不稳定形物。以TiCl 4为前驱体制备TiO 2超微粉的方法有气相水解法、火焰水解法和激光热解法,均系高温反应过程,对设备的耐腐蚀材质要求很高,技术难度较大[527]。通过查阅相关文献[5],发现一定浓度的TiCl 4溶液在低温下可以获得结晶完好的纳米金红石型TiO 2颗粒,避免了实现晶型转化的煅烧过程,具有流程短、能耗少、成本低的优势,使得低成本低温液相一步合成纳米金红石型二氧化钛成为可能。本文重点研究了在 金红石型纳米二氧化钛制备中的若干影响因素:反应物浓度、温度、p H 值、添加剂和煅烧。 1 实验方法 将装有一定量去离子水的四口烧瓶置于冰水浴中,加入一定量六偏磷酸钠作为分散剂,将浓盐酸加 入水中,调节水溶液的p H 值为015~310,缓慢滴加浓度一定的四氯化钛溶液,滴加氨水调节p H 值为一恒定值,加热至70℃水解3h ,陈化12h ,过滤、水洗、醇洗、干燥,即可得到TiO 2样品。 利用日立H 2800型电子显微镜观测粒子的形 貌和尺寸,X 射线衍射仪(X ’Pert Philiphs )来确定纳米二氧化钛的晶型,比表面分析仪测定颗粒的比表面积,从而推算出纳米TiO 2粒径大小。 2 结果和分析 211 水解机理分析 TiCl 4和水之间的反应剧烈且复杂,这与温度和 其它条件有关。其反应产物通常为TiCl 4?5H 2O (水 量充足)或TiCl 4?2H 2O (水量不足或低温),然后该化合物继续发生如下水解反应 TiCl 4+5H 2O TiCl 4?5H 2O (1)TiCl 4?5H 2O TiCl 3(OH )?4H 2O +HCl (2)TiCl 3(OH )?4H 2O TiCl 2(OH )2?3H 2O + HCl (3) TiCl 2(OH )2?3H 2O TiCl (OH )3?2H 2O + HCl (4) TiCl (OH )3?2H 2O Ti (OH )4?H 2O +HCl (5) Ti OH —HO —Ti Ti O —Ti +H 2O (6) 水解产物Ti (OH )4?H 2O 在静置、洗涤或加热过程中会逐渐失去水而变成(H 2TiO 3),以上反应是可逆、分步水解反应过程,同时水解产物Ti (OH )4?

氧化镁用途

氧化镁的用途广泛,应用于:化工产品-水硫酸镁、七水硫酸镁,耐火材料方面是制作炼钢镁球炉底料的主要原料。建筑方面广泛应用于集装箱、防火板、工艺美术、蔬菜大棚、墙体保温板、活动板、石棉瓦等制作。以及磁性材料、工程塑料、新型橡胶、医药化工、石油化工、冶金材料、粘胶剂、油漆、石墨、陶瓷等领域,另外还可作有机化学品的催化剂、促进剂、活性剂、食品及饲料填加剂等。 工业氧化镁的分类与用途 一轻质氧化镁:主要用于橡胶.染料.催化剂.钢球抛光.电子陶瓷.黏合剂等诸多行业,应用面广泛。 二活性氧化镁:主要用于医用橡胶制品、胶粘剂等行业。 三胶粘剂专用氧化镁:用于高档胶粘剂方面具有吸碘值高、分散性好、含铁量低等诸多优点,与树脂熬合能有效防止胶液分层和沉淀,可使胶液透明度提高耐热,提高胶液存放稳定性。 四电缆橡胶专用氧化镁:用于橡套电缆、矿用电缆、船用电缆等行业,可使电缆提高防腐、耐酸,抗高温等性能,提高恶劣条件下工作稳定性。 五浓硝酸专用氧化镁:用于稀硝酸提纯生产浓硝酸,主要在生产过程中起到吸水作用。六饲料级氧化镁:用于动物饲料的添加剂,可防止因缺镁引起的动物饲料神经系统疾病。

七医药级氧化镁:用于医药中间体和胃药添加剂,可有效控制胃酸和十二指溃疡等作用。八高纯氧化镁:主要用于耐高温作业,用于钢铁行业炼钢炉衬里、出口,等行业。 九氢氧化镁:阻燃剂,主要用于防腐耐火等行业,防火板,阻燃电缆等行业。 十刹车片专用氧化镁:主要用于耐磨材料,耐高温防燃剂,提高材质稳定性等特点。 十一其他特殊行业专用氧化镁:如试剂级等。 氧化镁氯化镁氧化镁的用途广泛应用于:化工产品-水硫酸镁、七水硫酸镁,耐火材料方面是制作炼钢镁球炉底料的主要原料。建筑方面广泛应用于集装箱、防火板、工艺美术、蔬菜大棚、墙体保温板、活动板、石棉瓦等制作。有一种至今还没有人使用的新型涂料,这种涂料名为“镁漆”,镁漆防火、防锈、防霉、防蚀、防水;由其是防火性能现今没有几种物质材料可以相比,上万度的高温对他都无可奈何,甚至用于高超音速的战机机头和弹道导弹弹头的防高温涂料亦是可行;镁漆与金属特别是钢铁沾合性能很好,沾上凝固后怎样都刮不下来,除非用钢砂打掉一层钢表,是一种永久性的涂料;镁漆的生产工艺很简单,可以随用随生产,只要掌握配方和温度控制就可以;镁漆生产成本偏低只是油漆的三份之一或一半;美漆不含油基,无毒、无臭、无污染,即使吃少量下肚子里也无大害(当然无人会吃)另外,镁漆是一种环保防火涂料,纽约世贸大厦如是用它来涂抹结构钢架,作防火防锈的涂料,不一定会倒塌;镁漆是纯白色的而且越泡在水里越白,不会发黑发黄,喜欢什么颜色生产时加添色素就可以,很方便,悉随尊便·镁漆是一种理想的

水合二氧化钛煅烧

水合二氧化钛煅烧 煅烧是水合二氧化钛转变成二氧化钛的过程,这一步操作过程的要求是:(a)通过脱水脱硫使物料达到中性;(b)最好使希望的晶型得到100%的转化;(c)粒子成长大小均匀整齐,对颜料级钛白粉要求在0.2~0.3μm之间;(d)粒子的形状最好近似球型;(e)要求煅烧后生成的二氧化钛没有晶格缺陷,物理化学性质稳定。 水合二氧化钛的煅烧是一个强烈的吸热反应,工业上一般在回转窑内进行,采用直接内加热,其化学反应式如下: 粒子的成长、聚集和晶但是水合二氧化钛的煅烧绝非是上述反应中的加热脱水和脱硫的过程,它还涉及到TiO 2 型转化等过程,因此随着煅烧温度的提高,二氧化钛的各种物性也随之发生变化。 一般水合二氧化钛在150~300℃之间是脱去游离水和结晶水的过程,650℃左右为脱硫过程,700~950℃期间开始锐钛型向金红石型转化,在碱金属催化剂(盐处理剂)的存在下,转化温度可降低,转化速率可加快。 在煅烧过程中二氧化钛的相对密度,随着晶型结构的改变而变化,从600℃的3.92(锐钛型)到1000~1200℃金红石型的4.25,加入促进剂后金红石型的转化温度可降低至850~900℃。 折射率也随煅烧温度的改变而改变,通过煅烧可以使无定晶型的水合二氧化钛1.8的折射率,转化成锐钛型时的2.55和金红石型的2.71。 在煅烧过程中二氧化钛的粒径也不断发生变化,水合二氧化钛通常是0.6~0.7μm的微晶胶体的聚集体,它们是由3~10mμm的微晶组成,在煅烧时不断增大,至750℃时这些微晶体一般都长大到0.2~0.4μm,同时粒子的表面积减少到1/10~1/20,在转化成一定晶型后这些颜料粒子的大小基本上不发生太大的变化,但是继续升高温度长时间的煅烧,粒子会进一步聚集在一起成为大颗粒。

气象对园林植物的影响

气象对园林植物的影响 摘要:概述各种气象因子对园林植物的影响,研究气象与园林植物的关系;具体分析光、温度、水分及空气对园林植物的影响,探寻其实践应用方法。 关键词:气象园林植物光照温度水分空气 一、气象与园林植物的关系 影响植物生长的因素有很多,而气象对园林植物就有深远的影响,大到植物带的分布小到植物的生长发育。气象学包括各种气象因素,而对于园林植物来说,气象对其影响有很多方面,如植物的生长发育离不开气象这个大环境,植物的分布、色彩大小等等都离不开它。而最普遍的影响因素莫过于光、温度、水分和空气。故气象与园林植物的关系就是影响与被影响的关系,而我们接下来要探讨的就是四大气象因素对园林植物的影响。 二、气象因子的具体影响 (一)光照因子对园林植物的影响 植物生长离不开光,绿色植物通过光合作用将光能转化为化学能,储存在有机物中,各种植物都要求在一定的光照条件下才能正常生长,太阳辐射在地球表面随时间和空间发生有规律的变化,直接影响着植物的生长和发育。所以光因子对园林植物的影响居重要地位,为此我们应该具体分析: 1) 光谱对植物的影响不同波长的光照因子对植物的生长发育、种子萌发、叶绿素合成及形态形成的作用是不一样的。太阳辐射光谱不能全被植物吸收。植物吸收用于光合作用的辐射能称为生理辐射,主要指红橙光、蓝紫光和紫外线。 ①红橙光被叶绿素吸收最多,光合作用活性最大,蓝紫光的同化效率仅为红橙光的14%。红橙光有利于叶绿素的形成及碳水化合物的合成,加速长日照植物的生长发育,延迟短日照植物的发育,促进种子萌发; ②蓝紫光有利于蛋白质合成,加速短日照植物的发育,延迟长日照植物的发育。紫外线有利于维生素 C 的合成。 ③在紫外线辐射下,许多微生物死亡,能大大减少植物病虫害的传播。紫外线也能抑制植物茎的伸长,引起向光敏感性和促进花青素的形成。 在诱导形态建成、向光性及色素形成等方面,不同波长的光,其作用也不同。如蓝紫光抑制植物的伸长,使植物形成矮小的形态;而红光有利于植物的伸长,如用红光偏多的白炽灯照射植物,可引起植物生长过盛的现象。青蓝紫光还能引起植物的向光敏感性,并促进花青素等植物色素的形成。紫外线能抑制植物体内某些生长素的形成,以至于植物的白天生长速度常不及夜间。 生长期内生长素受侧方光线的影响,在迎光一面生长素少于背光面,造成背光面生长速度快于迎光面,产生所谓植物向光运动。 2) 光照强度对植物的影响 光照强度主要影响园林植物的生长和开花。园林植物对光强的要求,通常通过补偿点和光饱和点来表示。植物与光照强度的关系不是固定不变的。随着年龄和环境条件的改变会相应的发生变

相关文档
相关文档 最新文档