文档库 最新最全的文档下载
当前位置:文档库 › 《坐标系与参数方程》练习题(含详解)

《坐标系与参数方程》练习题(含详解)

《坐标系与参数方程》练习题(含详解)
《坐标系与参数方程》练习题(含详解)

数学选修4-4 坐标系与参数方程

[基础训练A 组]

一、选择题

1.若直线的参数方程为12()23x t

t y t =+??=-?

为参数,则直线的斜率为( )

A .

23 B .2

3- C .32 D .32

-

2.下列在曲线sin 2()cos sin x y θ

θθθ=??=+?

为参数上的点是( )

A

.1(,2 B .31

(,)42

-

C

. D

. 3.将参数方程2

2

2sin ()sin x y θ

θθ

?=+??=??为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )

A .2

01y y +==2

x 或 B .1x = C .2

01y +==2

x 或x D .1y = 5.点M

的直角坐标是(1-,则点M 的极坐标为( )

A .(2,

)3π

B .(2,)3π-

C .2(2,)3π

D .(2,2),()3

k k Z π

π+∈

6.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )

A .一条射线和一个圆

B .两条直线

C .一条直线和一个圆

D .一个圆

二、填空题 1.直线34()45x t

t y t

=+??

=-?为参数的斜率为______________________。

2.参数方程()2()

t t

t t

x e e

t y e e --?=+??=-??为参数的普通方程为__________________。 3.已知直线113:()24x t

l t y t

=+??

=-?为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,

则AB =_______________。

4.直线122

()112

x t t y t ?=-???

?=-+??为参数被圆224x y +=截得的弦长为______________。 5.直线cos sin 0x y αα+=的极坐标方程为____________________。 三、解答题

1.已知点(,)P x y 是圆222x y y +=上的动点, (1)求2x y +的取值范围;

(2)若0x y a ++≥恒成立,求实数a 的取值范围。

2

.求直线11:()5x t

l t y =+???

=-+??为参数

和直线2:0l x y --=的交点P 的坐标,及点P 与(1,5)Q -的距离。

3.在椭圆

2211612

x y +=上找一点,使这一点到直线2120x y --=的距离的最小值。

数学选修4-4 坐标系与参数方程

[综合训练B 组]

一、选择题

1.直线l 的参数方程为()x a t

t y b t

=+??=+?为参数,l 上的点1P 对应的参数是1t ,则点1P 与(,)P a b 之间的距离

是( )

A .1t

B .12t C

1 D

1 2.参数方程为1()2

x t t t y ?

=+

???=?为参数表示的曲线是( )

A .一条直线

B .两条直线

C .一条射线

D .两条射线

3

.直线112()x t t y ?=+??

??=-??为参数和圆2216x y +=交于,A B 两点,

则AB 的中点坐标为( )

A .(3,3)- B

.( C

.3)- D

.(3, 4

.圆5cos ρθθ=-的圆心坐标是( )

A .4(5,)3

π

--

B .(5,)3π-

C .(5,)3π

D .5(5,)3π-

5

.与参数方程为)x t y ?=??

=??为参数等价的普通方程为( ) A .214y +=2

x B .21(01)4

y x +=≤≤2x C .21(02)4y y +=≤≤2

x D .21(01,02)4

y x y +=≤≤≤≤2

x 6.直线2()1x t

t y t

=-+??

=-?为参数被圆22(3)(1)25x y -++=所截得的弦长为( )

A

B .1

404

C

D

二、填空题

1.曲线的参数方程是211()1x t t y t ?

=-

?≠??=-?

为参数,t 0,则它的普通方程为__________________。

2.直线3()14x at

t y t

=+??

=-+?为参数过定点_____________。

3.点P(x,y)是椭圆2

2

2312x y +=上的一个动点,则2x y +的最大值为___________。

4.曲线的极坐标方程为1

tan cos ρθθ

=?

,则曲线的直角坐标方程为________________。 5.设()y tx t =为参数则圆2240x y y +-=的参数方程为__________________________。 三、解答题

1.参数方程cos (sin cos )

()sin (sin cos )x y θθθθθθθ=+??=+?

为参数表示什么曲线?

2.点P 在椭圆

22

1169

x y +=上,求点P 到直线3424x y -=的最大距离和最小距离。

3.已知直线l 经过点(1,1)P ,倾斜角6

π

α=,

(1)写出直线l 的参数方程。

(2)设l 与圆42

2

=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积。

数学选修4-4 坐标系与参数方程.

[提高训练C 组]

一、选择题

1.把方程1xy =化为以t 参数的参数方程是( )

A .1

21

2x t y t -?=???=?

B .sin 1sin x t y t =???=??

C .cos 1cos x t y t =???=??

D .tan 1tan x t y t =???=?? 2.曲线25()12x t

t y t =-+??

=-?

为参数与坐标轴的交点是( )

A .21(0,)(,0)5

2

B .11(0,)(,0)52、

C .(0,4)(8,0)-、

D .5

(0,)(8,0)9

、 3.直线12()2x t

t y t

=+??

=+?为参数被圆229x y +=截得的弦长为( )

A .

125 B

C

D

4.若点(3,)P m 在以点F 为焦点的抛物线2

4()4x t t y t

?=?=?为参数上,

则PF 等于( ) A .2 B .3 C .4 D .5

5.极坐标方程cos 20ρθ=表示的曲线为( )

A .极点

B .极轴

C .一条直线

D .两条相交直线

6.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )

A .cos 2ρθ=

B .sin 2ρθ=

C .4sin()3π

ρθ=+ D .4sin()3

π

ρθ=-

二、填空题

1.已知曲线2

2()2x pt t p y pt

?=?=?为参数,为正常数上的两点,M N 对应的参数分别为12,t t 和,120t t +=且,

那么MN =_______________。

2

.直线2()3x t y ?=-??=+??为参数上与点(2,3)A -

_______。

3.圆的参数方程为3sin 4cos ()4sin 3cos x y θθ

θθθ

=+??

=-?为参数,则此圆的半径为_______________。

4.极坐标方程分别为cos ρθ=与sin ρθ=的两个圆的圆心距为_____________。

5.直线cos sin x t y t θθ=??

=?与圆42cos 2sin x y α

α

=+??=?相切,则θ=_______________。

三、解答题

1.分别在下列两种情况下,把参数方程1()cos 2

1()sin 2

t t

t t x e e y e e θθ--?=+????=-??化为普通方程:

(1)θ为参数,t 为常数;(2)t 为参数,θ为常数;

2

.过点P 作倾斜角为α的直线与曲线22121x y +=交于点,M N , 求PM PN ?的值及相应的α的值。

新课程高中数学训练题组参考答案

数学选修4-4 坐标系与参数方程 [基础训练A 组]

一、选择题 1.D 233

122

y t k x t --=

==-- 2.B 转化为普通方程:21y x =+,当34x =-

时,1

2

y = 3.C 转化为普通方程:2y x =-,但是[2,3],[0,1]x y ∈∈ 4.

C

(cos 1)0,0,cos 1x ρρθρρθ-=====或

5.C 2(2,2),()3

k k Z π

π+∈都是极坐标 6.C

2cos 4sin cos ,cos 0,4sin ,4sin ρθθθθρθρρθ====或即

则,2

k π

θπ=+或224x y y +=

二、填空题 1.54-

455

344

y t k x t --=

==-- 2.221,(2)416x y x -=≥ 22

()()422222

t t t

t t

t

y x e x e e y y x x y y e e x e ---??+==+?????+-=??=-??-=??? 3.

52 将1324x t y t

=+??=-?代入245x y -=得12t =,则5(,0)2B ,而(1,2)A ,得

5

2AB = 4

直线为10x y +-=,

圆心到直线的距离2d =

=,

2=,

5.2

π

θα=

+ c o s c o s s i n s i n 0,c o s (ρθαρθαθα+=-=,取2

π

θα-=

三、解答题

1.解:(1)设圆的参数方程为cos 1sin x y θ

θ=??=+?

22cos sin 1)1x y θθθ?+=++++

121x y ≤+≤

(2)cos sin 10x y a a θθ++=+++≥

(c o s s i n )2s i n (

)1

4

1

a a π

θθθ∴≥-+-=+-∴≥

2

.解:将15x t

y =+???

=-??

代入0x y --=

得t =,

得(1P +,而(1,5)Q -

,得PQ =3

.解:设椭圆的参数方程为4cos x y θ

θ

=???=??

,d =

o s s i n 2c o s ()3

3

θ

θθθ=

-

+- 当c o s

()13

π

θ+=

时,m i n d =

,此时所求点为(2,3)-。

新课程高中数学训练题组参考答案

数学选修4-4 坐标系与参数方程 [综合训练B 组]

一、选择题

1.C

1=

2.D 2y =表示一条平行于x 轴的直线,而2,2x x ≥≤-或,所以表示两条射线

3.D

22

1(1)()162t +

+-=,得2880t t --=,12128,42t t t t ++==

中点为1143

24x x y y ?

=+??=??????

=?

??=-??4.A

圆心为5(,2 5.D 222

22

,11,1,0,011,0244

y y x t t x x t t y ==-=-+=≥≤-≤≤≤而得

6.C

22211x x t y t y ?=-+??=-+?????=-??=??,把直线21x t y t =-+??

=-?代入

22(3)(1)25x y -++=得222(5)(2)25,720t t t t -++-=-+=

12t t -==

12t -=二、填空题 1.2

(2)

(1)(1)

x x y x x -=

≠- 111,,1x t t x -==-而21y t =-, 即22

1(2)

1(

)(1)1(1)

x x y x x x -=-=≠-- 2.(3,1)-

14

3y x a

+=-,(1)4120y a x -++-=对于任何a 都成立,则3,1x y ==-且 3

椭圆为22

164

x y +=

,设c o s ,2s i n )P θθ,

24sin )x y θθθ?+=++≤

4.2

x y = 2

22

2

1s i n t a n ,c o s s i n ,

c o s s i n ,c o s c o s

θρθρθθρθρθθθ=?

===即2x y =

5.22

24141t x t t y t ?

=??+??=

?+? 22

()40x tx tx +-=,当0x =时,0y =;当0x ≠时,241t x t =+; 而y t x =,即2241t y t =+,得2

2

24141t x t t y t ?

=??+??=

?+?

三、解答题

1.解:显然tan y x θ=,则22

2222

111,cos cos 1y y x x θθ

+==+

2

22

2

112t a n

c o s s i n

c o s

s i n 2c o s c o s

221t a n

x θθθθθθθθ=+=+=?+

+

即22222

222

2

1

11,(1)12111y y

y y x x x x y y y x x x x x

+=?+=+=++++ 得21y y

x x x

+=+,即220x y x y +--= 2.解:设(4cos ,3sin )P θθ,则12cos 12sin 24

5

d θθ--=

即d =

当cos()14

π

θ+=-

时,max 12

(25d =; 当cos()14

π

θ+

=

时,min

12

(25

d =-。 3.解:(1)直线的参数方程为1cos 61sin 6x t y t ππ?=+????=+??

,即1112x y t ?=???

?=+?? (2

)把直线1112

x y t ?=+????=+??代入422=+y x

得2221

(1)(1)4,1)2022

t t t +

++=+-= 122t t =-,则点P 到,A B 两点的距离之积为2

新课程高中数学训练题组参考答案

数学选修4-4 坐标系与参数方程 [提高训练C 组]

一、选择题

1.D 1xy =,x 取非零实数,而A ,B ,C 中的x 的范围有各自的限制

2.B 当0x =时,25t =

,而12y t =-,即15y =,得与y 轴的交点为1

(0,)5; 当0y =时,12t =,而25x t =-+,即12x =,得与x 轴的交点为1

(,0)

2

3.B

11221x x t y t y ?

=+?=+??

???

=+??=+??

,把直线122x t y t =+??=+?代入 229x y +=得222(12)(2)9,5840t t t t +++=+-=

1212

5

t t -===

12t -=4.C 抛物线为24y x =,准线为1x =-,PF 为(3,)P m 到准线1x =-的距离,即为4 5.D cos 20,cos 20,4

k π

ρθθθπ===±

,为两条相交直线

6.A 4sin ρθ=的普通方程为22(2)4x y +-=,cos 2ρθ=的普通方程为2x = 圆22(2)4x y +-=与直线2x =显然相切 二、填空题

1.14p t 显然线段MN 垂直于抛物线的对称轴。即x 轴,121222M N p t t p t

=-= 2.(3,4)-,或(1,2)-

2

2

2

2

1()),,22

t t +==

3.5 由3s i n 4c o s 4s i n 3c o s x y θ

θθ

θ=+??

=-?得2225x y +=

4

圆心分别为1(,0)2和1(0,)2 5.

6

π

,或56π 直线为t a n

y x θ=,圆为22(4)4x y -+=,作出图形,相切时, 易知倾斜角为6

π

,或56π

三、解答题

1.解:(1)当0t =时,0,cos y x θ==,即1,0x y ≤=且; 当0t ≠时,c o s ,s i n 11()()2

2

t t

t t

x y e e e e θθ--=

=

+-

而22

1x y +=,即

2

2

22111()()4

4

t

t t t x y e e e e --+

=+-

(2)当,k k Z θπ=∈时,0y =,1()2

t

t x e e -=±

+,即1,0x y ≥=且; 当,2k k Z πθπ=+∈时,0x =,1()2

t t

y e e -=±-,即0x =;

当,2k k Z πθ≠∈时,得2cos 2sin t t t t x e e y e e θθ--?+=????-=??,即222cos sin 222cos sin t

t x y e x y e θθθθ-?=+????=-

??

得222222(

)()cos sin cos sin t

t

x y x y e e

θθθθ

-?=+- 即22

2

21cos sin x y θθ

-=。 2

.解:设直线为cos ()2

sin x t t y t αα?=

+???=?

为参数,代入曲线并整理得

223(1sin ))02

t t αα+++

= 则122321sin PM PN t t α

?==+ 所以当2

sin 1α=时,即2πα=,PM PN ?的最小值为34,此时2

πα=。

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

因式分解经典题及解析

2013组卷 1.在学习因式分解时,我们学习了提公因式法和公式法(平方差公式和完全平方公式),事实上,除了这两种方法外,还有其它方法可以用来因式分解,比如配方法.例如,如果要因式分解x2+2x﹣3时,显然既无法用提公因式法,也无法用公式法,怎么办呢?这时,我们可以采用下面的办法: x2+2x﹣3=x2+2×x×1+12﹣1﹣3﹣﹣﹣﹣﹣﹣① =(x+1)2﹣22﹣﹣﹣﹣﹣﹣② =… 解决下列问题: (1)填空:在上述材料中,运用了_________ 的思想方法,使得原题变为可以继续用平方差公式因式分解,这种方法就是配方法; (2)显然所给材料中因式分解并未结束,请依照材料因式分解x2+2x﹣3; (3)请用上述方法因式分解x2﹣4x﹣5. 2.请看下面的问题:把x4+4分解因式 分析:这个二项式既无公因式可提,也不能直接利用公式,怎么办呢 19世纪的法国数学家菲?热门抓住了该式只有两项,而且属于平方和(x2)2+(22)2的形式,要使用公式就必须添一项4x2,随即将此项4x2减去,即可得x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2)2﹣(2x)2=(x2+2x+2)(x2﹣2x+2) 人们为了纪念菲?热门给出这一解法,就把它叫做“热门定理”,请你依照菲?热门的做法,将下列各式因式分解. (1)x4+4y4;(2)x2﹣2ax﹣b2﹣2ab. 3.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程. 解:设x2﹣4x=y 原式=(y+2)(y+6)+4(第一步) =y2+8y+16(第二步) =(y+4)2(第三步)

指数函数经典例题和课后习题

指数函数及其基本性质 指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1 ,2= -=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a . 指数函数的图像及性质 函数值的分布情况如下:

指数函数平移问题(引导学生作图理解) 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系(作图略), ⑴y =1 2+x 与y =2 2+x . ⑵y =12 -x 与y =2 2 -x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象; 向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象; 向下平移a 个单位得到f (x )-a 的图象.

指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12-=x y ; (2)|| 2()3 x y =; (3)1241++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练

2015高中物理磁场经典计算题 (一)含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a = L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? a b c d B P v L B v E S F D (a ) a O E S F D L v (b

指数函数经典例题(问题详细讲解)

指数函数 1.指数函数の定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 の图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且の图象和性质。 a>1 0

()x f c の大小关系是_____. 分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间. 解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x の取值围是___________. 分析:利用指数函数の单调性求解,注意底数の取值围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x の取值围是14 ??+ ??? , ∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数の值域是[)01, .

经典的因式分解练习题有答案

因式分解练习题 一、填空题: 2.(a-3)(3-2a)=_______(3-a)(3-2a); 12.若m2-3m+2=(m+a)(m+b),则a=______,b=______; 15.当m=______时,x2+2(m-3)x+25是完全平方式. 二、选择题: 1.下列各式的因式分解结果中,正确的是( ) A.a2b+7ab-b=b(a2+7a) B.3x2y-3xy-6y=3y(x-2)(x+1) C.8xyz-6x2y2=2xyz(4-3xy) D.-2a2+4ab-6ac=-2a(a+2b-3c)

A.(n-2)(m+m2) B.(n-2)(m-m2) C.m(n-2)(m+1) D.m(n-2)(m-1) 3.在下列等式中,属于因式分解的是( ) A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1 C.-4a2+9b2=(-2a+3b)(2a+3b) D.x2-7x-8=x(x-7)-8 4.下列各式中,能用平方差公式分解因式的是( ) A.a2+b2 B.-a2+b2 C.-a2-b2 D.-(-a2)+b2 5.若9x2+mxy+16y2是一个完全平方式,那么m的值是( ) A.-12 B.±24C.12 D.±12 6.把多项式a n+4-a n+1分解得( ) A.a n(a4-a) B.a n-1(a3-1) C.a n+1(a-1)(a2-a+1) D.a n+1(a-1)(a2+a+1) 7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为( ) A.8 B.7 C.10 D.12 8.已知x2+y2+2x-6y+10=0,那么x,y的值分别为( ) A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得( ) A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2) C.(m+4)2(m-1)2 D.(m+1)2(m+2)2(m2+3m-2)2 10.把x2-7x-60分解因式,得( ) A.(x-10)(x+6) B.(x+5)(x-12) C.(x+3)(x-20) D.(x-5)(x+12) 11.把3x2-2xy-8y2分解因式,得( ) A.(3x+4)(x-2) B.(3x-4)(x+2) C.(3x+4y)(x-2y) D.(3x-4y)(x+2y) 12.把a2+8ab-33b2分解因式,得( ) A.(a+11)(a-3) B.(a-11b)(a-3b) C.(a+11b)(a-3b) D.(a-11b)(a+3b) 13.把x4-3x2+2分解因式,得( )

1.2磁场典型例题.

磁场典型例题 类型题■ 分析求解磁感强度 磁感强度B 是磁场中的重要概念,求解磁感强度的方法一般有:定义式法、矢量叠加法等。 【例题1】如图中所示,电流从 A 点分两路通过对称的环形分路汇合于 B 点,在环形分路的中心 0处的 磁感强度( ) A. 垂直环形分路所在平面,且指向“纸内”。 B. 垂直环形分路所在平面,且指向“纸外”。 C. 在环形分路所在平面内指向 B 。 D. 磁感强度为零。 【例题2】电视机显象管的偏转线圈示意图如图所示,某时刻电流方向如图所示。则环心 向为( ) A .向下 B .向上 C.垂直纸面向里 D .垂直纸面向外 【例题3】安培秤如图所示,它的一臂下面挂有一个矩形线圈,线圈共有 N 匝,它的下部悬在均匀磁场 B 内,下边一段长为 L ,它与B 垂直。当线圈的导线中通有电流 I 时,调节砝码使两臂达到平衡;然后使电 流反向,这时需要在一臂上加质量为 m 的砝码,才能使两臂再达到平衡。求磁感强度 B 的大小。 专业、专心、成就学生梦想 个性化辅导学案 0处的磁场方

判别物体在安培力作用下的运动方向,常用方法有以下四种: 1、电流元受力分析法:即把整段电流等效为很多段直线电流元,先用左手定则判出每小段电流元受安 培力方向,从而判出整段电流所受合力方向,最后确定运动方向。 2、特殊值分析法:把电流或磁铁转到一个便于分析的特殊位置 从而确定运动方向。 3、等效分析法:环形电流可以等效成条形磁铁、条形磁铁也可等效成环形电流、通电螺线管可等效成 很多的环形电流来分析。 4、推论分析法: ⑴ 两电流相互平行时无转动趋势,方向相同相互吸引,方向相反相互排斥; (2)两 电 流不平行时有转动到相互平行且方向相同的趋势。 【例题1】如图所示,把一通电直导线放在蹄形磁铁磁极的正上方,导线可 以自由移动,当导线通过电流 I 时,导线的运动情况是( )(从上往下看) (如转过90° )后再判所受安培力方向 , A .顺时针方向转动,同时下降 B ?顺时针方向转动,同时上升 C.逆时针方向转动,同时下降 D .逆时针方向转动,同时上升 【例题2】如图所示,两平行光滑导轨相距为 L=20cm 金属棒MN 的质量为m=10g, 电阻R=8Q ,匀强磁场磁感应强度 B 方向竖直向下,大小为 B=0.8T ,电源电动势为 E=10V,内阻r=1 Q 。当电键S 闭合时,MN 处于平衡,求变阻器 R1的取值为多少?(设 0 =45°) 【例题3】长L=60cm 质量为m=6.0X 10-2 kg ,粗细均匀的金属棒,两端用完全相同的弹簧挂起,放在磁 感强度为B=0.4T ,方向垂直纸面向里的匀强磁场中, 如图8所示,若不计弹簧重力,问⑴ 要使弹簧不伸长, 金属棒中电流的大小和方向如何 ?(2)如在金属中通入自左向右、 大小为I=0.2A 的电流,金属棒下降X 1=1cm 若通入金属棒中的电流仍为 0.2A ,但方向相反,这时金属棒下降了多少 XS 分析导体在安培力作用下的运动 | N l S B

指数函数典型例题详细解析

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥- 2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)

3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有

因式分解易错题汇编含答案解析

因式分解易错题汇编含答案解析 一、选择题 1.下列各式分解因式正确的是( ) A .2112(12)(12)22a a a -=+- B .2224(2)x y x y +=+ C .2239(3)x x x -+=- D .222()x y x y -=- 【答案】A 【解析】 【分析】 根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解. 【详解】 A. 2112(12)(12)22 a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误; C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误; D. ()22 ()x y x y x y -=-+,故本选项错误. 故选A. 【点睛】 此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式. 2.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ y B .x ≥ y C .x < y D .x > y 【答案】D 【解析】 【分析】 判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系. 【详解】 解:22222202()x y a b ab a a b a -=++-+=-++20, 2()0a b -≥Q ,20a ≥,200>, 0x y ∴->, x y ∴>, 故选:D . 【点睛】 本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

高中物理磁场专题讲解经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv q B B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。 两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速 穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

因式分解难题经典题(1)

因式分解难题经典题 1、若实数满足,则. 2、已知,则的值为 3、分解因式: a3+a2-a-1=______________. 4、已知a+b=2,则a2-b2+4b的值. 5、因式分解: 6、已知实数满足,则的平方根等于. 7、若,则的值是_______________. 8、,则___________。 9、如果是一个完全平方式,则= . 10、已知实数x 满足x+=3,则x2+的值为_________. 11、若a2+ma+36是一个完全平方式,则m= . 12、已知,则 . 13、-a4÷(-a)=; 15、把下列各式分解因式:

18、如果,求的值. 19、已知a+b=﹣5,ab=7,求a2b+ab2﹣a﹣b的值. 20、(x﹣1)(x﹣3)﹣8. 22、 23、(1)已知a m=2,a n=3,求①a m+n的值;②a3m﹣2n的值 (2)已知(a+b)2=17,(a﹣b)2=13,求a2+b2与ab的值. 24、先化简,再求值:已知:a2+b2+2a一4b+5=0求:3a2+4b-3的值。 三、选择题 25、若的值为() A.0 B.-6 C.6 D.以上都不对 26、下列各式中,能用平方差公式分解因式的是()。 A、x2+4y2 B、x2-2y+1 C、-x2+4y2 D、-x2-4y2

27、不论为什么实数,代数式的值() A.总不小于2 B.总不小于7 C.可为任何实数 D.可能为负数 28、若9x2+mxy+16y2是一个完全平方式,则m的值为() A.24 B.﹣12 C.±12D.±24 29、下列各式中与2nm﹣m2﹣n2相等的是() A.(m﹣n)2B.﹣(m﹣n)2C.﹣(m+n)2D.(m+n)2 30、.若+(m-3)a+4是一个完全平方式,则m的值应是( ) A.1或5 B.1 C.7或-1 D.-1 31、下列计算中,①x(2x2-x+1)=2x3-x2+1;②(a+b)2=a2+b2;③(x-4)2=x2-4x+16;④(5a-1)(-5a-1)=25a2-1;⑤(-a-b)2=a2+2ab+b2;其中准确的个数有…() A.1个 B.2个 C.3 个 D.4个 四、计算题 32、因式分解:; 33、已知a+b=3,ab=2,试求(1)a2+b2;(2)(a b)2。

最新指数函数典型例题详细解析

精品文档 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如 图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 例题4(中档题)

初中数学因式分解经典测试题含解析

初中数学因式分解经典测试题含解析 一、选择题 1.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( ) A .1个 B .2个 C .3个 D .4个 【答案】B 【解析】 【分析】 将各项分解得到结果,即可作出判断. 【详解】 ①322(2+1)x xy x x x y ++=+,故①错误; ②2244(2)x x x ++=+,故②正确; ③2222()()x y y x x y y x -+=-=+-,故③正确; ④39(+3)(3)x x x x x -=-故④错误. 则正确的有2个. 故选:B. 【点睛】 此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 2.下列分解因式正确的是( ) A .x 3﹣x=x (x 2﹣1) B .x 2﹣1=(x+1)(x ﹣1) C .x 2﹣x+2=x (x ﹣1)+2 D .x 2+2x ﹣1=(x ﹣1)2 【答案】B 【解析】 试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解. 解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误; B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确; C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误; D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误. 故选B . 考点:提公因式法与公式法的综合运用. 3.下列等式从左到右的变形属于因式分解的是( ) A .a 2﹣2a +1=(a ﹣1)2 B .a (a +1)(a ﹣1)=a 3﹣a

(完整版)指数函数经典习题大全

指数函数习题 新泰一中闫辉 一、选择题 1.下列函数中指数函数的个数是 ( ). ①②③④ A.0个 B.1个 C.2个 D.3个 2.若,,则函数的图象一定在() A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限 3.已知,当其值域为时,的取值范围是()A. B. C. D. 4.若,,下列不等式成立的是() A. B. C. D. 5.已知且,,则是() A.奇函数 B.偶函数 C.非奇非偶函数 D.奇偶性与有关 6.函数()的图象是() 7.函数与的图象大致是( ).

8.当时,函数与的图象只可能是() 9.在下列图象中,二次函数与指数函数的图象只可能是() 10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ). A.2400元 B.900元 C.300元 D.3600元 二、填空题 1.比较大小: (1);(2) ______ 1;(3) ______ 2.若,则的取值范围为_________. 3.求函数的单调减区间为__________.

4.的反函数的定义域是__________. 5.函数的值域是__________ . 6.已知的定义域为 ,则的定义域为__________. 7.当时, ,则的取值范围是__________. 8.时,的图象过定点________ . 9.若 ,则函数的图象一定不在第_____象限. 10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________. 11.函数的最小值为____________. 12.函数的单调递增区间是____________. 13.已知关于的方程有两个实数解,则实数的取值范围是_________. 14.若函数(且)在区间上的最大值是14,那么等于 _________. 三、解答题 1.按从小到大排列下列各数: ,,,,,,, 2.设有两个函数与,要使(1);(2),求、的取值范围. 3.已知 ,试比较的大小. 4.若函数是奇函数,求的值. 5.已知,求函数的值域. 6.解方程:

高二物理 磁场 磁感线 典型例题解析

磁场磁感线典型例题解析 【例1】在地球赤道上空有一小磁针处于水平静止状态,突然发现小磁针N极向东偏转,由此可知 [ ] A.一定是小磁针正东方向有一条形磁铁的N极靠近小磁针 B.一定是小磁针正东方向有一条形磁铁的S极靠近小磁针 C.可能是小磁针正上方有电子流自南向北通过 D.可能是小磁针正上方有电子流自北向南水平通过 解答:正确的应选C. 点拨:掌握小磁针的N极受力方向与磁场方向相同,S极受力方向与磁场方向相反是解决此类问题的关键. 【例2】下列关于磁感线的说法正确的是 [ ] A.磁感线上各点的切线方向就是该点的磁场方向 B.磁场中任意两条磁感线均不可相交 C.铁屑在磁场中的分布所形成的曲线就是磁感线 D.磁感线总是从磁体的N极出发指向磁体的S极 解答:正确的应选AB. 点拨:对磁感线概念的理解和磁感线特点的掌握是关键. 【例3】如图16-2所示为通电螺线管的纵剖面图,试画出a、b、c、d四个位置上小磁针静止时N极的指向. 点拨:通电螺线管周围的磁感线分布是小磁针静止时N极指向的根据.【例4】如图16-3所示,当铁心AB上绕有一定阻值的线圈后,在AB间的小磁针静止时N极水平向左,试在图中铁心上的A、B两侧绕上线圈,并与电源连接成正确的电路.

点拨:根据小磁针静止时N极指向确定铁心的N极、S极,再定绕线方向. 跟踪反馈 1.下列说法正确的是 [ ] A.磁感线从磁体的N极出发,终止于磁体的S极 B.磁感线可以表示磁场的方向和强弱 C.磁铁能产生磁场,电流也能产生磁场 D.放入通电螺线管内的小磁针,根据异名磁极相吸的原则,小磁针的N 极一定指向通电螺线管的S极 2.首先发现电流磁效应的科学家是 [ ] A.安培 B.奥斯特 C.库仑 D.麦克斯韦 3.如图16-4所示,若一束电子沿y轴正方向运动,则在z轴上某点A 的磁场方向应是 [ ] A.沿x轴的正向 B.沿x轴的负向 C.沿z轴的正向

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

经典因式分解练习题(附答案)

> 因式分解练习题 一、填空题: 2.(a-3)(3-2a)=_______(3-a)(3-2a); 、 12.若m2-3m+2=(m+a)(m+b),则a=______,b=______; 15.当m=______时,x2+2(m-3)x+25是完全平方式.三、因式分解:

1.m2(p-q)-p+q; 2.a(ab+bc+ac)-abc; 3.x4-2y4-2x3y+xy3; 4.abc(a2+b2+c2)-a3bc+2ab2c2; 5.a2(b-c)+b2(c-a)+c2(a-b); 6.(x2-2x)2+2x(x-2)+1; — 7.(x-y)2+12(y-x)z+36z2; 8.x2-4ax+8ab-4b2; 9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx); 10.(1-a2)(1-b2)-(a2-1)2(b2-1)2; 11.(x+1)2-9(x-1)2; 12.4a2b2-(a2+b2-c2)2; : 13.ab2-ac2+4ac-4a; 14.x3n+y3n; 15.(x+y)3+125; 16.(3m-2n)3+(3m+2n)3;

17.x6(x2-y2)+y6(y2-x2); 18.8(x+y)3+1; 19.(a+b+c)3-a3-b3-c3; 20.x2+4xy+3y2; 21.x2+18x-144; 22.x4+2x2-8; > 23.-m4+18m2-17; 24.x5-2x3-8x; 25.x8+19x5-216x2; 26.(x2-7x)2+10(x2-7x)-24;27.5+7(a+1)-6(a+1)2; 28.(x2+x)(x2+x-1)-2; 29.x2+y2-x2y2-4xy-1; 30.(x-1)(x-2)(x-3)(x-4)-48;/ 四、证明(求值): 1.已知a+b=0,求a3-2b3+a2b-2ab2的值.

相关文档
相关文档 最新文档