文档库 最新最全的文档下载
当前位置:文档库 › 各种排序的实现与效率分析

各种排序的实现与效率分析

各种排序的实现与效率分析
各种排序的实现与效率分析

各种排序的实现与效率分析

一、排序原理

(1)直接插入排序

基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。

效率分析:该排序算法简洁,易于实现。从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n2/4.则直接插入排序的时间复杂度为O(n2).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。插入排序算法对于大数组,这种算法非常慢。但是对于小数组,它比其他算法快。其他算法因为待的数组元素很少,反而使得效率降低。插入排序还有一个优点就是排序稳定。

(2)折半插入排序

基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。

效率分析:由上可知该排序所需存储空间和直接插入排序相同。从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。而记录的移动次数不变。因此,折半查找排序的时间复杂度为O(nlogn)+O(n2)

=O(n2)。排序稳定。

(3)希尔排序

基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。Shell根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk分割成多个子序列,对每个子序列分别进行一趟直接插入排序,然后逐步减小分组的步长dk,对于每一个步长dk下的各个子序列进行同样方法的排序,直到步长为1时再进行一次整体排序。因为不管记录序列多么庞大,关键字多么混乱,在先前较大的分组步长dk下每个子序列的规模都不大,用直接插入排序效率都较高。尽管在随后的步长dk递减分组中子序列越来越大,但由于整个序列的有序性也越来越明显,则排序效率依然较高。这种改进抓住了直接插入排序的两点本质,大大提高了它的时间效率。

效率分析:希尔排序有以下几个关键特性:

(1)希尔排序的核心是以某个增量dk为步长跳跃分组进行插入排序,由于分组的步长dk 逐步缩小,所以也叫“缩小增量排序”插入排序。其关键是如何选取分组的步长序列才能使得希尔方法的时间效率最高;

(2)待排序列记录的个数n、跳跃分组步长逐步减小直到为1时所进行的扫描次数T、增量的和、记录关键字比较的次数以及记录移动的次数或各子序列中的反序数等因素都影响希尔算法的时间复杂度:其中记录关键字比较的次数是重要因素,它主要取决于分组步长序列的选择;

(3)希尔方法是一种不稳定排序算法,因为其排序过程中各趟的步长不同,在第k遍用dk 作为步长排序之后,第k+1遍排序时可能会遇到多个逆序存在,影响排序的稳定性。

(3)冒泡排序

基本原理:冒泡排序分为若干趟进行,每一趟排序从前往后比较每两个相邻的元素的大小(因此一趟排序要比较n-1对位置相邻的数)并在每次发现前面的那个数比紧接它后的数大时交换位置;进行足够多趟直到某一趟跑完后发现这一趟没有进行任何交换操作(最坏情况下要跑n-1趟,这种情况在最小的数位于给定数列的最后面时发生)。事实上,在第一趟冒泡结束后,最后面那个数肯定是最大的了,于是第二次只需要对前面n-1个数排序,这又将把这n-1个数中最大的数放到整个数列的倒数第二个位置。这样下去,冒泡排序第i 趟结束后后面i个数都已经到位了,第i+1趟实际上只考虑前n-i个数(需要的比较次数比前面所说的n-1要小)。

效率分析:冒泡排序在给出的序列为正序排列时是最好的情况,这时每一次比较都不需要要进行交换操作。因此冒泡排序最好情况下需要交换0次。给出的序列逆序排列是最坏的情况,这时每一次比较都要进行交换操作。一次交换操作需要3次赋值实现,因此冒泡排序最坏情况下需要赋值3n(n-1)/2次。比较次数方面,无论数据如何,每次排序均要比较n(n-1)/2次。

(4)快速排序

基本原理:快速排序是对冒泡排序的一种改进,它的基本思想是,通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

快速排序采用了分治法的思想,把大的问题分解为同类型的小问题。一般分如下步骤:(1)选择一个中枢元素(有很多选法,我的实现里使用第一个元素为中枢的简单方法)(2)以该中枢元素为基准点,将小于中枢的元素放在中枢后集合的前部分,比它大的在集合后部分,待集合基本排序完成后(此时前部分元素小于后部分元素),把中枢元素放在合适的位置。

(3)根据中枢元素最后确定的位置,把数组分成三部分,左边的,右边的,枢纽元素自己,对左边的,右边的分别递归调用快速排序算法即可。

这里的重点与难点在于第二步,这一步的方法是以第一个元素为中枢元素,刚开始时使用低指针指向中枢元素。当中枢元素在低指针位置时,此时我们判断高指针指向的元素是否小于中枢元素,如果大于中枢元素则高指针继续向头移动,如果小于则与中枢元素交换,此时中枢元素被移到了高指针位置;当中枢元素在高指针位置时,我们此时判断低指针指向的元素是否大于中枢元素,如果小于中枢元素则低指针继续向尾移动,如果大于则与中枢元素交换,此时中枢元素又回到了低指针位置;这时是拿高还是低指针所指向的元素与中枢比较时根据前面逻辑来处理,直到高低指针指向同一位置则完成一轮排序,然后再对中枢元素两边的序列进行同样的操作直到排序完成

效率分析:快速排序的平均时间为kn ln(n),其中n为待排时间中记录的个数,k为某个常数,经验证明,在所有同数量级的此类排序方法中,快速排序的常数因子k最小。因此,就平均时间而言,快速排序时最好的一种内部排序。快速排序在最好的情况时是正序,比较次数和移动次数均为O(n ln(n)),最坏状况下,比较次数和移动次数均为n(n-1)/2次。

(5)简单选择排序

基本原理:每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。

选择排序不像冒泡排序算法那样先并不急于调换位置,第一轮(i=1)先从array[i]开始逐个检查,看哪个数最小就记下该数所在的位置于min中,等一轮扫描完毕,如果找到比array[i-1]更小的元素,则把array[min]和a[i-1]对调,这时array[i]到最后一个元素中最小

的元素就换到了array[i-1]的位置。如此反复进行第二轮、第三轮…直到循环至最后一元素效率分析:选择排序在第i次选择时赋值和比较都需要n-i次(在n-i+1个数中选一个出来作为当前最小值,其余n-i个数与当前最小值比较并不断更新当前最小值),然后需要一次赋值操作。总共需要n(n-1)/2次比较。交换次数与序列的初始排列有关。交换在最好状况下是待排数据为正序,交换为0次。最坏情况是每一趟都要进行交换,总的对象移动次数为3(n-1)直接选择排序是一种不稳定的排序方法。

(6)堆排序

基本原理:堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。堆排序其实最主要的两个过程:第一步,创建初始堆;第二步,交换根节点与最后一个非叶子节

第一步:从最后一个非叶子节点为开始向前循环每个会支节点,比较每个分支节点与他左右子节点,如果其中某个子节点比父节点大,则与父节点交换,交换后原父节点可能还小于原子节点的子节点,所以还需对原父节点进行调整,使用原父节点继续下沉,直到没有子节点或比左右子节点都大为止,调用过程可通过递归完成。当某个非叶子节点调整完毕后,再处理下一个非叶子节点,直到根节点也调整完成,这里初始堆就创建好了,这里我们创建的是大顶堆,即大的元素向树的根浮,这样排序最后得到的结果为升序,因为最大的从树中去掉,并从数组最后往前存放。第二步:将树中的最后一个元素与堆顶元素进行交换,并从树中去掉最后叶子节点。交换后再按创建初始堆的算法调整根节点,如此下去直到树中只有一个节点为止。

效率分析:堆排序对n较大的文件还是有效的,对记录较少的文件效率较低。因为堆排序其主要运行时间都耗费在建初始对和调整建新堆时进行的反复筛选上。对深度为k的对,筛选中关键字比较次数最多为2(n-1)次,则在建含n个元素、深度为h的堆时,总进行的关键字比较次数不超过4n。由此,堆排序在最坏的情况下,其时间复杂度为O(n ln(n))。

(7)归并排序

基本原理:归并排序分两步操作:第一步将数组分解成更小的数组,直到数组只有一个元素为止,每次划分点为(len–1)/2=mid,将数组分成[from,mid]和[mid+1,to],第二步就是将分解的数组两两合并,合并后的数组是有序的,直到合并成一个数组为止,合并过程中会用到一个临时数组,用来存储合并后的结果。每次合并后,将数组的数据传给原数组对应的位置。

二、测试数据

(2)当n=100时的一组随机数据的测试结果:

(4)当n=500时的一组随机数据的测试结果:

(5)具体有序数据的(数组元素为1~10)的测试结果:

三、分析

前面所述的各种方法各有优点适用场合也不同。通常选择排序方法的是考虑的因素有如下4点:

(1)待排序的记录数目n的大小

(2)记录本身数据量的大小,即记录中除关键字外其他信息量的大小

(3)关键字结构及其分布情况

(4)堆排序的稳定性要求

从以上实验结果可观察的结论如下:

(1)如果待排记录的个数n较小,则可采用直接插入排序或折半插入排序

(2)如果待排记录的个数n较大,应该选择时间复杂度为O(n ln(n))的排序方法,如快速排序,堆排序或归并排序。

<1>快速排序是处理大量数据的最好方法。当待排序序列的关键字是随机分布时,

快速排序的平均时间复杂度最优,但是在待排序序列基本有序时,将蜕化为冒泡排序,其时间性能将不如堆排序或归并排序。

<2>堆排序所需的辅助空间少于快速排序,并且在最坏的情况下时间复杂度不会变

化。

<3>归并排序所需的时间比堆排序省,但是它所需的辅助存储空间最多

(3)快速排序、堆排序、希尔排序和直接选择排序都是不稳定的排序法,直接插入排序法、冒泡排序法、归并排序法都是稳定的排序法。

(4)如果待排序列记录的厨师状态已按关键字基本有序,则选择直接插入排序或冒泡排序。

实验总结:排序算法的性能分析和选择是一个复杂而又实际的问题,文中讨论的仅仅是这6种排序算法的平均时间性能.在实际应用中,应根据经验和实际情况合理选择算法.例如,从平均时间性能而言,快速排序无疑是最优的,其所需时间最省,但快速排序在最坏情况下的时性能却不如堆排序和归并排序.又比如,在插入排序、冒泡排序和选择排序中,以直接插入排为最简单,当序列中的记录“基本有序”或问题规模n较小时,它是最佳的排序方法.因此常将它和其他的排序方法,诸如快速排序、归并排序等结合在一起使用.

各种排序算法比较

排序算法 一、插入排序(Insertion Sort) 1. 基本思想: 每次将一个待排序的数据元素,插入到前面已经排好序的数列中的适当位置,使数列依然有序;直到待排序数据元素全部插入完为止。 2. 排序过程: 【示例】: [初始关键字] [49] 38 65 97 76 13 27 49 J=2(38) [38 49] 65 97 76 13 27 49 J=3(65) [38 49 65] 97 76 13 27 49 J=4(97) [38 49 65 97] 76 13 27 49 J=5(76) [38 49 65 76 97] 13 27 49 J=6(13) [13 38 49 65 76 97] 27 49 J=7(27) [13 27 38 49 65 76 97] 49 J=8(49) [13 27 38 49 49 65 76 97] Procedure InsertSort(Var R : FileType); //对R[1..N]按递增序进行插入排序, R[0]是监视哨// Begin for I := 2 To N Do //依次插入R[2],...,R[n]// begin R[0] := R[I]; J := I - 1; While R[0] < R[J] Do //查找R[I]的插入位置// begin R[J+1] := R[J]; //将大于R[I]的元素后移// J := J - 1 end R[J + 1] := R[0] ; //插入R[I] // end End; //InsertSort // 二、选择排序 1. 基本思想: 每一趟从待排序的数据元素中选出最小(或最大)的一个元素,顺序放在已排好序的数列的最后,直到全部待排序的数据元素排完。 2. 排序过程: 【示例】: 初始关键字[49 38 65 97 76 13 27 49] 第一趟排序后13 [38 65 97 76 49 27 49] 第二趟排序后13 27 [65 97 76 49 38 49] 第三趟排序后13 27 38 [97 76 49 65 49] 第四趟排序后13 27 38 49 [49 97 65 76] 第五趟排序后13 27 38 49 49 [97 97 76]

实验6:至少三种排序算法的程序实现

《数据结构与算法》课程实验报告(6) 实验题目:实验6:至少三种排序算法的程序实现 一、实验目的 1.掌握简单插入排序、希尔排序、冒泡排序、快速排序、堆排序以及归并排序的算法并加以应用。 2.对各种查找、排序技术的时间、空间复杂性有进一步认识。 二、实验要求 1.认真阅读和掌握和本实验相关的教材内容。 2.编写完整程序完成下面的实验内容并上机运行。 3.整理并上交实验报告。 三、实验内容 编写程序实现下述六种算法至少三种,并用以下无序序列加以验证:49,38,65,97,76,13,27,49 1.简单插入排序 2.希尔排序 3. 冒泡排序 4.快速排序 5.归并排序 6.堆排序 四、源代码与结果: 1、简单插入排序: 源代码:

#include void InsertSort(int r[],int n); int main() { int r[]={49,38,65,97,76,13,27,49}; cout<<"直接插入排序:"<=0;j--) { r[j+1]=r[j]; } r[j+1]=s; } } 运行结果: 2.希尔排序: #include void ShellSort(int r[],int n); int main() { int r[]={49,38,65,97,76,13,27,49}; cout<<"希尔排序:"<

各种排序算法的总结和比较

各种排序算法的总结和比较 1 快速排序(QuickSort) 快速排序是一个就地排序,分而治之,大规模递归的算法。从本质上来说,它是归并排序的就地版本。快速排序可以由下面四步组成。 (1)如果不多于1个数据,直接返回。 (2)一般选择序列最左边的值作为支点数据。(3)将序列分成2部分,一部分都大于支点数据,另外一部分都小于支点数据。 (4)对两边利用递归排序数列。 快速排序比大部分排序算法都要快。尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。 2 归并排序(MergeSort)

归并排序先分解要排序的序列,从1分成2,2分成4,依次分解,当分解到只有1个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。 3 堆排序(HeapSort) 堆排序适合于数据量非常大的场合(百万数据)。 堆排序不需要大量的递归或者多维的暂存数组。这对于数据量非常巨大的序列是合适的。比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。 堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

Shell排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。平均效率是O(nlogn)。其中分组的合理性会对算法产生重要的影响。现在多用D.E.Knuth的分组方法。 Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相对比较简单,它适合于数据量在5000以下并且速度并不是特别重要的场合。它对于数据量较小的数列重复排序是非常好的。 5 插入排序(InsertSort) 插入排序通过把序列中的值插入一个已经排序好的序列中,直到该序列的结束。插入排序是对冒泡排序的改进。它比冒泡排序快2倍。一般不用在数据大于1000的场合下使用插入排序,或者重复排序超过200数据项的序列。

数据结构各种排序算法的时间性能

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能学生姓名 学生学号 专业班级 指导老师李晓鸿 完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略 二、概要设计

编程实现排序算法

学号:044120108 中国地质大学长城学院 实践课程设计 题目编程实现排序算法 学院中国地质大学长城学院 专业电子信息工程 班级电子1201 姓名李月朋 指导教师李润亚 2014 年12 月31 日

一、实验目的 ⑴掌握排序的基本概念⑵熟悉排序中使用的存储结构,掌握多种排序算法,如堆排序、希尔排序、快速排序算法等。 二、实验要求 ⑴几种典型的排序算法⑵计算不同的排序算法的时间复杂性⑶判定某种排序算法是否稳定的标准。 三、实验方法内容 1. 主要内容 本课程设计一共设计到五种排序算法。这五种算法共包括:直接插入排序法,Shell希尔排序法,直接选择排序法,冒泡排序法,快速排序法等。 2. 算法设计及算法流程 (一)、直接插入排序的作法是:每次从无序表中取出第一个元素,把它插入到有序表的合适位置,使有序表仍然有序。第一次比较前两个数,然后把第二个数按大小插入到有序表中;第二次把第三个数据与前两个数从前向后扫描,把第三个数按大小插入到有序表中;依次进行下去,进行了(n-1)趟扫描以后就完成了整个排序过程。直接插入排序属于稳定的排序,时间复杂性为O(n^2),空间复杂度为O(1)。直接插入排序是由两层嵌套循环组成的,外层循环标识并决定待比较的数值,内层循环为待比较数值确定其最终位置。将待比较的数值与它的前一个数值进行比较,即外层循环是从第二个数值开始的。当前一数值比待比较数值大的情况下继续循环比较,直到找到比待比较数值小的并将待比较数值置入其后一位置,结束本次循环。需用一个存储空间来保存当前待比较的数值。每一步将一个待排序的记录按其关键字的大小插到前面已经排序的序列中的适当位置,直到全部记录插入完毕为止。 (二)、Shell排序法:先取一个小于n的整数d1作为第一个增量,把全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量d2

数据结构课程设计(内部排序算法比较_C语言)

数据结构课程设计 课程名称:内部排序算法比较 年级/院系:11级计算机科学与技术学院 姓名/学号: 指导老师: 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。

第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并 打印出结果。 (2)选择2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

几种排序算法的平均性能比较(实验报告)

实验课程:算法分析与设计 实验名称:几种排序算法的平均性能比较(验证型实验) 实验目标: (1)几种排序算法在平均情况下哪一个更快。 (2)加深对时间复杂度概念的理解。 实验任务: (1)实现几种排序算法(selectionsort, insertionsort,bottomupsort,quicksort, 堆排序)。对于快速分类,SPLIT中的划分元素采用三者A(low),A(high),A((low+high)/2)中其值居中者。 (2)随机产生20组数据(比如n=5000i,1≤i≤20)。数据均属于围(0,105)的整数。 对于同一组数据,运行以上几种排序算法,并记录各自的运行时间(以毫秒为单位)。(3)根据实验数据及其结果来比较这几种分类算法的平均时间和比较次数,并得出结论。实验设备及环境: PC;C/C++等编程语言。 实验主要步骤: (1)明确实验目标和具体任务; (2)理解实验所涉及的几个分类算法; (3)编写程序实现上述分类算法; (4)设计实验数据并运行程序、记录运行的结果; (5)根据实验数据及其结果得出结论; (6)实验后的心得体会。 问题分析(包括问题描述、建模、算法的基本思想及程序实现的技巧等): 选择排序:令A[1…n]为待排序数组,利用归纳法,假设我们知道如何对后n-1个元素排序, 即对啊[A…n]排序。对某个j,1<=j<=n,设A[j]是最小值。首先,如果就!=1,我们交换A[1] 和A[j]。然后由假设,已知如何对A[2..n]排序,因此可对在A[2…n]中的元素递归地排序。 可把递归改为迭代。算法程序实现如下: void SelectionSort(int *Array,int n,int &c) { int i,j,k; int aa; c=0; for(i=0;i

数据结构课程设计报告 各种排序算法性能比较

课程设计报告 课程设计题目:各种排序算法性能比较 学生姓名: 学号: 专业:信息管理与信息系统 班级: 指导教师: 2012年06 月23 日

目录 CONT E NT S 一、课程设计目的 (2) 二、课程设计题目概述 (2) 三、数据定义 (2) 四、各种排序的基本原理及时间复杂度分析 (3) 五、程序流程图 (6) 六、程序源代码 (6) 七、程序运行与测试 (15) 八、实验体会………………………………………………………… 九、参考文献…………………………………………………………

一、课程设计目的 课程设计为学生提供了一个既动手又动脑,独立实践的机会,将课本上的理论知识和实际有机的结合起来,锻炼学生的分析解决实际问题的能力。提高学生适应实际,实践编程的能力。 二、课程设计题目概述 排序的方法很多,但是就其全面性能而言,很难提出一种被认为是最好的方法,每一种方法都有各自的优缺点,适合在不同的环境下使用。如果排序中依据的不同原则对内部排序方法进行分类,则大致可分为直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序、堆排序等六类排序算法。 本实验是对直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序、堆排序这几种内部排序算法进行比较,用不同的测试数据做测试比较。比较的指标为关键字的比较次数和关键字的移动次数。最后用图表数据汇总,以便对这些内部排序算法进行性能分析。 三、数据定义 输入数据: 由于大多数排序算法的时间开销主要是关键字之间的比较和记录的移动,算法的执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。所以对于输入数据,我们采用由用户输入记录的个数(以关键字的数目分别为20,100,500为例),测试数据由随机数产生器生成。 输出数据: 产生的随机数分别用直接插入排序;直接选择排序;起泡排序;Shell排序;快速排序;堆排序这些排序方法进行排序,输出关键字的比较次数和移动次数。

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

五种排序算法的分析与比较

五种排序算法的分析与比较 广东医学院医学信息专业郭慧玲 摘要:排序算法是计算机程序设计广泛使用的解决问题的方法,研究排序算法具有重要的理论意义和广泛的应用价值。文章通过描述冒泡、选择、插入、归并和快速5种排序算法,总结了它们的时间复杂度、空间复杂度和稳定性。通过实验验证了5种排序算法在随机、正序和逆序3种情况下的性能,指出排序算法的适用原则,以供在不同条件下选择适合的排序算法借鉴。 关键词:冒泡排序;选择排序;插入排序;归并排序;快速排序。 排序是计算机科学中基本的研究课题之一,其目的是方便记录的查找、插入和删除。随着计算机的发展与应用领域的越来越广,基于计算机硬件的速度和存储空间的有限性,如何提高计算机速度并节省存储空间一直成为软件设计人员的努力方向。其中,排序算法已成为程序设计人员考虑的因素之一[1],排序算法选择得当与否直接影响程序的执行效率和内外存储空间的占用量,甚至影响整个软件的综合性能。排序操作[2,3],就是将一组数据记录的任意序列,重新排列成一个按关键字有序的序列。而所谓排序的稳定性[4]是指如果在排序的序列中,存在前后相同的两个元素,排序前和排序后他们的相对位臵不发生变化。 1 算法与特性 1.1冒泡排序 1.1.1冒泡排序的基本思想

冒泡排序的基本思想是[5,6]:首先将第1个记录的关键字和第2个记录的关键字进行比较,若为逆序,则将2个记录交换,然后比较第2个和第3个记录的关键字,依次类推,直至n-1个记录和第n个记录的关键字进行过比较为止。然后再按照上述过程进行下一次排序,直至整个序列有序为止。 1.1.2冒泡排序的特性 容易判断冒泡排序是稳定的。可以分析出它的效率,在最好情况下,只需通过n-1次比较,不需要移动关键字,即时间复杂度为O(n)(即正序);在最坏情况下是初始序列为逆序,则需要进行n-1次排序,需进行n(n-1)/2次比较,因此在最坏情况下时间复杂度为O(n2),附加存储空间为O(1)。 1.2选择排序 1.2.1选择排序的基本思想 选择排序的基本思想是[5,6]:每一次从待排序的记录中选出关键字最小的记录,顺序放在已排好序的文件的最后,直到全部记录排序完毕.常用的选择排序方法有直接选择排序和堆排序,考虑到简单和易理解,这里讨论直接选择排序。直接选择排序的基本思想是n个记录的文件的直接排序可经过n-1次直接选择排序得到有序结果。 1.2.2选择排序的特性 容易得出选择排序是不稳定的。在直接选择排序过程中所需进行记录移动的操作次数最少为0,最大值为3(n-1)。然而,无论记录的初始排序如何,所需进行的关键字间的比较次数相同,均为n(n-1)/2,时间

各种排序算法性能比较

毕业论文 各种排序算法性能比较 系 专业姓名 班级学号 指导教师职称 设计时间

目录 摘要 (2) 第一章绪论 (3) 1.1 研究的背景及意义 (3) 1.2 研究现状 (3) 1.3 本文主要内容 (4) 第二章排序基本算法 (5) 2.1 直接插入排序 (5) 2.1.1基本原理 (5) 2.1.2排序过程 (5) 2.1.3时间复杂度分析 (5) 2.2 直接选择排序 (6) 2.2.1基本原理 (6) 2.2.2 排序过程 (6) 2.2.3 时间复杂度分析 (6) 2.3冒泡排序 (7) 2.3.1基本原理 (7) 2.3.2排序过程 (7) 2.3.3 时间复杂度分析 (8) 2.4 Shell排序 (8) 2.4.1基本原理 (8) 2.4.2排序过程 (9) 2.4.3时间复杂度分析 (9) 2.5堆排序 (9) 2.5.1基本原理 (9) 2.5.2排序过程 (10) 2.5.3时间复杂度分析 (13) 2.6快速排序 (13) 2.6.1基本原理 (13) 2.6.2排序过程 (14) 2.6.3时间复杂度分析 (15) 第三章系统设计 (16) 3.1数据定义 (16) 3.2 程序流程图 (16) 3.3 数据结构设计 (17) 3.4 系统的模块划分及模块功能实现 (17) 3.4.1系统模块划分 (17) 3.4.2各排序模块功能实现 (18) 第四章运行与测试 (29) 第五章总结 (31) 致谢 (32) 参考文献 (33)

江苏信息职业技术学院毕业论文 摘要 排序算法是数据结构这门课程核心内容之一。它是计算机程序设计、数据库、操作系统、编译原理及人工智能等的重要基础,广泛应用于信息学、系统工程等各种领域。学习排序算法是为了将实际问题中涉及的对象在计算机中进行处理。本毕业论文对直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序以及堆排序算法进行比较。 我们设置待排序表的元素为整数,用不同的测试数据做测试比较,长度取固定的三种,对象由随机数生成,无需人工干预来选择或者输入数据。比较的指标为关键字的比较次数和关键字的移动次数。 经过比较可以看到,当规模不断增加时,各种算法之间的差别是很大的。这六种算法中,快速排序比较和移动的次数是最少的。也是最快的一种排序方法。堆排序和快速排序差不多,属于同一个数量级。直接选择排序虽然交换次数很少,但比较次数较多。 关键字:直接插入排序;直接选择排序;起泡排序;Shell排序;快速排序;堆排序;

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

排序算法比较实验报告

信息学部算法分析 上机报告 学号0901******** 姓名陈龙 指导老师秦明 时间2011.11.1~11.23

一.上机实验题目 实验1 比较归并排序和快速排序的区别。 实验2 利用贪心算法对背包问题进行求解。 二.算法设计思路 归并排序: 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列,设定两个指针,最初位置分别为两个已经排序序列的起始位置,比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置,重复步骤直到某一指针达到序列尾,将另一序列剩下的所 有元素直接复制到合并序列尾。 快速排序: 设置两个变量I、J,排序开始的时候:I=0,J=N-1;以第一个数组元素作为关键数据,赋值给key,即key=A[0];从J开始向前搜索,即由后开始向前搜索(J=J-1),找到第一个小于key的值A[J],并与key交换;从I开始向后搜索,即由前开始向后搜索(I=I+1),找到第一个大于key的A[I],与key交换;重复第3、4、5步,直到I=J;(3,4步是在程序中没找到时候j=j-1,i=i+1,直至找到为止。找到并交换的时候i,j指针位置不变。另外当i=j这过程一定正好是i+或j-完成的最后另循环结束。) 背包问题: 用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} 。可以压缩空间,f[v]=max{f[v],f[v-c[i]]+w[i]}

三. 源程序 归并排序 #include #include # define N 50 int b[N],a[N]; int n,i; void Merge (int low, int mid,int high) //合并 { int i; int l=low,h=mid+1,k=l; while ((l<=mid) && (h<=high)) //部分合并 { if (a[l]<=a[h]) b[k++]=a[l++]; else b[k++]=a[h++]; } if(l>mid) while (h<=high) b[k++]=a[h++]; //转储剩余部分 else while(l<=mid) b[k++]=a[l++]; for (i=0;i<=high;i++) //将b数组转储到a a[i]=b[i]; } int Merge2 (int l,int h) //分类 { for (i=0;i

算法的效率讲解

专题二算法的效率 评价一个算法的效率主要是考察算法执行时间的情况。可以在相同的规模下,根据执行时间的长短来评价一个算法的优劣。一个算法的好坏对计算机的效能影响有多大呢?我们来做这样一个比较,假设有两台计算机分别是计算机A和计算机B,计算机A的运算处理速度比计算机B大约快50倍。以求解“百钱买百鸡”(“鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一。百钱买百鸡。问鸡翁、母、雏各几何?”)为例子,设鸡翁为x只,鸡母为y只,鸡雏为z只。算法A:把公鸡、母鸡、小鸡的枚举范围都是1~100;算法B:经粗略计算公鸡的枚举范围为1~20,母鸡的枚举范围为1~33,而小鸡的枚举范围应是100-x-y。在计算机A上运行算法A程序,在计算机B上运行算法B程序,两台计算机谁先把结果运算出来呢? 算法A的程序代码如下: For x = 1 To 100 For y = 1 To 100 For z = 1 To 100 If (x+y+z=100) And (5* x + 3 * y + z/3 = 100) Then List1.AddItem Str(x) + " " + Str(y) + " " + Str(z) End If Next z Next y Next x 算法B程序代码如下: For x = 1 To 20 For y = 1 To 33 Z=100-x-y If 5* x +3* y + z/3 = 100 Then List1.AddItem Str(x) + " " + Str(y) + " " + Str(z) End If Next y Next x 运算结果是计算机B先把结果运算出来。为什么会这样呢?我们来分析一下,算法A 需要执行100×100×100=1000000次内循环,而算法B只需要执行20×33=660次内循环,虽然计算机A比计算机B快50多倍,但还是计算机B先求得计算结果。 一个好的算法可以算得更快。什么样的算法是好算法呢?通常从时间复杂度和空间复杂度两方面来评价,在这里我们主要讨论时间复杂度。通常我们把算法的基本操作执行的次数作为算法的时间量度T(n)=O(f(n)),表示随着规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称时间复杂度,估算时按该算法对各种输入情况的平均值来考虑。在最坏情况下的复杂度和平均情况下的复杂度是评估算法两种衡量标准。 在排序算法中,我们学习了冒泡排序和交换排序,这两种算法的效率如何呢?下面我们来进行讨论。算法的基本操作主要是比较语句和交换两个变量值的赋值语句。冒泡排序(bubble sort)是在一列数据中把较小的数据逐次向上推移的一种技术,它和气泡从水中往上冒的情况有些类似,它把待排序的n个元素的数组看成是垂直堆放的一列数据,从最下面的一个元素起,自下而上地比较相邻两个元素中的数据,将较小的数据换到上面的一个元素中。当第一遍加工完成时,最小的数据已经上升为第一个元素的数据。然后对余下的n-1

数据结构课程设计(内部排序算法比较 C语言)

课题:内部排序算法比较 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。 第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------|

|-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择 1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并打印出结果。 (2)选择 2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| (3.1) (II)方便快捷的操作:用户只需要根据不同的需要在界面上输入系统提醒的操作形式直接进行相应的操作方式即可!如图(3.2所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

10.1几种基本排序算法的实现

数据结构实验 报告 实验题目:几种基本排序算法的实现 :耀 班级:计嵌151 学号:1513052017

一、实验目的 实现直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序等6种常用部排序算法,比较各算法的比较次数和移动次数。 二、数据结构设计 (1)设计待排序记录的存储结构。 (2)设计待排序数据的存储结构。 (3)输入:待排序数据的数据个数和数据可由键盘输入,也可由程 序生成伪随机数,以菜单方式选择上述排序方法中的一个,并指明输出第几趟排序的结果。 (4)输出:各趟排序结果或指定趟的排序结果,以及对应的关键字 比较次数和移动次数。 三、算法设计与N-S图 算法设计: 编写一个主函数main(),在主函数中设计一个简单的菜单,分别调用6种部排序算法。 为了对各种排序算法的性能进行比较,算法中的主要工作是在已知算法的适当位置插入对关键字的比较次数和移动次数的计数操作。为

此,可设立一个实现排序算法中的关键字比较的函数;设立一个实现排序算法中的关键字移动的函数;设立一个实现排序算法中的关键字交换的函数,从而解决比较次数和移动次数的统计问题。 数据的输入也可以通过菜单选择输入方式:键盘输入或由伪随机数程序生成数据,以便随时更换排序数据,并按照不同要求对排序数据进行排序,输出排序的结果以及对应的关键字比较次数和移动次数。对于测试数据,算法中可以考虑几组数据的典型性,如正序,逆序和不同程度等,以取得直观的感受,从而对不同算法进行比较。 四、程序清单 #include using namespace std; void showMenu() { cout << " * 菜单* " << endl; cout << " 1.直接插入排序" << endl; cout << " 2.冒泡排序" << endl; cout << " 3.简单选择排序" << endl; cout << " 4.快速排序" << endl; cout << " 5.希尔排序" << endl; cout << " 6.堆排序" << endl; cout << " 7.退出程序" << endl; } struct SqList{ int * key; int length; }; void CreateSqList(SqList &sl)//type为int { int n; cout << "建立顺序表" << endl << "请输入顺序表的长度" << endl;

论文——排序算法时间效率的比较

00000000000000000000000 0000000000000000000000000 毕业论文 各种排序算法性能比较 系 专业姓名 班级学号 指导教师职称 设计时间 目录

摘要 (1) 第二章排序基本算法 (3) 第三章系统设计 (11) 第四章运行与测试 (24) 第五章总结 (26) 摘要 排序算法是数据结构这门课程核心内容之一。它是计算机程序设计、数据库、操作系统、编译原理及人工智能等的重要基础,广泛应用于信息学、系统工程等各种领域。学习排序算法是为了将实际问题中涉及的对象在计算机中进行处理。本毕业论文对直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序以及堆排序算法进行比较。 我们设置待排序表的元素为整数,用不同的测试数据做测试比较,长度取固定的三种,对象由随机数生成,无需人工干预来选择或者输入数据。比较的指标为关键字的比较次数和关键字的移动次数。 经过比较可以看到,当规模不断增加时,各种算法之间的差别是很大的。这六种算法中,快速排序比较和移动的次数是最少的。也是最快的一种排序方法。堆排序和快速排序差不多,属于同一个数量级。直接选择排序虽然交换次数很少,但比较次数较多。 关键字:直接插入排序;直接选择排序;起泡排序;Shell排序;快速排序;堆排序;

1.3 本文主要内容 排序的方法很多,但是就其全面性能而言,很难提出一种被认为是最好的方法,每一种方法都有各自的优缺点,适合在不同的环境下使用。如果排序中依据的不同原则对内部排序方法进行分类,则大致可分为直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序、堆排序六类。 本文编写一个程序对直接插入排序、直接选择排序、起泡排序、Shell排序、快速排序及堆排序这几种内部排序算法进行比较,用不同的测试数据做测试比较。比较的指标为关键字的比较次数和关键字的移动次数。最后用图表数据汇总,以便对这些内部排序算法进行性能分析。

c排序算法大全

c排序算法大全 排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法对算法本身的速度要求很高。而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将给出详细的说明。 对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。我将按照算法的复杂度,从简单到难来分析算法。第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种算法因为涉及树与堆的概念,所以这里不于讨论。第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。现在,让我们开始吧: 一、简单排序算法 由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。 1.冒泡法: 这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡: #include void BubbleSort(int* pData,int Count) { int iTemp; for(int i=1;i=i;j--) { if(pData[j]

相关文档
相关文档 最新文档