文档库 最新最全的文档下载
当前位置:文档库 › 厌氧池和DE氧化沟污水处理毕业设计计算书

厌氧池和DE氧化沟污水处理毕业设计计算书

厌氧池和DE氧化沟污水处理毕业设计计算书
厌氧池和DE氧化沟污水处理毕业设计计算书

X X 工业大学

毕业设计说明书

作者:XX 学号:XXXXXX

学院:土木工程学院

系(专业):给水排水工程

题目:我国水污染现状

及某市25万吨污水处理工程设计

指导者:XXX 讲师

评阅者:

(姓名) (专业技术职务)

2016 年12 月

中文摘要

外文摘要

目录

中文摘要 (1)

外文摘要 (2)

1绪论 ................................................................................................................................. - 1 -1.1 污水处理厂的基础资料 ........................................................................................ - 1 -1.1.1设计资料 ................................................................................................................. - 1 -1.1.2水质特点 ................................................................................................................. - 1 -1.2我国水污染现状....................................................................................................... - 2 -1.3国内外研究现状....................................................................................................... - 4 -1.3.1研究现状 ................................................................................................................. - 4 -1.3.2处理工艺的比较.................................................................................................... - 5 -

1.4工艺流程的确定....................................................................................................... - 8 -

2 污水处理构筑物的设计计算................................................................................. - 10 -2.1 格栅........................................................................................................................... - 10 -2.1.1设计概述 ............................................................................................................... - 10 -2.1.2设计要点 ............................................................................................................... - 11 -2.1.3设计参数:........................................................................................................... - 12 -2.1.4设计计算 ............................................................................................................... - 12 -2.2 污水提升泵房设计计算 ...................................................................................... - 15 -2.2.1 泵房选择条件................................................................................................... - 15 -2.2.2 设计计算............................................................................................................ - 16 -2.3泵后细格栅的计算................................................................................................. - 17 -2.3.1设计参数:........................................................................................................... - 17 -2.3.2设计计算 ............................................................................................................... - 18 -

2.3.3进水与出水渠道.................................................................................................. - 19 -2.4平流式沉砂池的计算............................................................................................ - 20 -2.4.1设计概述 ............................................................................................................... - 20 -2.4.2设计要点 ............................................................................................................... - 20 -2.4.3设计参数 ............................................................................................................... - 21 -2.4.4设计计算 ............................................................................................................... - 21 -2.5.厌氧池+DE型氧化沟工艺计算.......................................................................... - 24 -2.5.1.设计参数........................................................................................................................................... - 24 -2.5.2厌氧池计算..................................................................................................................................... - 26 -2.5.3 DE型氧化沟计算 ....................................................................................................................... - 27 -2.5.4设计参数的较核.......................................................................................................................... - 28 -2.5.5剩余污泥量计算.......................................................................................................................... - 29 -2.5.6需氧量的计算:.......................................................................................................................... - 29 -2.5.7供气量计算..................................................................................................................................... - 31 -2.5.8曝气机数量计算(以单组反应池计算) .................................................................. - 32 -2.6 二沉池的计算.................................................................................................................................. - 33 -2.6.1 设计参数......................................................................................................................................... - 33 -2.6.2 设计计算......................................................................................................................................... - 34 -2.6.3 进水部分设计.............................................................................................................................. - 36 -2.6.4 出水部分设计计算: ............................................................................................................. - 38 -2.7消毒设施计算.................................................................................................................................... - 39 -2.7.1消毒剂的选择 ............................................................................................................................... - 39 -2.7.2消毒剂的投加 ............................................................................................................................... - 41 -2.7.3平流式消毒接触池 .................................................................................................................... - 42 -2.8计量设备............................................................................................................................................... - 43 -2.8.1计量设备的选择.......................................................................................................................... - 43 -2.8.2设计参数........................................................................................................................................... - 44 -

2.8.3巴氏计量槽..................................................................................................................................... - 44 -

3 污泥处理构筑物设计计算........................................................................................................... - 48 -

3.1.污泥浓缩池的设计计算.............................................................................................................. - 48 -3.1.1回流污泥量计算.......................................................................................................................... - 48 -3.2辐流浓缩池的设计计算 ............................................................................................................. - 48 -3.2.1设计说明........................................................................................................................................... - 48 -3.2.2设计计算........................................................................................................................................... - 48 -3.3贮泥池的设计计算 ........................................................................................................................ - 51 -3.3.1.贮泥池设计进泥量 .................................................................................................................... - 51 -3.3.2.贮泥池的容积................................................................................................................................ - 51 -3.3.3.贮泥池高度..................................................................................................................................... - 52 -

3.4污泥脱水............................................................................................................................................... - 53 -

4 污水厂平面布置................................................................................................................................. - 53 -4.1 平面布置概述 ............................................................................................................................... - 54 -4.2 布置的一般原则.......................................................................................................................... - 54 -4.3 具体平面布置 ............................................................................................................................... - 57 -4.3.1 工艺流程布置 ........................................................................................................................... - 57 -4.3.2 构(建)筑物平面布置..................................................................................................... - 57 -4.3.3 污水厂管线布置...................................................................................................................... - 59 -4.3.4 厂区道路布置 ........................................................................................................................... - 60 -

4.3.5 厂区绿化布置 ........................................................................................................................... - 60 -

5 污水厂高程布置................................................................................................................................. - 60 -5.1 高程布置概述 ............................................................................................................................... - 60 -5.2 高程布置的主要任务............................................................................................................... - 61 -5.3 高程布置的主要原则............................................................................................................... - 61 -5.4 高程布置计算部分 .................................................................................................................... - 62 -5.4.1 构筑物之间管渠的连续及污水水头损失的计算 ............................................. - 62 -5.4.2 构筑物之间管渠的连续及污泥水头损失的计算 ............................................. - 68 -5.5 其他附属设施的设计............................................................................................................... - 70 -5.5.1 门的设计......................................................................................................................................... - 70 -5.5.2 窗的设计 ...................................................................................................................................... - 71 -

5.5.3 走廊 ................................................................................................................................................. - 71 -5.5.4 通风设计 ...................................................................................................................................... - 71 -5.5.5 排水设计 ...................................................................................................................................... - 71 -结论 .................................................................................................................................................................. - 72 -参考文献....................................................................................................................................................... - 73 -致谢 .................................................................................................................................................................. - 74 -附录:.. (75)

1绪论

1.1 污水处理厂的基础资料

1.1.1设计资料

(1) 气候条件

荣成属暖温带季风型湿润气候区,年平均气温为12℃左右,年平均日照2600小时左右,年平均降雨量800毫米左右。

(2) 主导风向

常年主导风向为东南风;最大风速:12m/s,年平均风速为3.8m/s,。(3) 地质状况

地质条件良好,地势平坦,结构稳定,无强烈发育的岩溶、塌陷、断裂、滑坡等不良地质构造。地基承载力标准值为≥170千帕。根地震基本烈度为6度。土层深厚,土壤质地较好,地面标高为110m,冰冻线深度为-1.1m。

(4) 纳污河流

位于城市的西部自南向北流,常水位标高为98.5m,20年一遇洪水水位标高为102.3m,最低水位标高为95.2m。

计算书—生化池

设计参数 1. 设计最大流量 Q max=1,5000m 3/d=625 m 3/h=0.174 m 3/s 2. 进出水水质要求 3. 设计参数计算 ①. BOD 5污泥负荷 N=0.13kgBOD 5/(kgMLSS ·d) ②. 回流污泥浓度 X R =9 000mg/L ③. 污泥回流比 R=50% ④. 混合液悬浮固体浓度(污泥浓度) ⑤. 设MLVSS/MLSS=0.75 ⑥. 挥发性活性污泥浓度 ⑦. NH3-N 去除率 ⑧. 内回流倍数 0.2667 .01667.01=-=-= e e R 内,即200% 4. A2/O 曝气池计算 ①. 总有效容积

②. 反应水力总停留时间 ③. 各段水力停留时间和容积 厌氧:缺氧:好氧=1:1:4 厌氧池停留时间h t 025.115.661=厌?=,池容33.427256461 m V =厌?=; 缺氧池停留时间h t 025.115.661=缺?=,池容33.427256461 m V =缺?=; 好氧池停留时间h t 1.415.664=好?=,池容33.170925646 4 m V =好?=。 ④. 反应池有效深度 H=3m 取超高为1.0m ,则反应池总高m H 0.40.10.3==+ ⑤. 反应池有效面积 ⑥. 生化池廊道设置 设厌氧池1廊道,缺氧池1廊道,好氧池4廊道,共6条廊道。廊道宽4.5m 。则每条廊道长度为 m bn S L 7.316 5.4855 =?== ,取32m ⑦. 尺寸校核 1.75.432==b L ,5.13 5.4==D b 查《污水生物处理新技术》,长比宽在5~10间,宽比高在1~2间 可见长、宽、深皆符合要求 5. 反应池进、出水系统计算 ① 进水管 进水通过DN500的管道送入厌氧—缺氧—好氧池首端的进水渠道。 反应池进水管设计流量s m Q /17.086400 15000 31== 管道流速s m v /9.0'= 管道过水断面面积2119.090.0/17.0/m v Q A === 管径m A d 49.019 .044=π π?= =

污水处理厂设计计算书

第二篇设计计算书 1、污水处理厂处理规模 1、1处理规模 污水厂得设计处理规模为城市生活污水平均日流量与工业废水得总与:近期1、0万m3/d,远期2、0万m3/d。 1、2污水处理厂处理规模? 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量与工业废水得总与。 Q设=Q1+Q2 = 5000+5000 = 10000m3/d 总变化系数:KZ=Kh×Kd=1、6×1=1、6 2、城市污水处理工艺流程 污水处理厂CASS工艺流程图 3、污水处理构筑物得设计 3、1泵房、格栅与沉砂池得计算 3.1。1 泵前中格栅 格栅就是由一组平行得得金属栅条制成得框架,斜置在污水流经得渠道上,或泵站集水井得井口处,用以截阻大块得呈悬浮或漂浮状态得污物。在污水处理流程中,格栅就是一种对后续处理构筑物或泵站机组具有保护作用得处理设备。 3。1.1、1 设计参数: (1)栅前水深0.4m,过栅流速0、6~1.0m/s,取v=0。8m/s,栅前流速0、4~

0。9 m/s; (2)栅条净间隙,粗格栅b= 10 ~ 40mm, 取b=21mm; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65°,渐宽部分展开角α1=20°; (5)栅前槽宽B1=0.82m,此时栅槽内流速为0。55m/s; (6)单位栅渣量:W1 =0。05m3栅渣/103m3污水; 3。1.1、2格栅设计计算公式 (1)栅条得间隙数n,个 式中, -最大设计流量,; -格栅倾角,(°); b-栅条间隙,m; h-栅前水深,m; v-过栅流速,m/s; (2)栅槽宽度B,m 取栅条宽度s=0.01m B=S(n-1)+bn (3)进水渠道渐宽部分得长度L1,m -进水渠宽,m; 式中,B 1 α1-渐宽部分展开角度,(°); ,m (4)栅槽与出水渠道连接处得渐窄部分长度L 2 (5)通过格栅得水头损失h1,m 式中:ε—ε=β(s/b)4/3; h0 —计算水头损失,m; k —系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; ξ- 阻力系数,与栅条断面形状有关;

污水处理厂工艺的设计计算书

5000T 污水处理厂设计计算书 设计水量: 近期(取K 总=1.75):Q ave =5000T/d=208.33m 3/h=0.05787 m 3 /s Q max =K 总Q ave =364.58m 3/h=0.10127m 3 /s (截留倍数n=1.0)Q 合=n Q ave =416.67 m 3/h=0.1157m 3 /s 远期(取K 总=1.6):Q ave =10000T/d=416.67m 3/h=0.1157m 3 /s Q max =K 总Q ave =667m 3/h=0.185m 3 /s 一.粗格栅(设计水量按远期Q max =0.185m 3 /s ) (1)栅条间隙数(n ): 设栅前水深h=0.8m ,过栅流速v=0.6m/s ,栅条间隙b=0.015m ,格栅倾角a=75°。 °max sin 0.185sin 75=25Q n α==(个) (2)栅槽宽度(B ) B=S (n-1)+bn=0.01(25-1)+0.015*25=0.615m 二.细格栅(设计水量按远期Q max =0.185m 3 /s ) (1)栅条间隙数(n ): °max sin 0.185sin 60=430.003 2.20.6 Q n bhv α==??(个) (2)栅槽宽度(B ) B=S (n-1)+bn=0.01(43-1)+0.003*43=0.549m 三.旋流沉砂池(设计水量按近期Q 合=0.1157m 3 /s ),取标准旋流沉砂池尺寸。

四、初沉池(设计水量按近期Q 合=416.67 m 3/h =0.1157m 3 /s ) (1)表面负荷:q (1.5-4.5m 3 /m 2 ·h ),根据姜家镇的情况,取1.5 m 3 /m 2 ·h 。 面积2max 416.67 277.781.5 Q F m q = == (2)直径418.8F D m π = =,取直径D=20m 。 (3)沉淀部分有效水深:设t=2.4h , h2=qt=1.5*2.4=3.6m (4)沉淀部分有效容积: 2232*20*3.61130.44 4 V D h m π π '= = = 污泥部分所需的容积:设S=0.8L/(人·d ),T=4h , 30.8120004 1.610001000124 SNT V m n ??= ==?? 污泥斗容积:设r1=1.2m ,r2=0.9m ,a=60°,则 512()(1.8 1.5)60=0.52h r r tg tg α=-=-o ,取0.6m 。 222235 111220.6 ()(1.8 1.5 1.8 1.5) 5.143 3 h V r r r r m ππ= ++= +?+= (5)污泥斗以上圆锥体部分污泥容积:设池底径向坡度0.1,则 4()0.1(10 1.8)*0.10.82h R r m =-?=-=,取0.8m 222234 2110.8 ()(1010 1.8 1.8)101.523 3 h V R Rr r m ππ= ++= +?+= (6)污泥总容积: V 1+V 2=5.14+101.52=106.66m 3>1.6 m 3 (7)沉淀池总高度:设h 1=0.5m , H= 0.5+3.6+0.8+0.6=5.5m (8)沉淀池池边高度 H ′=0.5+3.6=4.1m

厌氧塔计算手册

1. 厌氧塔的设计计算 1.1 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为 5.0 /( 3 / ) N v kgCOD m d 进出水 COD 浓度 C 0 2000( mg / L) , E=0.70 QC 0 E 3000 20 0.70 8400m 3 3 V= 5.0 ,取为 8400 m N v 式中 Q ——设计处理流量 m 3 / d C 0——进出水 CO D 浓度 kgCOD/ 3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器 3 座,横截面积为圆形。 1) 反应器有效高为 h 17.0m 则 横截面积: S V 有效 8400 =495(m 2 ) h 17.0 单池面积: S i S 495 165(m 2 ) n 3 2) 单池从布水均匀性和经济性考虑,高、直径比在 1.2 : 1 以下较合适。 设直径 D 15 m ,则高 h D*1.2 15 * 1.2m 18 ,设计中取 h 18m 单池截面积: S i ' 3.14 * ( D )2 h 3.14 7.52 176.6( m 2 ) 2 设计反应器总高 H 18m ,其中超高 1.0 m 单池总容积: V i S i ' H ' 176.6 (18.0 1.0) 3000( m 3 ) 单个反应器实际尺寸: D H φ15m 18m 反应器总池面积: S S i ' n 176.6 3 529.8(m 2 ) 反应器总容积: V V 'i n 3000 3 9000(m 3 )

AAO工艺设计计算

4.2 设计计算 本工艺是采用池体单建的方式, 各个池子根据厌氧 - 好氧-缺氧活性污泥法污 水处理工程技术规范 [20]进行设计计算。 4.2.1 厌氧池设计计算 1)池体设计计算 a. 反应池总容积 式中:t p —— 厌氧池水力停留时间, h ; Q —— 污水设计水量, m 3/d ; V p —— 厌氧池容积, m 3; b. 反应池总面积 反应池有效水深, m ;取 4m c. 单组反应池有效面积 4-3) 式中: A 1 每座厌氧池面积, m 2 ; N ----- 厌氧池个数,个; A 1 375 187.5m 2 2 d. 反应池总深 设超高为 h 1=1.0m ,则反应池总深为: H h h 1 4.0 1.0 5.0m e. 反应池尺寸 V p t p Q 24 4-1) V p 1.8 20000 1500m 3 24 式中: A ---- 反应池总面积, A V h m 2 ; 4-2) 1500 A 375m 2 A 1

B L H 15m 11.7m 5m 2)进、出水管设计 a. 进水设计 进水管设计流量 Q max 0.34m 3 / s ,安全系数为 1.2 故 Q max 1. 2Q max 1.2 0.34 0.408m 3 /s 分两条管道,则每条管道流量为: Q 1 Q max 2 0.4082 0.204m 3/ s 管道流速 v= 1.4m/s ,则进水管理论管径为: 取进水管管径 DN=450mm 。 反应池采用潜孔进水,孔口面积 4-5) 式中: F 每座反应池所需孔口面积, m 2 ; v2 ----- 孔口流速(m/s ),一般采用 0.2—1.5m/s ,本设计取 v 2=0.2m/s 设每个孔口尺寸为 0.5 ×0.5m ,则孔口数为 F n 式中: n ---- 每座曝气池所需孔口数,个; 每个孔口的面积, m 2 ; b. 出水设计 ①堰上水头 出水采用矩形薄壁堰,跌落水头,堰上水 Q 1 R R i Q 1 4 0.204 0.429m 429mm 1.4 4-4) Q 1 v 2 0.204 0.2 1.02m 2 4-6) 1.02 0.5 0.5 4.08个, 4-7) d

污水处理设计计算

第三章 污水处理厂工艺设计及计算 第一节 格栅 。 1.1 设计说明 栅条的断面主要根据过栅流速确定,过栅流速一般为0.6~1.0m/s ,槽内流速0.5m/s 左右。如果流速过大,不仅过栅水头损失增加,还可能将已截留在栅上的栅渣冲过格栅,如果流速过小,栅槽内将发生沉淀。此外,在选择格栅断面尺寸时,应注意设计过流能力只为格栅生产厂商提供的最大过流能力的80%,以留有余地。格栅栅条间隙拟定为25.00mm 。 1.2 设计流量: a.日平均流量 Q d =45000m 3/d ≈1875m 3/h=0.52m 3/s=520L/s K z 取1.4 b. 最大日流量 Q max =K z ·Q d =1.4×1875m 3/h=2625m 3/h=0.73m 3/s 1.3 设计参数: 栅条净间隙为b=25.0mm 栅前流速ν1=0.7m/s 过栅流速0.6m/s 栅前部分长度:0.5m 格栅倾角δ=60° 单位栅渣量:ω1=0.05m 3栅渣/103m 3污水 1.4 设计计算: 1.4.1 确定栅前水深 根据最优水力断面公式221ν B Q =计算得: m Q B 66.07.0153 .0221=?= = ν m B h 33.02 1== 所以栅前槽宽约0.66m 。栅前水深h ≈0.33m 1.4.2 格栅计算 说明: Q max —最大设计流量,m 3/s ; α—格栅倾角,度(°); h —栅前水深,m ; ν—污水的过栅流速,m/s 。 栅条间隙数(n )为 ehv Q n αsin max = =)(306 .03.0025.060sin 153.0条=??? ? 栅槽有效宽度(B )

厌氧塔设计计算书

1.厌氧塔的设计计算 1.1反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E=0.70 V= 3 084000 .570 .0203000m N E QC v =??= ,取为84003 m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .1784002 m h V S =有效 == 单池面积:)(1653 4952 m n S S i == = 2) 单池从布水均匀性和经济性考虑,高、直径比在1.2:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765 .714.3)2 ( *14.32 2 2' m h D S i =?== 设计反应器总高m H 18=,其中超高1.0m 单池总容积:)(3000)0.10.18(6.176'3 ' m H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762 ' m n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.1762430002 3h m m S Q V r =??= = 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 1.7.2 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于2.0)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16' m b l == 每个单元宽度:)(57.27 187 ' m l b == = 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142 323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

污水处理场设计计算书

第二篇设计计算书 1.污水处理厂处理规模 1.1处理规模 污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。 1.2污水处理厂处理规模 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量和工业废水的总和。 Q设= Q1+Q2 = 5000+5000 = 10000 m3/d 总变化系数:K Z=K h×K d=1.6×1=1.6 2.城市污水处理工艺流程 污水处理厂CASS工艺流程图 3.污水处理构筑物的设计 3.1泵房、格栅与沉砂池的计算 3.1.1 泵前中格栅 格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。 3.1.1.1 设计参数:

(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个 max sin Q n bhv α= 式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ; (2)栅槽宽度B ,m 取栅条宽度s=0.01m B=S (n -1)+bn (3)进水渠道渐宽部分的长度L 1,m 式中,B 1-进水渠宽,m ; α1-渐宽部分展开角度,(°); (4)栅槽与出水渠道连接处的渐窄部分长度L 2,m (5)通过格栅的水头损失h 1,m 式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ; k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; 1 112tga B B L -= 1 25.0L L =αε sin 22 01g v k kh h ==

UASB的设计计算书

两相厌氧工艺的研究进展 摘要:传统的厌氧消化工艺中,产酸菌和产甲烷菌在单相反应器内完成厌氧消化的全过程,由于二菌种的特性有较大的差异,对环境条件的要求不同,无法使二者都处于最佳的生理状态,影响了反应器的效率。1971年Ghosh和Poland提出了两相厌氧生物处理工艺[1],它的本质特征是实现了生物相的分离,即通过调控产酸相和产甲烷相反应器的运行控制参数,使产酸相和产甲烷相成为两个独立的处理单元,各自形成产酸发酵微生物和产甲烷发酵微生物的最佳生态条件,实现完整的厌氧发酵过程,从而大幅度提高废水处理能力和反应器的运行稳定性。 (1) 两相厌氧消化工艺将产酸菌和产甲烷菌分别置于两个反应器内,并为它们提供了最佳的生长和代谢条件,使它们能够发挥各自最大的活性,较单相厌氧消化工艺的处理能力和效率大大提高。Yeoh对两相厌氧消化工艺和单相厌氧消化工艺进行了对比实验研究。结果表明:两相厌氧消化系统的产甲烷率为0.168m3CH4/(KgCOD Cr?d)明显高于单相厌氧消化系统的产甲烷率0.055m3CH4/(KgCOD cr?d)。 (2) 反应器的分工明确,产酸反应器对污水进行预处理,不仅为产甲烷反应器提供 了更适宜的基质,还能够解除或降低水中的有毒物质如硫酸根、重金属离子的毒性,改变难降解有机物的结构,减少对产甲烷菌的毒害作用和影响,增强了系统运行的稳定性。 (3) 产酸相的有机负荷率高,缓冲能力较强,因而冲击负荷造成的酸积累不会对产 酸相有明显的影响,也不会对后续的产甲烷相造成危害,提高了系统的抗冲击能 力。 (4) 产酸菌的世代时间远远短于产甲烷菌,产酸菌的产酸速度高于产甲烷菌降解酸的速率[4,5],产酸反应器的体积总是小于产甲烷反应器的体积。 (5) 两相厌氧工艺适于处理高浓度有机污水、悬浮物浓度很高的污水、含有毒物质及难降解物质的工业废水和污泥。 2两相厌氧工艺的研究现状 2. 1反应器类型 从国内外的两相厌氧系统研究所采用的工艺形式看,主要有两种:第一种是两相均采用同一类型的反应器,如UASB反应器,UBF反应器,ASBR反应器,其中UASB 反应器较常用。第二种是称作Anodek的工艺,其特点是产酸相为接触式反应器 (即完全式反应器后设沉淀池,同时进行污泥回流),产甲烷相则采用其它类型的反应器⑹。 王子波、封克、张键采用两相UASB反应器处理含高浓度硫酸盐黑液,酸化相为8.87L的普通升流式反应器,甲烷相为28.75L的UASB反应器,系统温度 (35 ±)C。当酸化相进水COD 为(6.771 ?11.057)g/ L ,SO42-为(5.648?8.669) g/

A2O生物池计算书(1500t)(最新整理)

X X设计院 计算书 工程名称:XXX污水处理工程——A2/O生物池工程代号:2013-M011-03 专业:工艺 计算: 校对: 审核: 2016年5月20日

生物池工艺计算(一) 1、设计进出水水质 表1进水水质 BOD5 (mg/l)COD (mg/l)SS (mg/l)NH3-N (mg/l)TN (mg/l) TP (mg/l) 1202402202435 3.0 表2 出水水质 BOD5 (mg/l)COD (mg/l)SS (mg/l)NH3-N (mg/l)TN (mg/l)TP (mg/l)≤20≤60≤20≤8 (water temp > 12oC) ≤15 (water temp ≤ 12oC) ≤20≤1 2、基础资料: 近期规模:0.30×104m3/d,远期:0.60×104m3/d。 考虑XXX污水处理厂进水规模,生化池近期设一组两格, 单格流量:0.15×104m3/d ,K z=1.84 设计水温15℃。 XXX污水处理厂出水水质执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级标准的B标准。 3、基本参数设定: 混合液污泥浓度:MLSS=3500mg/L。溶解氧浓度C=2.0mg/L。

4、A 2/O 生物池理论计算4.1 好氧池计算4.1.1 硝化菌比生长率 0.098(1515) 0.098(1515)80.470.470.4480.48 a N a N e e d K N m ×-′-=′ =′=++K N ——硝化作用中氮的半速率常数, 15℃时取0.4N a ——反应池中氨氮浓度,mg/L 4.1.2 设计污泥龄 1 1 2.5 5.5850.448 d m F F d q q m =×=×=′=θd ——反应池设计泥龄值(d ) F——安全系数,取1.5~3.0,本设计取2.54.1.3 污泥净产率系数 (1515)(1515) 0.9(10.90.080.6 1.072220 0.85(0.60.6) 11200.08 1.0725.585 1.303 h h t i h i h t d b Y f X Y f Y S b f y q --×××=×-+×+×′′′=′-+′+′=Y——污泥产率系数; ψ——反应池进水中悬浮固体中不可水解/ 降解的悬浮固体的比例,通过测定求得,无测定条件时,取0.6; X i ——反应池进水中悬浮固体浓度(mg/L ); f——污泥产率修正系数,通过实验确定,无实验条件时取0.8~0.9,本设计取0.85 b h ——异氧菌内源衰减系数(d -1),取0.08;Y h ——异氧菌产率系数(kgSS/kgBOD 5),取0.6;f t ——温度修正系数,取1.072(t-15); S i ,S e ——反应池进水、出水五日生化需氧量(BOD 5)浓度(mg/L)。

污水处理厂设计计算

} 某污水处理厂设计说明书 计算依据 1、工程概况 该城市污水处理厂服务面积为,近期(2000年)规划人口10万人,远期(2020年)规划人口万人。 2、水质计算依据 A.根据《室外排水设计规范》,生活污水水质指标为: COD Cr 60g/人d BOD5 30g/人d — B.工业污染源,拟定为 COD Cr 500 mg/L BOD5 200 mg/L C.氨氮根据经验值确定为30 mg/L 3、水量数据计算依据: A.生活污水按人均生活污水排放量300L/人·d; B.生产废水量近期×104m3/d,远期×104m3/d考虑; C.公用建筑废水量排放系数近期按,远期考虑; , D.处理厂处理系数按近期,远期考虑。 4、出水水质 根据该厂城镇环保规划,污水处理厂出水进入水体水质按照国家三类水体标准控制,同时执行国家关于污水排放的规范和标准,拟定出水水质指标为: COD Cr 100mg/L

BOD5 30mg/L SS 30mg/L NH3-N 10mg/L 污水量的确定 ¥ 1、综合生活污水 近期综合生活污水 远期综合生活污水 2、工业污水 近期工业污水 远期工业污水 3、进水口混合污水量 处理厂处理系数按近期,远期考虑,由于工业废水必须完全去除,所以不考虑其处理系数。& 近期混合总污水量 取 远期混合总污水量 取 4、污水厂最大设计水量的计算

近期; ,取日变化系数;时变化系数; 。 ; 远期; ,取日变化系数;时变化系数; 。 拟订该城市污水处理厂的最大设计水量为 污水水质的确定 近期取 取 /

远期取 取 则根据以上计算以及经验值确定污水厂的设计处理水质为: ,, ,, 考虑远期发展问题,结合《城镇污水处理厂污染物排放标准》(GB18918-2002),处理水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级标准(B)排放要求。 拟定出水水质指标为: 表1-1 进出水水质一览表 基本控制项目一级标准(B)进水水质去除率 % 序号 % 1COD80· 325 2BOD20150% 3` 20300% SS 4氨氮8[1]30、 % 5T-N204050% 6T-P) 350% 7pH6~97~8 ' 注:[1]取水温>12℃的控制指标8,水温≤12℃的控制指标15。 [2]基本控制项目单位为mg/L,PH除外。

厌氧塔设计计算书

1.厌氧塔的设计计算 反应器结构尺寸设计计算 (1) 反应器的有效容积 设计容积负荷为)//(0.53 d m kgCOD N v = 进出水COD 浓度)/(20000L mg C = ,E= V= 3084000 .570 .0203000m N E QC v =??= ,取为84003m 式中Q ——设计处理流量d m /3 C 0——进出水CO D 浓度kgCOD/3 m E ——去除率 N V ——容积负荷 (2) 反应器的形状和尺寸。 工程设计反应器3座,横截面积为圆形。 1) 反应器有效高为m h 0.17=则 横截面积:)(4950 .178400 2m h V S =有效= = 单池面积:)(1653 4952m n S S i === 2) 单池从布水均匀性和经济性考虑,高、直径比在:1以下较合适。 设直径m D 15=,则高182.1*152.1*===m D h ,设计中取m h 18= 单池截面积:)(6.1765.714.3)2 ( *14.3222 ' m h D S i =?== 设计反应器总高m H 18=,其中超高m 单池总容积:)(3000)0.10.18(6.176'3 'm H S V i i =-?=?= 单个反应器实际尺寸:m m H D 1815?=?φ 反应器总池面积:)(8.52936.1762'm n S S i =?=?= 反应器总容积:)(900033000'3 m n V V i =?=?=

(3) 水力停留时间(HRT )及水力负荷(r V )v N h Q V t HRT 72243000 9000=?== )]./([24.03 6.176********h m m S Q V r =??== 根据参考文献,对于颗粒污泥,水力负荷)./(9.01.02 3 h m m V r -=故符合要求。 三相分离器构造设计计算 (1) 沉淀区设计 根据一般设计要求,水流在沉淀室内表面负荷率)./(7.02 3 ' h m m q <沉淀室底部进水口表面负荷一般小于)./(2 3 h m m 。 本工程设计中,与短边平行,沿长边每池布置8个集气罩,构成7个分离单元,则每池设置7个三项分离器。 三项分离器长度:)(16'm b l == 每个单元宽度:)(57.27 187'm l b === 沉淀区的沉淀面积即为反应器的水平面积即2882m 沉淀区表面负荷率:)./(0.20.1)./(39.0288 58.1142323h m m h m m S Q i -<== (2) 回流缝设计 设上下三角形集气罩斜面水平夹角α为55°,取m h 4.13= )(98.055 tan 4.1tan . 31m h b === α )(04.198.020.32 12m b b b =?-=-= 式中:b —单元三项分离器宽度,m ; 1b —下三角形集气罩底的宽度,m ; 2b —相邻两个下三角形集气罩之间的水平距离(即污泥回流缝之 一),m ; 3h —下三角形集气罩的垂直高度,m ;

污水处理厂计算书

污水厂设计计算书 一、粗格栅 1.设计流量 a.日平均流量Q d =30000m 3/d ≈1250m 3/h=0.347m 3/s=347L/s K z 取1.40 b. 最大日流量 Q max =K z ·Q d =1.40×30000m 3/d=42000 m 3/d =1750m 3/h=0.486m 3/s 2.栅条的间隙数(n ) 设:栅前水深h=0.8m,过栅流速v=0.9m/s,格栅条间隙宽度b=0.02m,格栅倾角α=60° 则:栅条间隙数4.319 .08.002.060sin 486.0sin 21=???==bhv Q n α(取n=32) 3.栅槽宽度(B) 设:栅条宽度s=0.015m 则:B=s (n-1)+en=0.015×(32-1)+0.02×32=1.11m

4.进水渠道渐宽部分长度 设:进水渠宽B 1=0.9m,渐宽部分展开角α1=20° m B B L 3.020tan 29.011.1tan 2111=? -=-=α 5.栅槽与出水渠道连接处的渐窄部分长度(L 2) m B B L 3.020tan 29.011.1tan 2221=? -=-=α 6.过格栅的水头损失(h 1) 设:栅条断面为矩形断面,所以k 取3 则:m g v k kh h 18.060sin 81 .929.0)02.0015.0(42.23sin 2234 201=?????===αε 其中ε=β(s/b )4/3 k —格栅受污物堵塞时水头损失增大倍数,一般为3 h 0--计算水头损失,m ε--阻力系数,与栅条断面形状有关,当为矩形断面时形状系数β=2.4将β值代入β与ε关系式即可得到阻力系数ε的值 7.栅后槽总高度(H) 设:栅前渠道超高h 2=0.4m

IC厌氧塔

产品描述: 一简介 IC反应器中文名内循环厌氧反应器,由两个UASB反应器上下叠加串联构成,高度可达16-25m,高径比一般为4-8,由5个基本部分组成:混合区、颗粒污泥膨胀床区、精处理区、内循环系统和出水区。其内循环系统是IC工艺的核心结构,由一级三相分离器、沼气提升管、气液分离器和泥水下降管等结构组 成。 二工作原理 经过调节pH和温度的生产废水首先进入反应器底部的混合区,并与来自泥水下降管的内循环泥水混合液充分混合后进入颗粒污泥膨胀床区进行COD生化降解,此处的COD容积负荷很高,大部分进水COD 在此处被降解,产生大量沼气。沼气由一级三相分离器收集。由于沼气气泡形成过程中对液体做的膨胀功产生了气提的作用,使得沼气、污泥和水的混合物沿沼气提升管上升至反应器顶部的气液分离器,沼气在该处与泥水分离并被导出处理系统。泥水混合物则沿泥水下降管进入反应器底部的混合区,并于进水充分混合后进入污泥膨胀床区,形成所谓内循环。根据不同的进水COD负荷和反应器的不同构造,内循环流量可达进水流量的倍。经膨胀床处理后的废水除一部分参与内循环外,其余污水通过一级三相分离器后,进入精处理区的颗粒污泥床区进行剩余COD降解与产沼气过程,提高和保证了出水水质。由于大部分COD已经被降解,所以精处理区的COD负荷较低,产气量也较小。该处产生的沼气由二级三相分离器收集,通过集气管进入气液分离器并被导出处理系统。经过精处理区处理后的废水经二级三相分离器作用后,上清液 经出水区排走,颗粒污泥则返回精处理区污泥床。 三选型、选材及尺寸(IC实验室选型) 1、有机玻璃IC厌氧反应器有效容积为25L,底边周长15cm,高120cm。其优点为外观结构干净漂亮;内部三相分离器、布水器、上下流管道等结构清晰可见;外附保温层保障了系统在合适的温度下自动运行; 该产品适用于学校、实验室小试模拟教学使用。 2、钢结构IC厌氧反应器为Q235碳钢焊制主体,内衬双层玻璃钢防腐层,内部管道喷双层环氧漆防腐,保障设备正常运行过程中不被腐蚀。该设备有效容积200L,底面直径40cm,高200cm,净重150kg。其优点为更接近于工程实际,抗压强度高,温度适应范围广,适用于科研单位、工地现场中试模拟运行。 四订货须知 1、用户应注明设备的材质及防腐要求。 2、用户应提供详细的水质化验单以便于我公司计算反 应器各部件的尺寸。 3、若用户有详细的加工图纸,可按用户要求进行生产。 4、可根据用户提出的具体要求进行设计制造。 天津国韵生物科技的限公司绍兴女儿儿酒有限公司山西 长冶金泽生化有限公司等 厌氧塔是本公司承接,效果很好~! 联系电话:

【课程设计计算书】A2O生化池单元

目录 设计总说明 (1) 设计任务书 (2) 一.设计任务 (2) 二.任务目的 (2) 三.任务要求 (2) 四.设计基础资料 (2) (一)水质 (2) (二)水量 (3) (三)设计需要使用的有关法规、标准、设计规范和资料 (3) 第一章A2/O工艺介绍................................... 错误!未定义书签。4 1.基本原理 (4) 2.工艺特点 (5) 3.注意事项 (5) 第二章A2/O工艺生化池设计 (6) 1.设计最大流量 (6) 2.进出水水质要求 (6) 3.设计参数计算 (6) 4.A2/O工艺曝气池计算 (7) 5.反应池进、出水系统计算 (8) 6.反应池回流系统计算 (10) 7.厌氧缺氧池设备选择 (11) 第三章 A2/O工艺需氧量设计 (13) 1.需氧量计算 (13) 2.供气量 (13) 3.所需空气压力 (14) 4.风机类型 (15) 5.曝气器数量计算 (15) 6.空气管路计算 (16)

第四章 A2/O工艺生化池单元设备一览 (17) 第五章参考文献 (18) 第六章致谢 (19) 附1 水污染课程设计感想 (20) 附2 A2/O工艺生化池图纸 (22)

设计总说明 随着经济快速发展和城市化程度越来越高,中心城区和小城镇建设步伐不断加快,城市生活污水对城区及附近河流的污染也越来越严重。为了改善人民的生活环境,各地政府大力投入资金,力图改变现今水体的水质。 本设计为污水处理厂生化池单元,要求运用A2/O工艺进行设计,对生化池的工艺尺寸进行设计计算,最后完成设计计算说明书和设计图。污水处理水量为10000t/d。污水水质:COD Cr250mg/L,BOD5100mg/L,NH3-N30mg/L,SS120mg/L,磷酸盐(以P 计)5mg/L。出水水质达到广东省地方标准《水污染物排放限值(DB44/26-2001)》最高允许排放浓度一级标准,污水经二级处理后应符合以下具体要求:COD Cr≤40mg/L,BOD5≤20mg/L,NH3-N≤10mg/L,SS≤20mg/L,磷酸盐(以P计)≤0.5mg/L。其对应的去除率为COD Cr≥84%,BOD5≥80%,NH3-N≥67%,SS≥87%,磷酸盐(以P计)≥90%。 A2/O是流程最简单,应用最广泛的脱氮除磷工艺。A2/O脱氮除磷工艺中,污水首先进入厌氧池,兼性厌氧发酵菌将污水中有机物氮化。回流污泥带入的聚磷菌将体内贮存的聚磷分解释放出磷。缺氧区中反硝化菌就利用混合液回流带入的硝酸盐以及进水中的有机物进行反硝化脱氮。好氧区中聚磷菌生动吸收环境中的溶解磷,以聚磷的形式在体内贮积。污水经厌氧、缺氧区有机物分别被聚磷菌和反硝化菌利用后浓度已经很低,有利于自养的硝化菌的生长繁殖。 关键词:城镇生活污水,A2/O工艺,脱氮除磷

ABR、UASB、AO系统设计计算书

ABR 、UASB 、A/O 系统设计计算书 (1)ABR 厌氧池 主要设计参数: 厌氧池设置成2组并联,每组共6口串联。 配套污泥收集池1座,现浇半地下式钢砼结构。收集厌氧排出的剩余污泥,池内设 置污泥泵、泵提升装置及泵自控装置。 构筑物尺寸: 红泥塑料厌氧池:1-4口:L 1×B 1×H 1 = 4.5×6.9×6.5m ; 5-6口:L 1×B 1×H 2 = 4.5×6.9×6.0m , (厌氧池平均水深H 平均=5.8m ); 污泥收集池:L 2×B 2×H 3 = 2.5×1.2×4.2m ,(有效水深H 3有效 = 3.7m ); 水力停留时间(HRT ): d Q H B L Q V HRT 4.5400 8 .59.65.4121211≈???=??== 平均总有效; 厌氧池容积负荷:() d m kgCOD V C Q S cr i V ?=?=?= 3/25.12160 75 .6400总有效 S v <1.5kgCOD cr /(m 3·d) 符合设计要求; 式中:L 1、B 1、H 1、H 2、L 2、B 2、H 3——分别表示构筑物长度、宽度及深度,m ; Q —— 设计污水数量,400m 3/d ; 12 —— 表示12口厌氧池; S v —— 厌氧池容积负荷,kgCOD cr /(m 3·d) ; C i —— 厌氧池进水COD cr ,6.75kg/m 3; V 总有效 —— 厌氧池总有效容积,2160m 3。 构筑物数量:第一级与第二级合建,共1座; 厌氧池单口宽度4.5m ,下流区与上流区宽度比取4:1,考虑施工方便,下流区宽度 取0.9m ,上流区宽度3.6m 。

(完整版)污水处理工艺设计计算书

仲恺农业工程学院课程设计 污水处理工艺设计 计算书 (2014—2015学年第一学期) 班级给排121班 姓名李子恒 学号201210524123 设计时间2014.12.15~ 2015.01.02 指导老师刘嵩、孙洪伟 成绩 城市建设学院 2014年11月

目录 1 课程设计目的和要求 (4) 1.1设计目的 (4) 1.2 设计任务 (4) 1.3设计要求 (4) 1.4 原始资料 (4) 2 污水处理流程方案 (5) 3 处理程度的确定 (6) 4 污水的一级处理 (6) 4.1 格栅计算 (6) 4.1.1单独设置的格栅 (7) 4.2 沉砂池计算 (10) 4.3 初次沉淀池计算 (14) 4.3.1 斜板沉淀池 (14) 5 污水的生物处理 (19) 5.1 曝气池 (19) 5.1.1设计参数 (19) 5.2.2 平面尺寸计算 (20) 5.1.3 进出水系统 (22) 5.1.4 曝气池出水设计 (24) 5.1.5 其他管道设计 (24) 5.1.6 剩余污泥量 (24) 6 生物处理后处理 (25) 6.1 二沉淀池设计计算 (25) 6.1.1 池形选择 (25) 6.1.2 辐流沉淀池 (25) 6.2 消毒设施设计计算 (32) 6.2.1 消毒剂的投加 (32) 6.2.2 平流式消毒接触池 (32)

6.3 巴氏计量槽设计 (34) 7 污泥处理构筑物计算 (35) 7.1 污泥量计算 (35) 7.1.1 初沉池污泥量计算 (35) 7.1.2 剩余污泥量计算 (36) 7.2污泥浓缩池 (36) 7.2.1 辐流浓缩池 (37) 7.3 贮泥池 (39) 7.3.1 贮泥池的作用 (39) 7.3.2 贮泥池计算 (40) 7.4 污泥消化池 (41) 7.4.1 容积计算 (41) 7.4.2 平面尺寸计算 (44) 7.4.3 消化池热工计算 (45) 7.4.4 污泥加热方式 (48) 8 污水处理厂的布置 (50) 8.1 污水处理厂平面布置 (50) 8.1.1 平面布置原则 (50) 8.1.2 污水处理厂的平面布置图 (52) 8.2 污水处理厂高程布置 (52) 8.2.1 高程布置原则 (52) 8.2.2 高程布置计算 (53) 8.2.3 污水处理厂高程图 (55)

厌氧塔的防雷设计

厌氧塔的防雷设计 1.1接闪器的设计 厌氧塔简称IC 塔,是污水处理中的一个成品工艺设备,整体设备安装在厌氧反应器(IC 塔内),窜出屋面,IC 塔塔是一个全钢材制的距地标高为28.3m ,外直径为16m ,厚度为10mm 的圆形罐体,顶部还有4个圆形的小罐体,距地标高为31.25m ,直径为2.8m (见图1)。 鉴于厌氧塔的高度,在实际运用中,也相当于一个巨大的引雷器,需要设置避雷针保护一定半径的建筑物,而在IC 塔上的小罐体也需要防雷装置的保护,为了使其免受直击雷得破坏,根据《建筑物防雷规范》(GB55057-94 2000年版),进行了避雷针的设计和计算,设计方案见图。2 IC 塔的直径D=16m ,IC 塔的相对地面高度为28.3m ,圆形小罐体相对地面高度为32.15m ,直径为2.8m 。根据上述数据,用滚球法计算避雷针的高度: h 0=2)2/3(2D hr +h-hr (1) 式中: h0──保护范围的最低高度(圆形小罐体高度为3.85m )

D3──对角两避雷针水平距离(按规范规定,避雷针与被保护物间最小距离为3m,本设计为16m) h──避雷针的高度 hr──滚球半径(取60m) 将上述数据代入公式(1)中,经计算h=4.39m,因此设计避雷针的高度为5m。根据图集,由厂家根据设计结果制作自制的避雷针并进行现场安装。自制避雷针制作安装制作图可参见《建筑物防雷设施安装》99D501-1 避雷针底部与厌氧塔进行钢壁进行热镀锌可靠焊接,使其成为一体。 1.2下引线的设计 利用厌氧塔塔壁从上至下为均匀罐体的特点,因此把它作为下引线,由于塔壁厚度为10mm,根据规范规定,符合防雷设计要求。 1.3接地系统的设计 接地系统是避雷系统中重要的环节之一,不管是直击雷、感应雷和其他形式的雷电,最终都是把雷电引入大地,使之与大地的异种电荷中和。因此没有合理良好的接地装置,避雷是不可靠的。 利用厌氧塔基础中预埋地脚螺栓作为垂直接地级,基础中上下两层钢筋与地脚螺栓焊接在一起可形成地网,在厌氧塔基础上引出4个预留接地铁,每一个预留接地体采用2根40╳4镀锌扁钢与共同接地体可靠焊接,使其处于同一电位。 该工程采用总厂区共同接地的形式,各个单体接地系统均引出2根40╳4镀锌扁钢,与厌氧塔操作间地网可靠焊接,使总体处于同一等电位。 由于电力、电线线路不能直接接到地线上,在总进线处设置电涌保护器(SPD)实现了电气设备、电子设备、的等电位连接。 此外,各个单体均采用等电位联结措施。等电位是用连接导线或过电压保护器将在需要防雷空间内部的防雷装置、建筑物的金属构架、金属装置、外来的导体物、工艺设备电器和

相关文档
相关文档 最新文档