文档库 最新最全的文档下载
当前位置:文档库 › ARM

ARM

ARM
ARM

ARM

ar m芯片

ARM公司

AR M(Adv anced RI SC Machines)是微处理器行业的一家知名企业,设计了

大量高性能、廉价、耗能低的RI SC处理器、相关技术及软件。技术具有性能高、成

本低和能耗省的特点。适用于多种领域,比如嵌入控制、消费/教育类多媒体、D SP

和移动式应用等。

ARM将其技术授权给世界上许多著名的半导体、软件和OEM厂商,每个厂商得

到的都是一套独一无二的AR M相关技术及服务。利用这种合伙关系,AR M很快成为许多全球性RISC标准的缔造者。

目前,总共有30家半导体公司与AR M签订了硬件技术使用许可协议,其中包括I ntel、IBM、LG半导体、N EC、SONY、菲利浦和国民半导体这样的大公司。至于软件系统的合伙人,则包括微软、升阳和MRI等一系列知名公司。

ARM架构是面向低预算市场设计的第一款RISC微处理器。

A R M 即Adv anc ed RISC Mac hines的缩写,既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。

1985年4月26日,第一个ARM原型在英国剑桥的Ac orn计算机有限公司诞生,由美国加州SanJos eVLSI技术公司制造。

20世纪80年代后期,AR M很快开发成Ac orn的台式机产品,形成英国的计算机教育基础。

1990年成立了Adv anc ed RISC Mac hines Limit ed(后来简称为AR M Lim ited,AR M公司)。20世纪90年代,AR M 32

位嵌入式RISC(Reduc ed lnstruct ion Set Com put er)处理器扩展到世界范围,占据了低功耗、低成本和高性能的嵌入式系统应用领域的领先地位。ARM公司既不生产芯片也不销售芯片,它只出售芯片技术授权。

ARM公司简介

1991 年AR M 公司成立于英国剑桥,主要出售芯片设计技术的授权。目前,采用AR M技术知识产权(IP )核的微处理器,即我们通常所说的AR M 微处理器,已遍及工业控制、消费类电子产品、通信系统、网络系统、无线系统等各类产品市场,基于AR M 技术的微处理器应用约占据了32 位RISC微处理器75 %以上的市场份额,AR M 技术正在逐步渗入到我们生活的各个方面。

AR M 公司是专门从事基于RISC 技术芯片设计开发的公司,作为知识产权供应商,本身不直接从事芯片生产,靠转让设计许可由合作公司生产各具特色的芯片,世界各大半导体生产商从AR M公司购买其设计的AR M 微处理器核,根据各自不同的应用领域,加入适当的外围电路,从而形成自己的AR M 微处理器芯片进入市场。目前,全世界有几十家大的半导体公司都使用AR M 公司的授权,因此既使得AR M 技术获得更多的第三方工具、制造、软件的支持,又使整个系统成本降低,使产品更容易进入市场被消费者所接受,更具有竞争力。

ARM处理器的三大特点是:耗电少功能强、16位/32位双指令集和众多合作伙伴。

ARM商品模式的强大之处在于它在世界范围有超过100个的合作伙伴(Partners)。AR M 是设计公司,本身不生产芯片。采用转让许可证制度,由合作伙伴生产芯片。

当前AR M体系结构的扩充包括:

·Thum b 16位指令集,为了改善代码密度;

·D SP DSP应用的算术运算指令集;

·Jazeller 允许直接执行Jav a字节码。

ARM处理器系列提供的解决方案有:

·无线、消费类电子和图像应用的开放平台;

·存储、自动化、工业和网络应用的嵌入式实时系统;

·智能卡和SI M卡的安全应用。

ARM处理器本身是32位设计,但也配备16位指令集。一般来讲存储器比等价32位代码节省达35%,然而保留了32位系统的所有优势。ARM的J azelle技术使J av a加速得到比基于软件的Jav a虚拟机(JVM)高得多的性能,和同等的非J av a加速核相比功耗降低80%。C PU功能上增加DSP指令集提供增强的16位和32位算术运算能力,提高了性能和灵活性。AR M还提供两个前沿特性来辅助带深嵌入处理器的高集成SoC器件的调试,它们是嵌入式ICE-RT逻辑和嵌入式跟踪宏核(ETMS)系列。ARM 授权方

AR M 公司本身并不靠自有的设计来制造或出售CPU,而是将处理器架构授权给有兴趣的厂家。AR M 提供了多样的授权条款,包括售价与散播性等项目。对于授权方来说,AR M 提供了AR M 内核的整合硬件叙述,包含完整的软件开发工具(编译器、debugger、SDK),以及针对内含AR M CPU 硅芯片的销售权。对于无晶圆厂的授权方来说,其希望能将AR M 内核整合到他们自行研发的芯片设计中,,通常就仅针对取得一份生产就绪的智财核心技术(I P C ore)认证。对这些客户来说,A RM 会释出所选的AR M 核心的闸极电路图,连同抽象模拟模型和测试程式,以协助设计整合和验证。需求更多的客户,包括整合元件制造商(ID M)和晶圆厂家,就选择可合成的R TL(暂存器转移层级,如&nbs p;Verilog)形式来取得处理器的智财权(IP)。藉著可整合的R TL,客户就有能力能进行架构上的最佳化与加强。这个方式能让设计者完成额外的设计目标(如高震荡频率、低能量耗损、指令集延伸等)而不会受限于无法更动的电路图。虽然AR M 并不授予授权方再次出售AR M 架构本身,但授权方可以任意地出售制品(如芯片元件、评估板、完整系统等)。商用晶圆厂是特殊例子,因为他们不仅授予能出售包含AR M 内核的硅晶成品,对其它客户来讲,他们通常也保留重制AR M 内核的权利。

就像大多数I P 出售方,AR M 依照使用价值来决定IP 的售价。在架构上而言,更低效能的AR M 内核比更高效能的内核拥有较低的授权费。以硅芯片实作而言,一颗可整合的内核要比一颗硬件宏(黑箱)内核要来得贵。更复杂的价位问题来讲,持有AR M 授权的商用晶圆厂(例如韩国三星和日本富士通)可以提供更低的授权价格给他们的晶圆厂客户。透过晶圆厂自有的设计技术,客户可以更低或是免费的AR M预付授权费来取得AR M 内核。相较于不具备自有设计技术的专门半导体晶圆厂(如台积电和联电),富士通/三星对每片晶圆多收取了两至三倍的费用。对中少量的应用而言,具备设计部门的晶圆厂提供较低的整体价格(透过授权费用的补助)。对于量产而言,由于长期的成本缩减可借由更低的晶圆价格,减少AR M的NRE成本,使得专门的晶圆厂也成了一个更好的选择。

许多半导体公司持有AR M 授权:Atm el、Broadcom、C irrus Logic、Freesc ale(于2004从摩托罗拉公司独立出来)、富士通、英特尔(借由和Digital的控诉调停)、I BM,英飞凌科技,任天堂,恩智浦半导体(于2006年从飞利浦独立出来)、OKI电气工业,三星电子,Sharp,STMic roelectronics,德州仪器&nbs p;和&nbs p;VLSI等许多这些公司均拥有各个不同形式的ARM授权。虽然AR M的授权项目由保密合约所涵盖,在智慧财产权工业,ARM是广为人知最昂贵的C PU内核之一。单一的客户产品包含一个基本的AR M 内核可能就需索取一次高达美金20万的授权费用。而若是牵涉到大量架构上修改,则费用就可能超过千万美元。

AR M(Asy nchronous Res bonse Mode)异步响应方式异步响应方式AR M(Asy nchronous Res ponses Mode)也是一种非平衡数据链路操作方式,与NRM不同的是,AR M下的传输过程由从站启动。从站主动发送给主站的一个或一组帧中可包含有信息,也可以是仅以控制为目的而发的帧。在这种操作方式下,由从站来控制超时和重发。该方式对采用轮询方式的多站链路来说是必不可少的。

基于ARM32位单片机的机器人设计毕业论文

基于ARM32位单片机的机器人设计毕业论文 目录 摘要 (2) Abstract (3) 第一章引言 (4) 第二章S3C44B0X控制器介绍 (6) 2.1 S3C44B0X控制器管脚 (6) 2.2 Samsung S3C44B0X介绍 (8) 第三章ARM开发工具简介 (12) 3.1 ARM开发工具综述 (12) 3.2 ARM STD安装和应用 (13) 第四章S3C44B0X部资源编程 (20) 4.1 LED显示 (20) 4.2键盘控制 (23) 4.3 数码管显示 (24) 4.4 中断控制 (25) 第五章机器人的设计 (27) 5.1硬件结构 (27) 5.2软件设计 (31)

5.3结论 (44) 第六章展望 (45) 参考文献 第一章引言 ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。技术具有性能高、成本低和能耗省的特点。适用于多种领域,比如嵌入控制、消费、教育类、多媒体、DSP和移动式应用等。ARM将其技术授权给世界上许多著名的半导体、软件和OEM厂商,每个厂商得到的都是一套独一无二的ARM相关技术及服务。利用这种合伙关系,ARM很快成为许多全球性RISC标准的缔造者。 目前,总共有30家半导体公司与ARM签订了硬件技术使用许可协议,其中包括Intel、IBM、LG半导体、NEC、SONY、菲利浦和国民半导体这样的大公司。至于软件系统的合伙人,则包括微软、升阳和MRI等一系列知名公司。ARM架构是面向低预算市场设计的第一款RISC 微处理器。 ARM提供一系列核、体系扩展、微处理器和系统芯片方案。由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行(理论上如此)。典型的产品如下。 ①CPU核 --ARM7:小型、快速、低能耗、集成式RISC核,用于移动通信。 -- ARM7TDMI(Thumb):这是公司授权用户最多的一项产品,将ARM7指令集同Thumb扩展组合在一起,以减少存容量和系统成本。同时,它还利用嵌入式ICE调试技术来简化系统设计,并用一个DSP增强扩展来改进性能。该产品的典型用途是数字蜂窝和硬盘驱动器。 --ARM9TDMI:采用5阶段管道化ARM9核,同时配备Thumb扩展、调试和Harvard总线。在生产工艺相同的情况下,性能可达ARM7TDMI的两倍之多。常用于连网和顶置盒。 ②体系扩展 -- Thumb:以16位系统的成本,提供32位RISC性能,特别注意的是它所需的存容量非常小。 ③嵌入式ICE调试 由于集成了类似于ICE的CPU核调试技术,所以原型设计和系统芯片的调试得到了极大的简化。 ④微处理器 --ARM710系列,包括ARM710、ARM710T、ARM720T和ARM740T:低价、低能耗、封装式常规系统微型处理器,配有高速缓存(Cache)、存管理、写缓冲和JTAG。广泛应用于手持式计算、数据通信和消费类多媒体。 --ARM940T、920T系列:低价、低能耗、高性能系统微处理器,配有Cache、存管理和写缓冲。应用于高级引擎管理、保安系统、顶置盒、便携计算机和高档打印机。 --StrongARM:性能很高、同时满足常规应用需要的一种微处理器技术,与DEC联合研制,后来授权给Intel。SA110处理器、SA1100 PDA系统芯片和SA1500多媒体处理器芯片均采用了这一技术。 --ARM7500和ARM7500FE:高度集成的单芯片RISC计算机,基于一个缓存式ARM7 32位核,拥有存和I/O控制器、3个DMA通道、片上视频控制器和调色板以及立体声端口;ARM7500FE 则增加了一个浮点运算单元以及对EDO DRAM的支持。特别适合电视顶置盒和网络计算机(NC)。Windows CE的Pocket PC只支持ARMWindows CE可支持多种嵌入式处理器,但基于

ARM7(sc44b0)外部中断笔记

ARM7(sc44b0)外部中断笔记 对于sc44b0它也是一种单片机,一种比较高级的单片机而已,所以他也跟51单片机一样有外部中断,不同51单片机的是,他有8个外部中断源,对应的是8个管脚,(51只有两个,int0和int1,P3.3和P3.4),分别是Port G八个管脚。而对于外部中断4 \5\6\7很多都是共用寄存器,他们是通过或逻辑公用一个中断请求线。。下面就具体来说说使用外部中断的一些必要的配置。 一,对管脚的配置,因为Port G有三种功能用法,要通过对rPCONG(端口G 配置寄存器)的配置来选用Port G 的外部中断的功能。其配置表如下 所以应该将其配置为11(设置为中断功能状态); 二,中断模式的选择,中断模式有两种,FIQ(快速中断模式)和 IRQ(中断模式)两种,一般没有特殊要求都用IRQ模式即可。可以通过对中断模式寄存器rINTMOD配置获得。如表下 三,是否允许中断,即中断使能位。通过对中断控制寄存器INTCON的配置即可,如表下通过对中断控制寄存器的配置即可,

可以看出只要让intcon的【1】位置零即可使中断使能。 四,外部中断方式的选择,低电平或上升沿触发呢,还是别的,这就要对外部中断方式寄存器(EXTINT)的配置,其表如下

由上表可知,如果要用下降沿触发,就可将EXTINT 的值给0x22222222; 将所有的外部中断都设置为下降沿触发。 五,当中断捕抓到以后,要引起什么变化呢?或者说用什么来捕抓呢?在sc44b0中用了两个寄存器来捕抓,一个中断挂起寄存器(INTPND),和外部中断挂起寄存器(EXINTPND),一开始不明白挂起是什么意思,后来才懂,差不多就相当与51单片机的标志位一样,当中断发生后,就将挂起寄存器的对应的某一位置一或置零,外部中断挂起寄存器如表下 中断挂起寄存器:当中断产生后,是将INTPND的【21】位置一的; 所以,判断有无外部中断,就可以通过读取挂起寄存器对应的为,即可知道是否有无中断。 六,当中断发生后,挂起寄存器的对应位(即中断标志位)也发生了置位,那如果要检测下一个中断,就得将挂起寄存器的对应为复原,那怎么复原呢?在51单片机中是将中断标志位软件置零就可,在44b0中也是同样的道理,它是通过将对应的中断挂起寄存器的位置一就行了,对于EXTINTPND,他是直接将对应的位置一,对于EXTINTPND是通过将rI_ISPC的对应位置一(EXTINTPND和I_ISP的位数是一样的,两个是相互对应的) 附上程序; #define EXTINT4 0 #define EXTINT5 1 #define EXTINT6 2 #define EXTINT7 3 #define EXTINT4567 21

cortexm3内核与arm7tdmi区别

低成本ARM 32位MCU,开发人员面临的两种选择 要使用低成本的 32位微控制器,开发人员面临两种选择,基于Cortex-M3内核或者ARM7TDMI内核的处理器。如何做出选择?选择标准又是什么?本文主要介绍了ARM Cortex-M3内核微控制器区别于ARM7的一些特点,帮助您快速选择。 1.ARM实现方法 ARM Cortex-M3是一种基于ARM V7架构的最新ARM嵌入式内核,它采用哈佛结构,使用分离的指令和数据总线(冯诺伊曼结构下,数据和指令共用一条总线)。从本质上来说,哈佛结构在物理上更为复杂,但是处理速度明显加快。根据摩尔定理,复杂性并不是一件非常重要的事,而吞吐量的增加却极具价值。 ARM公司对Cortex-M3的定位是:向专业嵌入式市场提供低成本、低功耗的芯片。在成本和功耗方面,Cortex-M3具有相当好的性能,ARM公司认为它特别适用于汽车和无线通信领域。和所有的ARM内核一样,ARM公司将内该设计授权给各个制造商来开发具体的芯片。迄今为止,已经有多家芯片制造商开始生产基于Cortex-M3内核的微控制器。 ARM7TDMI(包括ARM7TDMIS)系列的ARM内核也是面向同一类市场的。这类内核已经存在了十多年之久,并推动了ARM成为处理器内核领域的主导者。众多的制造商(据ARM宣称,多达16家)出售基于ARM7系列的处理器以及其他配套的系统软件、开发和调试工具。在许多方面,ARM7TDMI 都可以称得上是嵌入式领域的实干家。 2.两者差异 除了使用哈佛结构, Cortex-M3还具有其他显著的优点:具有更小的基础内核,价格更低,速度更快。与内核集成在一起的是一些系统外设,如中断控制器、总线矩阵、调试功能模块,而这些外设通常都是由芯片制造商增加的。 Cortex-M3 还集成了睡眠模式和可选的完整的八区域存储器保护单元。它采用THUMB-2指令集,最大限度降低了汇编器使用率。 3.指令集 ARM7可以使用ARM和Thumb两种指令集,而 Cortex-M3只支持最新的 Thumb-2指令集。这样设计的优势在于: 免去 Thumb和ARM代码的互相切换,对于早期的处理器来说,这种状态切换会降低性能。 Thumb-2指令集的设计是专门面向C语言的,且包括If/Then结构(预测接下来的四条语句的条件执行)、硬件除法以及本地位域操作。

ARM中的中断要点

一、S5PV210中中断的特点 1、特点 ? Supports 93 vectored IRQ interrupts ? Fixed hardware interrupts priority levels ? Programmable interrupt priority levels ? Supports Hardware interrupt priority level masking ? Programmable interrupt priority level masking ? Generates IRQ and FIQ ? Generates Software interrupt 2、FIQ与IRQ的区别 1)FIQ和IRQ并不是中断源,而是中断的类型,我们可以将一个中断源设置成FIQ也可以设置成IRQ。2)FIQ是快速中断,IRQ是一般中断,FIQ的响应时间比IRQ短。 3)FIQ的优先级高于IRQ。 4)FIQ的分组寄存器(R8~R14)比IRQ(R13~R14)多。当在FIQ产生的时候,R8~R14不需要保存,响应的速度会快。 3、S5PV210的中断源

二、原理图分析

三、如何以中断的方式来检测按键:GPH2_2(EINT18) 、GPH2_3(EINT19) 按键的检测:轮询:将GPIO配置成输入……. 中断:将GPIO配置成外部中断……. 1、GPIO的配置,将一个GPIO配置成外部中断 2、外部中断的触发方式 (高电平、低电平、上升沿、下降沿)

3、外部中断的开关寄存器 0 = Enables Interrupt 打开中断 1 = Masked 关闭中断 4、外部中断判断寄存器 0 = Not occur 外部中断没有发生 1 = Occur interrupt 触发了中断

基于arm的指纹识别毕业设计

v .. . .. 基于ARM的指纹识别系统设计 摘要 世界正朝着互联化的方向发展,而物联网正是这个数字革命的核心之一。在目前流行的物联网技术中,要求嵌入式终端能够提供成熟且价格便宜的生物特征识别技术,目前来说指纹识别的技术应用最为广泛,我们不仅在门禁、考勤系统中可以看到指纹识别技术的身影,市场上有了更多指纹识别的应用:如手机、指纹锁、银行支付验证都可应用指纹识别的技术。 在指纹识别控制领域,也会用到各种微控制器,本文采用了三星半导体S3C6410作为控制核心,S3C6410应用了专为要求高性能、低成本、低功耗的嵌入式消费类电子设计的ARM9内核。按性能分成两个不同的系列:该系列内核时钟频率已经达到72MHz。 指纹识别基于两种特征点来识别:(i)组成指纹的指纹整体特征结构(ii)局部的特征点。本文提出了一种可以在自动指纹识别系统中使用的基于特征点的指纹识别算法。本文提到的方法基于从细化提取的特征点,二值化一个指纹图像分割图。该系统采用在指纹分类的指纹索引匹配,大大提高了匹配算法的性能。 关键字:ARM9,指纹识别,特征识别,图像处理 . . . 资料. .

v .. . .. Abstract The world is moving in the direction of the development of the Internet, the Internet of is one of the core of the digital revolution. In the current network technology, the embedded terminal capable of providing biometric technology is mature and the price is cheap, at present technology of fingerprint recognition is the most widely, we can not only see the fingerprint recognition technology in access control, attendance system, fingerprint recognition application is more on the market: such as mobile phone, fingerprint lock, bank payment verification can be applied to fingerprint recognition technology. In the fingerprint recognition and control field, we will also use a variety of micro controller, this paper uses Samsung S3C6410 as the control core, S3C6410 application designed for high performance, low cost, low power embedded consumer electronic design based on ARM9 kernel. According to performance is divided into two different series: this series of core clock frequency has reached 72MHz. Fingerprint identification two feature points based on: (I) to identify the fingerprint feature structure fingerprint (II) feature local. This paper proposes a can be used in automatic fingerprint recognition system of fingerprint . . . 资料. .

stm32与arm7比较(经典)

我觉得ARM7会被STM32取代,STM32偏向不带系统的工业控制,外围设备甚至比ARM7、ARM9更丰富,而ARM7带不了大系统,想带系统至少也要从ARM9开始。要么直接上ARM9学学系统,要么就顺便学学STM32裸奔,ARM7不上不下没必要去学。 追问stm32有什么好书籍吗?发现资料挺少的 回答《ARM微控制器应用设计与实践》 个人觉得还是先学习ARM7 ,等学会了之后你自然也就会动的STM32! 两者肯定是有区别的,但是这是基本的学习过程。我也是这样走过来的 coretex-m3 是现在企业用的最多的cpu ,是arm7的升级版,我觉得arm7 ---- 微内核------arm9 -----Linux 是做好的学习路径 stm32是armv7内核arm7是armv4内核,构架不同。 进阶学习,是选择STM32好还是ARM7,还是ARM9?本人会51,而且做过相应的开发项目,最近想提升自己的能力,但是不知道是选择哪一个为好,是STM32、arm7,arm9,msp430,dsp???没有头绪,请大神指点 我建议您选择转向STM32,从开发角度来讲,STM32比51的编程更加简单,厂家的工程代码中提供了很多的库函数来操作GPIO,UART,SPI,AD,TIMER等资源,不需要像51一样

去记忆各个特殊寄存器的属性和用途。 STM32是现在市场上性价比非常高的一款ARM产品,使用的是Cortex-M3内核,在同等价位下,其内部资源比51要丰富更多。STM32同系列的产品,在软件和硬件上兼容性很好,尤其是从PIN脚少的芯片更换为PIN脚多的芯片的时候,代码都无需修改就能直接应用。 基于价格和使用性能的因素,STM32在很多产品中得到广泛应用,市场供货基本没有问题,现货相当充足,目前我们公司95%的产品都是基于STM32的。 如果你想从事嵌入式应用程序的开发,直接上ARM9开发,学习LINUX或安卓去。 如果你想从事嵌入式驱动程序的开发,或者想成为一名博学多才的主管,又或者未来你想成为一名架构师,你需要单片机给你打下硬件基础,那你可以以“低端单片机-高端单片机-低端ARM-高端ARM”来学。 我现在就是工作中用STM32,晚上回去自学ARM9。 楼主的进阶是指从51到ARM还是指已经基本掌握32位单片机? 如果有单片机基础,但是没有玩过ARM,建议学习STM32,甚至说没有玩过单片机想入门的也可以选择STM32,因为STM32例程丰富,资源比较多,市面上成熟的开发板也比较多,而且基本价格都在300以内。 而如果楼主已经对32位单片机比较了解,想学习嵌入式系统Linux/WIN CE等,可以考虑6410,或者楼主预算非常充足,可以考虑Cortex-A8/A9的开发板。我个人是比较熟悉STM32,没有玩过ARM9,稍稍玩过ARM7,现在是在学飞凌的6410了。 追问我玩的是51系列的单片机,感觉想提升一下,玩32位的,stm32貌似跑不起LINUX系统和WINCE系统,所以就是比较纠结选择哪一个开始作为学习 回答其实从51跨到LINUX还是有一定难度的,楼主可以考虑玩ARM9。我个人的学习轨迹是AVR-STM32(UCOSII)- 6410(LINUX)循序渐进,先易后难 追问谢谢你,我现在正式在自学ARM9和LINUX系统中 两者肯定是有区别的,但是这是基本的学习过程。我也是这样走过来的 coretex-m3 是现在企业用的最多的cpu ,是arm7的升级版,我觉得arm7 ---- 微内核------arm9 -----Linux 是做好的学习路径 stm32使用的是ARM公司开发的Cortex-M3内核,就是ARM芯片的一种,使用的是最新的ARM V7内核架构,Cortex还有A、R两个系列 专家的建议,初学者学三星的S3C44B0很好,虽然这块芯片被业界用烂了,不是处理器越高的就一定越好,学ARM9,要学Linux,精通Linux内核,这比精通ucosII难度大多了,专家建议先学ucosII,一个非常好的小的嵌入式实时操作系统。 相对来说STM32应用更广泛一些,既适合ARM也适合X86。 嗯,之前我也纠结过;后来我退回去把51学的烂熟;然后就上了ARM9linux;一路走过来累的半死;就是因为一下上的太多先学完了RAM9的基础,然后又上linux系统移植和内核实在是差的太多吃不透;偶然的一次机会接触了ARM7和stm32;觉得STM32是我用过最好用的ARM芯片;但是缺点也有不能上大系统(也有上大系统的,但是去研究不又从蹈覆辙了吗),主要用于工控。

第二章ARM_Cortex-M3内核结构

第二章ARM Cortex-M3内核结构教学目标 通过本章的学习,要理解ARM Cortex-M3内核结构,结合MCS-51单片机,分析其优缺点;掌握ARM Cortex-M3内核寄存器组织、处理器运行模式、存储器映象、异常及其操作;了解存储器保护单元及应用;了解ARM Cortex-M3调试组件的工作原理及应用。 本章是ARM Cortex-M3微控制器体系结构分析,内容涉及内核结构、CPU寄存器组织、存储器映射、异常形为及操作,在学习过程中与8位单片机(MCS-51单片机、PIC系列单片机等)结合分析,以期达到良好学习效果。 ARM Cortex-M3处理器简介 2.1.1 概述 ARM公司成立于上个世纪九十年代初,致力于处理器内核研究,ARM 即 Advanced RISC Machines 的缩写,ARM公司本身不生产芯片,只设计内核,靠转让设计许可,由合作伙伴公司来生产各具特色的芯片。这种运行模式运营的成果受到全球半导公司以及用户的青睐。目前ARM体系结构的处理器内核有:ARM7TDMI、ARM9TDMI、ARM10TDMI、ARM11以及Cortex等。2005年ARM推出的ARM Cortex系列内核,分别为:A系列、R系列和M系列,其中A系列是针对可以运行复杂操作系统(Linux、Windows CE、Symbian 等)的处理器;R系列是主要针对处理实时性要求较高的处理器(汽车电子、网络、影像系统);M系列又叫微控制器,对开发费用敏感,对性能要求较高的场合。 Cortex-M系列目前的产品有M0、M1、M3,其中M1用在FPGA中。Cortex-M系列对微控制器和低成本应用提供优化,具有低成本、低功耗和高性能的特点,能够满足微控制器设计师进行创新设计的需求。其中,ARM Cortex-M3处理器的性能是ARM7的两倍,而功耗却只有ARM7的1/3,适用于众多高性能、极其低成本需求的嵌入式应用,如微控制器、汽车系统、大型家用电器、网络装置等,ARM Cortex-M3提供了32位微控制器市场前所未有的优势。 Cortex-M3内核,内部的数据路径为32位,寄存器为32位,存储器接口也是32位。Cortex-M3采用了哈佛结构,拥有独立的指令总线和数据总线,可以让取指与数据访问分开进行。Cortex-M3还提供一个可选的MPU,对存储器进行保护,而且在需要的情况下也可以使用外部的cache。另外在Cortex-M3中,存储器支持小端模式和大端存储格式。Cortex-M3内部还附赠了很多调试组件,用于在硬件水平上支持调试操作,如指令断点,数据观察点等。另外,为支持更高级的调试,还有其它可选组件,包括指令跟踪和多种类型的调试接口。 2.1.2 内核结构组成及功能描述 Cortex-M3微控制器内核包括处理核心和许多的组件,目的是用于系统管理和调试支持。如图为Cortex-M3内核方框图。

(完整版)基于ARM的射频识别读写器设计毕业设计

本科毕业论文(设计)

摘要 射频识别(Radio Frequency Identification,RFID)是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别过程无需人工干预,是一种新的自动识别技术[1]。RFID是利用射频的方式进行非接触的双向通信,而非接触式IC 射频卡成功地解决了无源(卡中无电源) 和免接触这一个难题。RFID具有非接触、长距离工作、适应环境能力强、可识别运动目标等优点,射频识别技术已经在越来越多的领域内出现,因此,对射频卡的开发应用也具有一定的现实意义。本文的设计是基于Philips公司的Mifare1 S50/S70芯片的射频识别系统的设计方案,制作一套以ARM微处理器为MCU的射频识别读写器系统,设计RF 接口电路,制作相应的硬件电路模块,分析非接触式IC 卡系统的通信协议,通过Keil C软件编程实现读写器与非接触式IC 卡系统的通信,并完成校园卡考勤系统。

关键词: RFID; 自动识别; ARM; 非接触式IC卡; Keil C Abstract RFID is a non-contact automatic identification technology,it identify target and get the related data through radio frequency signal automatically,the identification process without human intervention, is a kind of new automatic identification technology. RFID for non-contact two-way communication by the way of radio frequency, and non-contact IC radio frequency card has successfully solved the difficulty problems: without power supply and non-contact. RFID has many advantages: non-contact,long-distance work,good adaptability for environment and can recognize the moving objects,RFID technology has appeared in more and more field,so the development and application of radio frequency card also has certain practical significance. The design of this article is based on the Mifare 1 S50 / S70 chip radio frequency

ARM接口编程笔记

ARM接口编程笔记 一、ARM编程模式 1.ARM的含义 ●ARM是一家公司的名字 ●ARM代表的是一种RISC技术 ●ARM是一种CPU体系结构的名称,同x86、PPC、MIPS等并列 2.ARM体系结构中对字节、半字、字、双字的定义 ●字节:8 bit ●半字:16 bit ●字:32 bit ●双字:64 bit 3.ARM指令集 ●ARM指令集,32 bit,功能最全 ●Thumb指令集,16 bit,是ARM指令集的子集,完成部分功能 ●Thumb‐2指令集,16 bit和32 bit混合 ●Thumb‐EE指令集,16 bit和32 bit混合 ●Java指令集,直接执行绝大部分的Java字节流,但需要授权 4.ARM处理器的权限 ●非特权级:部分指令不能执行,是一种硬件的保护机制,通常用户应用 程序运行在该权限级别 ●特权级:能执行所有指令,通常操作系统运行在该权限级别 5.ARM的工作模式,处理对应模式下的特定事务,使得这些特定事务能够在硬 件资源的使用上部分地独立开来,这是通过各种模式下有对应的私有硬件资源来实现的。 ●User:应用程序一般运行在该模式下 ●Supervisor:操作系统一般运行在该模式下 ●IRQ:中断处理程序一般运行在该模式下 ●FIQ:快速中断处理程序一般运行在该模式下 ●Abort:发生存取异常后会进入该模式 ●Undef:执行未定义的指令会进入该模式 ●System:为解决中断不可重入而设计的一种特殊模式 ●Monitor:Cortex‐A特有的模式,执行监控代码 ●除User模式外,其他7种模式都是特权模式 6.ARM寄存器 寄存器最靠近CPU中的ALU,存取速度最快,没有地址,只有编号。部分寄存器有别名,在汇编程序中本名和别名可以混用。

ARM的中断原理

ARM的中断原理(转) 1.中断概述 CPU与外设的数据传输方式通常有以下3种方式:查询方式、中断方式、DMA方式。 所谓查询方式是指,CPU不到查询外设的状态,如果外设准备就绪则开始进行数据传输;如果外设还没有准备好,CPU将进入循环等待状态。很显然这样浪费了大量的CPU时间,降低了CPU的利用率。 所谓中断方式是指,当外设准备好与CPU进行数据传输时,外设首先向CPU发出中断请求,CPU 接收到中断请求并在一定条件下,暂时停止原来的程序并执行中断服务处理程序,执行完毕以后再返回原来的程序继续执行。由此可见,采用中断方式避免了CPU把大量的时间花费在查询外设状态的操作上,从而大大提高了CPU的执行效率。 1.中断概述 CPU与外设的数据传输方式通常有以下3种方式:查询方式、中断方式、DMA方式。 所谓查询方式是指,CPU不到查询外设的状态,如果外设准备就绪则开始进行数据传输;如果外设还没有准备好,CPU将进入循环等待状态。很显然这样浪费了大量的CPU时间,降低了CPU的利用率。 所谓中断方式是指,当外设准备好与CPU进行数据传输时,外设首先向CPU发出中断请求,CPU 接收到中断请求并在一定条件下,暂时停止原来的程序并执行中断服务处理程序,执行完毕以后再返回原来的程序继续执行。由此可见,采用中断方式避免了CPU把大量的时间花费在查询外设状态的操作上,从而大大提高了CPU的执行效率。 ARM系统包括两类中断:一类是IRQ中断,另一类是FIQ中断。IRQ是普通中断,FIQ是快速中断,在进行大批量的复制、数据传输等工作时,常使用FIQ中断。FIQ的优先级高于IRQ。 在ARM系统中,支持7类异常,包括:复位、未定义指令、软中断、预取中止、数据中止、IRQ和FIQ,每种异常对应于不同的处理器模式。一旦发生异常,首先要进行模式切换,然后程序将转到该异常对应的固定存储地址执行。这个固定的地址称为异常向量。异常向量中保存的通常为异常处理程序的地址。ARM的异常向量如下: 异常模式正常地址高向量地址 复位管理 0x00000000 0xFFFF0000 未定义指令未定义 0x00000004 0xFFFF 0004 软中断管理 0x00000008 0xFFFF 0008 预取指中止中止0x0000000C 0xFFFF 000C 数据中止中止0x00000010 0xFFFF0010 IRQ IRQ 0x00000018 0xFFFF0018

浅谈ARM Cortex系列处理器之区别

浅谈ARM Cortex系列处理器之区别市面上ARM Cortex系列包括3个系列,包括ARM Cortex-A, ARM Cortex-R, ARM Cortex-M,Z这三种系列,并且每个系列又分多种子版本,每个子版本都有各自的特点。很好的为设计人员提供非常广泛的具有可扩展性的性能选项,从而有机会在多种选项中选择最适合自身应用的内核,而非千篇一律的采用同一方案。 其中, 1,Cortex-A—面向性能密集型系统的应用处理器内核 2, Cortex-R—面向实时应用的高性能内核 3, Cortex-M—面向各类嵌入式应用的微控制器内核 Cortex-A处理器为利用操作系统(例如Linux或者Android ,IOS)的设备提供了一系列解决方案,这些设备被用于各类应用,从低成本手持设备到智能手机、平板电脑、机顶盒以及企业网络设备等。早期的Cortex-A系列处理器(A5、A7、A8、A9、A12、A15和A17)基于ARMv7-A架构。每种内核都共享相同的功能集,例如NEON媒体处理引擎、Trustzone安全扩展、单精度和双精度浮点支持、以及对多种指令集(ARM、Thumb-2、Thumb、Jazelle 和DSP)的支持。与此同时,这些处理器也具有极高的设计灵活性,能够提供所需的最佳性能和预期的功效。 介绍过Cortex-A,下面介绍Cortex-R系列——衍生产品中体积最小的ARM处理器,这一点也最不为人所知。Cortex-R处理器针对高性能实时应用,例如硬盘控制器(或固态驱动

控制器)、企业中的网络设备和打印机、消费电子设备(例如蓝光播放器和媒体播放器)、以及汽车应用(例如安全气囊、制动系统和发动机管理)。Cortex-R系列在某些方面与高端微控制器(MCU)类似,但是,针对的是比通常使用标准MCU的系统还要大型的系统。例如,Cortex-R4就非常适合汽车应用。Cortex-R4主频可以高达600MHz(具有2.45DMIPS/MHz),配有8级流水线,具有双发送、预取和分支预测功能、以及低延迟中断系统,可以中断多周期操作而快速进入中断服务程序。Cortex-R4还可以与另外一个Cortex-R4 构成双内核配置,一同组成一个带有失效检测逻辑的冗余锁步(lock-step)配置,从而非常适合要求安全系数的系统。 最后,我们来讨论Cortex-M系列,自首款Cortex-M处理器于2004年发布以来,此系列处理器Cortex-M4、Cortex-M3、Cortex-M1 FPGA 和Cortex-M0 Cortex-M7等几种相关处理器。特别设计针对竞争已经非常激烈的MCU市场。Cortex-M系列基于ARMv7-M架构(用于Cortex-M3和Cortex-M4)构建,而较低的Cortex-M0+基于ARMv6-M架构构建。当一些主流MCU供应商选择这系列内核,并开始生产MCU器件后,Cortex-M处理器迅速受到市场青睐。可以肯定的说,Cortex-M之于32位MCU就如同8051之于8位MCU——受到众多供应商支持的工业标准内核,各家供应商采用该内核加之自己特别的开发,在市场中提供差异化产品。例如,Cortex-M系列能够实现在FPGA中作为软核来用,但更常见的用法是作为集成了存储器、时钟和外设的MCU。在该系列产品中,有些产品专注最佳能效、有些专注最高性能、而有些产品则专门应用于诸如智能电表这样的细分市场 其中,Cortex-M3和Cortex-M4是非常相似的内核。二者都具有1.25DMIPS/MHz 的性能,配有3级流水线、多重32位总线接口、时钟速率可高达200MHz,并配有非常高效的调试选项。最大的不同是,Cortex-M4的内核性能针对的是DSP。Cortex-M3和Cortex- M4具有相同的架构和指令集(Thumb-2)。然而,Cortex-M4增加了一系列特别针对处理DSP算法而优化的饱和运算和SIMD指令。以每0.5秒运行一次的512点FFT 为例,如果分别在同类量产的Cortex-M3 MCU和Cortex-M4 MCU上运行,完成同样的工作,Cortex-M3所需功耗约是Cortex-M4所需功耗的三倍。而对于成本特别敏感的应用或者正在从8位迁移到32位的应用而言,Cortex-M系列的最低端产品可能是最佳选择。虽然Cortex-M0+的性能为0.95DMIPS/MHz,比Cortex-M3和Cortex-M4的性能稍稍低一些,但仍可与同系列其他高端产品兼容。

毕业设计开题报告----基于ARM技术的WIFI无线网络技术研究

毕业设计开题报告----基于ARM技术的WIFI无线网络技术 研究 毕业论文(设计)开题报告 学生姓名学号班级教师姓名职称系别毕设题目基于ARM技术的WIFI无线网络技术研究 1. 查找有关WiFi无线网络的书籍、文章,了解WiFi无线网络技术; 教师资 料2. 调研目前WiFi无线网络的覆盖、应用及发展情况; 布置情况 3. 在各大网站及数据库中查找有关基于ARM技术的WiFi技术研究 的材料; 4. 了解目前流行的WiFi技术应用,选择适合题目研究的技术应用。 1. 通过对相关资源的搜索,了解什么是WiFi,以及它目前的覆盖和应用状况; 学生自主 2. 查询了解WiFi技术、ARM技术的优缺点,以及相关的研究意义; 资料查询 3. 在数据库中查询到有关基于WiFi技术应用和基于ARM的无线网络应用的相关情况论文进行参考,通过论文、书籍的相关内容大概了解研究所需的技术方法; 4. 搜索最新的WiFi无线网络应用,以找到适合毕设研究的项目。 1.研究的意义 随着互联网越来越深入的走进人们的生活,用户对能够随时随地上网的需求越来越迫切,WiFi 无线通信技术也得到了迅速发展。 WiFi是一种可以将个人电脑、手持设备(如PDA、手机)等终端以无线方式 互相连接的技术,它可以帮助用户访问电子邮件、Web和流式媒体。它为用户提供

了无线的宽带互联网访问。同时,它也是在家里、办公室或在旅途中上网的快速、 便捷的途径。WiFi凭借它覆盖范围广、速度快、可靠性高、无需布线、健康安全及 计费便宜等特点已成为当今无线网络接入的主流标准。只要随身携带的电子设备集 成了 WiFi 无线通信终端用户就可以在 WiFi覆盖区域内随时拨打或接听电话、快 速浏览网页、下载或上传音视频文件、收发电子邮件,而无需担心花费太高和网速 太慢等问题。国内外许多地区都提供了WiFi 信号覆盖域,美国等发达国家是目前 WiFi 用户最多的地区,我国的许多大中城市的机场、车站、咖啡厅、酒店、图书开题综述馆等公共场也逐渐被 WiFi 信号所覆盖。 随着 WiFi 信号覆盖范围越来越广,WiFi无线通信技术在各种便携式产品上的应用也将变得越来越多。目前具有WiFi功能的手机也越来越普遍,人们对于基 于WiFi技术的应用的需求越来越大,随着技术的不断发展,各种电子产品都将提 供 WiFi无线接入功能。 ARM 是目前进行便携式电子产品开发的主流芯片,它具有如下特点: 1、体积小、低功耗、低成本、高性能;2、支持Thumb(16位)/ARM(32位)双指令集,能很好的兼容8位/16位器件;3、大量使用寄存器,指令执行速度更 快 ;4、

ARM和MIPS分析与比较.

ARM与MIPS分析与比较 2008-04-06 10:37:21 阅读474 评论0 字号:大中小 [前言] 这是一个几年以来我一直想做的“功课”,之所以称之为“功课”,而不能说是“文章”,是因为我觉得自己的知识还远远不够,不管是深度还是广度,也不管是全面性还是透彻性,我都不敢。但是我实在是很想把我的一些理解写出来,然后能和其他朋友一起探讨,纠正错误,补充完善,最终目的就是要加深对ARM和MIPS 这两种CPU架构的认识。 这里的目前最多只能算个草稿吧,请大家不断的补充。 [正文] 1.流水线结构 pipeline - MIPS 是最简单的体系结构之一,所以使大学喜欢选择 MIPS 体系结构来介绍计算体系结构课程。 - ARM has barrel shifter shifter是两面性的,一方面它可以提高数学逻辑运算速度,另一方面它也增加了硬件的复杂性。所以和可以完成同样功能的adder/shift register相比,效率更高,但是也占用更多的芯片面积。 - MIPS have "branch delay slot" and "load delay slot" MIPS使用编译器来解决上面的两个问题。因为MIPS最初的设计思想就是使用简单的RISC硬体,然后靠编译器及其他软体技术,来达成RISC的完整概念。 2.指令结构 instruction - MIPS have 32bit and 64bit architecture,but ARM only have 32bit architecture ARM11 局部64位 - MIPS是开放式的架构,用户可以在开发的内核中加入自己的指令, - ARM has 4-bit condition code in every instruction ARM 在这一点很像x86。MIPS在MIPS IV也加入"conditional move"指令,来提高pipeline的效率。 - ARM has pre- and post-increment addressing modes auto-increment/decrement on load/store instructions - 在节省代码空间方面,MIPS16很类似ARM Thumb 3.寄存器 register - 由于MIPS内核中有32个寄存器(Register),而ARM只有16个,这种结构设计上的先天优 势,决定了在同等性能表现下,MIPS的芯片面积和功耗会更小。

基于ARMCortexM3的双以太网口通信的实现毕业论文

基于ARMCortexM3的双以太网口通信的实现 毕业论文 目录 前言 (1) 第一章相关技术背景介绍 (3) 1. 嵌入式系统的定义 (3) 2. 嵌入式处理器分类与现状 (4) 3. 嵌入式操作系统 (6) 4. 网络协议栈 (6) 5. 本章小结 (7) 第二章系统硬件平台 (8) 1. ARM Cortex-M3处理器 (8) 2. 系统任务要求 (9) 2.1 硬件方面 (9) 2.1 软件方面 (9) 3. 开发板MB9F618简介 (9) 3.2 开发板外观 (9) 3.2 配置说明 (10) 4. 本章小结 (11) 第三章软件的设计 (12) 1. 嵌入式操作系统的选择 (12) 1.1 RT-Thread操作系统的简介 (12) 1.2 虚拟文件系统 (13) 1.3 shell系统 (13) 1.4 图形用户界面 (13) 1.5 支持的平台 (13) 1.6 RT-Thread的核对象模型 (14) 1.7 核对象管理工作模式 (14)

1.8 线程状态 (15) 2. LwIP协议栈 (16) 2.1 LwIP协议栈简介 (16) 2.2 LwIP的以太网数据接收 (18) 3. LwIP协议栈的初始化 (21) 4. MB9F618网口设置 (22) 5. 主要函数功能的简介 (25) 6. 本章小结 (25) 第四章系统功能模块调试 (27) 1. 程序烧写 (27) 2. 程序烧写后 (27) 3. 双网卡测试 (27) 4. 网口的通信 (29) 5. 本章小结 (31) 结论 (32) 参考文献 (33) 致谢 (34)

ARM中异常中断处理概述

异常中断处理概述 1.ARM中异常中断处理概述 1)在正常程序执行过程中,每执行一条ARM指令,程序计数器寄存器PC的值加4个字 节;每执行一条Thumb指令,程序计数器寄存器PC的值加两个字节.整个过程是顺序执行. 2)通过跳转指令,程序可以跳转到特定的地址标号处执行,或者跳转到特定的子程序处 执行; B指令用于执行跳转操作; BL指令在执行跳转操作的同时,保存子程序的返回地址; BX指令在执行跳转操作的同时,根据目标地址的最低位可以将程序状态切换到Thumb状态; BLX指令执行3个操作:跳转到目标地址处执行,保存子程序的返回地址(R15保存在R14中),根据目标地址的最低位可以将程序状态切换到Thumb状态. 3)当异常中断发生时,系统执行完当前指令后,将跳转到相应的异常中断处理程序处执 行.在当异常中断处理程序执行完成后,程序返回到发生中断的指令的下一条指令处执行. 4)在进入异常中断处理程序时,要保存被中断的程序的执行现场,在从异常中断处理程 序退出时,要恢复被中断的程序的执行现场.本章讨论ARM体系中的异常中断机制. 2.ARM体系中异常中断种类. ARM体系中的异常中断如下表所示:

3. 中断向量表中指定了各异常中断及其处理程序的对应关系.它通常存放在存储地址的低端.在ARM体系中,异常中断向量表的大小为32字节.其中,每个异常中断占据4个字节大小,保留了4个字节空间. 每个异常中断对应的中断向量表的4 .通过这两种指令,程序将跳转到相应的异常中断处理程序处执行. 当几个异常中断同时发生时,就必须按照一定的次序来处理这些异常中断.在ARM 中通过给各异常中断富裕一定的优先级来实现这种处理次序.当然有些异常中断是不坑能同时发生的,如指令预取中止异常中断和软件中断(SWI)异常中断是有同一条指令的执行触发的,他们是不可能同时发生的.处理器执行某个特定的异常中断的过程中,称为处理器处于特定的中断模式.各异常中断的中断向量地址以及中断的处理优先级如表2所示. 4.异常中断使用的寄存器 各异常中断对应着一定的处理器模式.应用程序通常运行在用户模式下.ARM中的处理器模式如表3所示. 各种不同的处理器模式可能有对应于该处理器模式的物理寄存器组,如表4所示,其中,R13_svc表示特权模式下的R13寄存器,R13_abt表示中止模式下的R13寄存器,其余的各寄存器名称含义类推. 表4 各处理器模式的物理寄存器组

相关文档
相关文档 最新文档