文档库 最新最全的文档下载
当前位置:文档库 › Hepatitis B virus infection

Hepatitis B virus infection

Hepatitis B virus infection
Hepatitis B virus infection

Seminar

Hepatitis B virus infection

Yun-Fan Liaw, Chia-Ming Chu

Since the introduction of the hepatitis B vaccine and other preventive measures, the worldwide prevalence of

hepatitis B infection has fallen. However, chronic infection remains a challenging global health problem, with more

than 350 million people chronically infected and at risk of hepatic decompensation, cirrhosis, and hepatocellular

carcinoma. An improved understanding of hepatitis B virology, immunology, and the natural course of chronic

infection, has identi? ed hepatitis B virus replication as the key driver of immune-mediated liver injury and disease

progression. The approval of potent oral antiviral agents has revolutionised hepatitis B treatment since 1998.

Conventional and pegylated interferon alfa and nucleoside and nucleotide analogues are widely authorised treatments,

and monotherapy with these drugs greatly suppresses virus replication, reduces hepatitis activity, and halts disease

progression. However, hepatitis B virus is rarely eliminated, and drug resistance is a major drawback during long

term therapy. The development of new drugs and strategies is needed to improve treatment outcomes.

Introduction

Hepatitis B virus is one of the most serious and prevalent health problems, a?ecting more than 2 billion people worldwide. Although highly e?ective vaccines against hepatitis B virus have been available since 1982, there are still more than 350 million chronic carriers, 75% of whom reside in the Asia Paci?c region. People with hepatitis B are at increased risk of developing hepatic decompensation, cirrhosis, and hepatocellular carcinoma. The estimated worldwide mortality is 0·5 to 1·2 million deaths a year.1

Substantial improvement in the understanding of hepatitis B virology and immunology during past decades, combined with the advent of highly sensitive assays, has led to new insights into the natural history of such infection. Furthermore, the approval of oral antiviral agents has revolutionised hepatitis B treatment since 1998, and enabled e? ective clinical management of the disease. Viral epidemiology

Hepatitis B virus is a double-stranded DNA virus of the hepadnaviridae family. The virus is enveloped, and contains a viral DNA genome of about 3200 bps within its core. After the virus enters a hepatocyte, the viral genome is delivered to the nucleus, and the relaxed circular DNA is converted to covalently-closed-circular DNA (cccDNA). The cccDNA serves as a template for the transcription of the viral RNA. The hepatitis B virus replication cycle includes reverse transcription of RNA intermediates to prime DNA synthesis and translation of the hepatitis B proteins, including hepatitis B surface antigen (HBsAg) and e antigen (HBeAg).2 Thus, cccDNA plays a key part in the maintenance of chronic hepatitis B infection. The virus has at least eight major genotypes (A to H), based on an intergroup divergence of more than 8% in the complete nucleotide sequence. Apart from genotypes E and G, the genotypes have sub-genotypes with a sequence di? erence of at least 4%.3

Hepatitis B virus is transmitted parenterally via apparent or inapparent percutaneous or permucosal exposure to infected blood or other body ? uids. Risk factors for infection include transfusion of unscreened blood, sexual promiscuity, sharing or re-using of syringes between injection drug users, tattooing, working or residing in a health-care setting, living in a correctional facility, renal dialysis, and long-term household or intimate non-sexual contact with an HBsAg-positive individual.1,4

I

n low-prevalence areas, hepatitis B is typically a disease of young adults who acquire the infection through risky behaviour—such as unprotected sexual contact or sharing syringes with HBsAg-positive people—and through exposure to contaminated equipment used for therapeutic injections and procedures. I n high-prevalence regions, most infection occurs perinatally or during early childhood. About 90% of HBeAg-seropositive mothers (with high viral load) transmit hepatitis B virus to their o? spring, compared with 10–20% of HBeAg-seronegative carrier mothers.5 The prevalence of HBeAg is higher in Asian than in African HBsAg carrier mothers (40 vs 15%), so perinatal transmission is greater in Asians, but mainly horizontal in Africans.6,7

The prevalence of chronic hepatitis B infection is about 5% worldwide, but di?ers between regions. nfection rates are low (0·1–2·0%) in the USA and western Europe, intermediate (2·0–8·0%) in Mediterranean countries and Japan, and high (8·0–20·0%) in southeast Asia and sub-Saharan regions.1 Additionally, hepatitis B virus genotypes have a distinct

Lancet 2009; 373: 582–92

Liver Research Unit, Chang

Gung Memorial Hospital,

Chang Gung University College

of Medicine, Taipei, Taiwan

(Prof Y-F Liaw MD,

Prof C-M Chu MD)

Correspondence to:

Prof Yun-Fan Liaw, Liver

Research Unit, Chang Gung

University and Memorial

Hospital, 199 Tung Hwa North

Road, Taipei, Taiwan

livery? @https://www.wendangku.net/doc/0d17560782.html,.tw

Search strategy and selection criteria

Medline and PubMed were searched from 2000 to 2008 using

the terms “hepatitis B virus”, “HBV”, “viral hepatitis”, and

“chronic hepatitis” as search terms for hepatitis B virology,

immunology, epidemiology, and clinical liver disease status.

Reference lists of the identi? ed articles and review articles

from the past 3 years were also searched. Publications from

the past 3–5 years were selected. Earlier publications were not

excluded, however, if they were highly cited or if there were no

recent appropriate publications. Review articles covering

earlier studies on important issues were selected and cited

rather than the earlier original articles.

Seminar

geographical distribution: genotype A is prevalent in northwestern Europe and the USA; genotypes B and C in Asia; genotype D in the Mediterranean basin, Middle East, and India; genotype E in west Africa; genotype F in South and Central America; genotype G in the USA and France; and genotype H in Mexico and South America.3

Hepatitis B virus pre-core mutations occur most frequently in genotype D, followed by genotypes C and B, and are seen least frequently in genotype A.8 Accordingly, HBeAg-negative chronic hepatitis B is most common in genotype D dominant regions. The percentage of patients with chronic hepatitis B who are HBeAg negative is 80–90% in Mediterranean areas, 30–50% in southeast Asia, and less than 10% in the USA and northwestern Europe.9

Prevention

Through understanding the routes and modes of hepatitis B transmission, infection can be prevented by avoidance or interruption of transmission. Since the 1970s, serological screening of donor blood has become progressively routine, resulting in substantial reduction of transfusion-associated hepatitis B.1 Syringe-exchange programmes are run in the USA and other high-income countries, and provide free sterile syringes in exchange for used syringes, reducing transmission of blood-borne pathogens—including hepatitis B—in injection drug users. Operating at ? xed sites and on mobile van routes, the syringe-exchange programmes can make contact with otherwise hard-to-reach populations to deliver social and medical services, such as testing for hepatitis B, counselling, and vaccination.10

An e? ective hepatitis B vaccine has been available since the early 1980s, and in the early 1990s WHO recommended the addition of the hepatitis B vaccination to all national immunisation programmes. Universal vaccination programmes for newborn babies have been implemented in more than 160 countries, and international ? nancial support and a reduced cost are facilitating introduction of the vaccine into more low-income countries.11 Some high-income countries with low or very low endemicity of hepatitis B infection, such as northern European countries, apply a strategy of selective vaccination for individuals at high risk of infection, because the low burden of disease does not warrant the added cost of universal vaccination.11,12 Hepatitis B vaccination is the most e? ective preventive measure in adult populations with risk factors.1,4,10,11

Since the introduction of hepatitis B vaccination, the worldwide rates of infection have fallen. For example, the HBsAg carrier rate in Taiwanese children decreased from 10% in 1984 to less than 1% in 2004, with a 68% reduction of fulminant hepatitis in infants (0–1 year), and a 75% decline in hepatocellular carcinoma in children (aged 6–14 years).13,14 In the USA the incidence of reported acute hepatitis B fell by 81% between 1990 and 2006, from 8·5 to 1·6 cases per 100 000 population, and few cases occurred in blood recipients, dialysis patients, and health-care workers.4 However, the rate of infection among injection drug users, people with sexual risk factors, and immigrants from high-prevalence areas such as Asia has raised the burden of chronic hepatitis B infection in high-income countries, reinforcing the need to improve preventive e?orts aimed at high-risk groups.4,14 Post-exposure prophylaxis with hepatitis B immunoglobulin is e? ective and indicated for newborn infants of HBsAg-positive mothers, after percutaneous or mucosal exposure to HBsAg positive blood in health-care settings.

I mmunoglobulin is further indicated for prophylaxis after exposure to body ? uids (sexual exposure) and for the prevention of hepatitis B recurrence after liver transplantation.11

Pathophysiology

Hepatitis B virus is not cytopathogenic. In acute infection, clinical hepatitis B becomes apparent after an incubation period of 45–180 days. The elimination of hepatitis B virus by non-cytopathic mechanisms begins several weeks before the disease onset. Hepatitis B virus DNA clearance is mediated largely (up to 90%) by antiviral cytokines that are produced by cells of the innate and adaptive immune responses—including tumour necrosis factor α, interferon alfa, or interferon beta.15–17 After viral DNA declines, a cytolytic immune response with hepatocyte apoptosis and necrosis ensues, coincident with the onset of clinical hepatitis and a rise in serum alanine aminotransferase (ALT). The recognition of infected hepatocytes by virus-speci? c CD8 cytotoxic T cells, via class

I

human lymphocyte antigen (HLA-

I

)-presenting hepatitis B virus peptides, is presumed to be the main mechanism causing both liver damage and virus control. Cytotoxic T cells further recruit various antigen-non-speci? c in? ammatory cells into the liver by secreting cytokines, initiating a cascade of immunological events leading to necro i n? ammation.18–20

A vigorous, multispeci?c CD4 and CD8 response is associated with viral clearance.21n individuals with chronic hepatitis

B infection, the hepatitis B virus-speci? c CD4 and CD8 response is insu? cient;21 and can cause a persistent in? ammatory response that is ine? ective for hepatitis B virus clearance.22

Timely conventional liver biochemical tests are essential for diagnosis of hepatitis—including measurement of ALT for the degree of hepatocellular damages, bilirubin for conjugation and excretion function, and albumin values and prothrombin time for liver synthesis function. Liver biopsy is important for the grading of necroin?ammation and staging of ? brosis. Ultrasonography and other imagining methods are non-invasive ways to detect cirrhosis and hepatocellular carcinoma23—the judicious use of these methods and assays is crucial to di? erentiate the nature and severity of

Seminar

disease. Testing for hepatitis B virus markers is mandatory for the detection and diagnosis of hepatitis B. Serological markers of hepatitis B are HBsAg and its antibody (antiHBs), HBeAg and its antibody (antiHBe), and immunoglobulins G and M antibody to hepatitis B virus core antigen (I gG antiHBc and I gM antiHBc). HBsAg seropositivity indicates infection, and HBeAg is a surrogate marker of viral replication with high hepatitis B virus DNA. HBsAg assays should be done in those at risk for hepatitis B infection, people with ALT elevation or evidence of liver disease, and anyone about to receive immunosuppressive treatment or chemotherapy.

The ?rst serological marker to appear in acute hepatitis B infection is HBsAg, usually 1–6 weeks before the manifestation of clinical symptoms. I gM antiHBc appears 1–2 weeks after HBsAg, and persists for up to 6 months after HBsAg is cleared.23 Previously undiagnosed chronic HBsAg carriers with acute exacerbation of hepatitis B or superinfection with other hepatitis virus(es) presenting as clinical acute hepatitis, are seronegative for IgM antiHBc.24 Serum IgM antiHBc assay is, therefore, mandatory for the serodiagnosis of acute hepatitis B. HBeAg and hepatitis B virus DNA are present early during acute infection. Both markers usually disappear when serum ALT peaks, or soon thereafter, and before HBsAg seroclearance, which occurs within 1–2 months, and are followed by the appearance of antiHBs several weeks later (? gure 1). Previous infection is diagnosed by the detection of antiHBc and antiHBs.23

Presence of HBeAg for more than 10 weeks indicates a high likelihood of transition to persistent infection. Persistence of serum HBsAg for more than 6 months implies progression to chronic infection. People with HBeAg-positive chronic infection usually have high levels of hepatitis B virus DNA, whereas serum concentrations are lower in patients with HBeAg-negative infection. Serial testing showing a hepatitis B virus DNA concentration of less than 2×103 IU/mL and normal ALT values is needed to verify an inactive carrier state.25,26 Serum hepatitis B virus DNA assay is a direct measure of viral load. I t is particularly useful for assessment of risk of disease progression and candidacy for antiviral therapy, monitoring treatment response, and to distinguish active hepatitis B from the inactive carrier state with other causes of high ALT. PCR-based assays, with high sensitivity and a wide dynamic range (101–10? I U/mL), are the mainstay for measurement of hepatitis B viral load. WHO has established an international standard for hepatitis B virus quanti? cation units, in which 1 I U is equal to about ? ve genome equivalents.27 Assays for hepatitis B virus genotypes and mutations are available and becoming increasingly important in the clinical ? eld.

Natural history

The spectrum of acute hepatitis B infection ranges from asymptomatic infection to self-limited hepatitis, to fulminant hepatitis and it depends on various viral and host factors. Symptomatic hepatitis is rare in neonates (less than 1%) and occurs in about 10% of children 1–5 years old.1,22 Fulminant hepatitis is very rare in paediatric patients, with most reported cases being in infants born to HBeAg-negative, HBsAg-carrier mothers.28 One proposed explanation is that the absence of HBeAg in maternal blood fails to induce immunological tolerance,29 thus allowing vigorous immune clearance of hepatitis B virus from the infant liver. A third of acute infections in adults are symptomatic,22 and fulminant hepatitis occurs in less than 1% of cases, with a mortality of about 70%. Fulminant hepatitis B is related to an enhanced immune response with rapid viral clearance, which means serum HBsAg and hepatitis B virus DNA might be undetectable at the time of clinical presentation, and the diagnosis is made only by the presence of serum IgM antiHBc.2

Resolution of hepatitis B with HBsAg seroclearance occurs in more than 95% of adult patients. However, small amounts of hepatitis B virus DNA can still be detected by PCR in serum and peripheral mononuclear cells years after recovery from hepatitis, indicating a state of occult infection.30 Hepatitis B can be transmitted via organ transplantation, and hepatitis B reactivation might occur under immunosuppressive treatment—or by chemotherapy in such cases.31 The risk of chronicity is correlated closely with the patient’s age at the time of infection. I nfection persists in about 90% of infants infected at birth, 20–30% of children infected between the ages of 1 and 5 years, 6% of infection in children

Figure 1: Serological and clinical changes after acute hepatitis B virus (HBV) infection

Shaded bars indicate the duration of seropositivity in self-limited acute hepatitis B infection. Pointed bars indicate that HBV-DNA and HbeAg can become seronegative during chronic infection. Only IgG antiHBc is detectable after resolution of acute hepatitis or during chronic infection. Y axis is schematic concentration of ALT and antiHBs.

Seminar

aged 5–15 years and only 1–5% of patients infected as adults.1

One possible explanation for the high chronicity in infants is that the fetus develops tolerance to the virus in utero after the transplacental passage of viral proteins.32The natural course of chronic hepatitis B infection consists of distinct phases resulting from the interaction between the virus, hepatocytes and host immune response. Typically, chronic infection acquired perinatally or during infancy has three phases: immune tolerant, immune clearance, and inactive residual.33 Hepatitis B re-activation can occur in some patients with inactive disease and trigger immune-mediated liver injury.34,35 Such patients, therefore, enter a variant phase of immune clearance (? gure 2).23,36 Adult-acquired chronic infection has a similar clinical course, except that there is no obvious initial immune tolerant phase.37The mechanisms of immune tolerance during the ? rst phase are not well understood. Work in mice suggests that a transplacental transfer of maternal HBeAg could induce a speci? c unresponsiveness of helper T cells to HBeAg, and result in an ine? ective cytotoxic T-cell response to nucleocapsid antigens in neonates.32 Patients in the immune-tolerant phase are usually young, asymptomatic, and HBeAg seropositive, with high viral loads (more than 2×10? to 2×10? IU/mL) but normal serum ALT levels and near-normal liver histology. There is usually no, or only minimum, disease progression while serum ALT concentrations remain normal.38The mechanisms triggering loss of immune tolerance are mostly unknown, but a high viral load seems necessary to maintain the tolerant state.39 The immune-clearance phase is associated with falling

serum hepatitis B virus DNA concentrations, but their causal relation remains unclear. Other ? ndings that

characterise the transition from the immune tolerant to the immune clearance phase include a shift of

antigen (HBcAg) from nucleus to cytoplasm,40 and a

gradual accumulation of pre-core or core-promoter mutations.41,42

During the immune-clearance phase, hepatitis activity and intermittent acute ALT increase can ? are to over ? ve times the upper limit of normal, usually without

apparent symptoms. This activity of ? ares can be complicated by hepatic decompensation. The rises in

ALT and ? ares are attributable to the host’s immune

response against hepatitis B virus with resultant apoptosis and necrosis, thus, higher ALT concentrations

usually indicate a more vigorous immune response against hepatitis B virus and more extensive hepatocyte damage.43 The occurrence of hepatitis ? are varies in patient cohorts, but has reached 25% of patients per year during the ? rst 3–5 years of follow-up in hospital-based studies 43–45 The overall occurrence of hepatic failure in patients was estimated to be 0·5%.24 Hepatitis ? ares can lead to cirrhosis but will eventually

be followed by HBeAg seroconversion to antiHBe. The estimated yearly proportion of spontaneous HBeAg seroconversion is 2–15%, depending on factors such as age, ALT concentrations, and hepatitis B virus genotype.41–46 In Asia, HBeAg seroconversion occurs at a mean age of 30–35 years, with most cases (90%) occurring before age 40.45–48 Patients infected with genotype B seroconvert earlier and more frequently than do those with genotype C.3,47,49–51 In native Alaskans with chronic hepatitis B infection, the median age of HBeAg seroclearance is younger than 20 years in patients with genotypes A, B, D, and F, but over 40 years in patients with genotype C.52HBeAg seroconversion is usually followed by clinical remission and a life-long inactive state with an excellent outcome, although a few patients may develop hepatocellular carcinoma.34,35,53–56 Spontaneous HBsAg seroclearance can occur, reported at a rate of less than 1% per year in early studies.53–57 A study with 1965 patients showed that HBsAg seroclearance occurred at a rate of 1·2% per year, and rose to 1·8% per year in individuals over age 50; to a 45% cumulative incidence after 25 years of follow-up.58 Patients with virus genotype A and B infection have a higher likelihood of HBsAg seroclearance than do patients with other genotypes.59,60 HBsAg seroclearance usually confers an excellent long-term outcome if there is no pre-existing cirrhosis or viral superinfection.61,62 However, a small amount of hepatitis B virus DNA may persist in a state of occult infection.31Figure 2: Natural course of chronic hepatitis B virus (HBV) infection acquired perinatally and during infancy The reactivion phase is similar in every aspect to the immune-clearance-phase, except for HBeAg status.

Adult-acquired infection usually presents in the immune-clearance or reactivation phase (inset). The events during

the immune-clearance and reactivation phases could lead to cirrhosis and hepatocellular carcinoma (HCC) (adapted from Liaw 21

with permission). HBeAg=hepatitis B e antigen; antiHBe=hepatitis B e antigen antibody; pre C=pre core; BCP=basal core promoter; ALT=serum alanine aminotransferase.

Seminar

After HBeAg seroconversion, 1–4% patients have HBeAg seropositive hepatitis again (HBeAg reversion), whereas a greater proportion of patients develop HBeAg-negative chronic hepatitis B because of reactivation of the hepatitis B virus with pre-core or core promoter mutations that abolish or downregulate HBeAg production.34,35,42,63 Results from Taiwanese studies showed relapse in 2–3% of patients per year,34,45 with a cumulative rate of 20–25% after 15 years of follow-up.64 The proportion of relapse was very low in patients who HBeAg-seroconverted before age 30,55,64 but was raised in men, patients with genotype C, those who HBeAg-seroconverted after age 40,65 and in patients with serum hepatitis B virus DNA concentrations greater than 10 000 copies per mL.66 These age-related ? ndings show that early HBeAg seroconversion, or a short HBeAg-positive phase, are associated with an improved chance of sustained remission.48

Cirrhosis or hepatocellular carcinoma, or both, can develop during the natural course of chronic hepatitis B infection. Results of large population-based studies with mostly (85%) HBeAg-negative, HBsAg-positive people older than 30 years at recruitment have shown that the risk of cirrhosis, hepatocellular carcinoma, and mortality increases proportionally with increasing viral DNA concentrations, starting with at least 1×104 copies per mL.67–69 The study ? ndings suggest hepatitis B virus replication, with subsequent immune-mediated liver injuries, is the main driver of disease progression70 (? gure 3). Further risk factors for the development of cirrhosis include: male sex; increasing age;67–69,71,72 HBeAg positivity;72 virus genotype C (vs B);47,49,73–76 HBeAg reversion or virus reactivation;34,47persistent seropositivity for HBeAg77 or viral DNA;78 persistent raised ALT;79 viral superinfections;80 as well as the severity (hepatic decompensation), extent (bridging hepatic necrosis), and frequency of hepatitis ? are, and the duration of hepatic lobular alterations.71

At least a third of patients with cirrhosis are seropositive

for HBeAg or hepatitis B virus DNA at presentation,81 and disease progression can continue after cirrhosis development.82 The 5-year probability of hepatic decompensation is 15–20%, and is four-fold higher in patients with active viral replication than in patients without.83 The yearly rate of hepatocellular carcinoma occurrence is 3–6%.81,82 The estimated 5-year survival rate

of patients with compensated cirrhosis is 80–85% and 30–50% in patients with decompensated cirrhosis.81 Hepatocellular carcinoma mostly develops in patients with cirrhosis, therefore, hepatocellular carcinoma and cirrhosis share the same risk factors, with a raised risk in patients with a family history of hepatocellular carcinoma.84 Viral factors also contribute to hepatocellular carcinoma development, including hepatitis B virus DNA level, genotypes, and naturally occurring mutations such as hepatitis B virus pre-S and basal core promoter A1762T/

G1764A double mutations.68,85–89 Other con t ributing factors are habitual alcohol consumption, cigarette smoking, and

a? atoxin exposure.90

Management

Acute hepatitis B in adults is sel?imiting in more than 95% of cases, therefore, antiviral therapy is indicated only for patients with protracted severe acute hepatitis or fulminant hepatitis B.25 Management of patients with chronic hepatitis B infection should include thorough patient assessment and counselling. Although patients are usually asymptomatic, they can be anxious and attribute a wide range of negative psychological, social, and physical symptoms to their condition.91 Counselling should include dietary and lifestyle advice, including guidance to increase physical activity and control alcohol use. Further, health-care providers and patients should discuss the behaviours that lead to superinfection, prevention of such infection and preventive measures against transmission of hepatitis B to intimate contacts. The importance of the long term hepatocellular carcinoma surveillance, with ultrasonography supplemented with α-fetoprotein assay, should be emphasised to patients older than 40 years, with advanced

?brosis or cirrhosis, and with a family history of hepatocellular carcinoma.25,36,81

Hepatitis B virus replication is key to liver injury and disease progression,70 and, therefore, the main aims of treatment are to suppress the virus to achieve HBeAg seroconversion or undetectable viral-DNA levels, or both; stop or reduce hepatic necroin? ammation; and prevent the development of hepatic decompensation. Long term goals are to reduce cirrhosis and hepatocellular carcinoma development, and ultimately extend survival. Viraemic

Figure 3: Hepatitis B virus (HBV) replication and the outcomes of chronic Hepatitis B infection

Note that Hepatitis B e antigen (HBeAg) seroconversion is followed by remission in most people but that HBeAg-negative (–) hepatitis (HBV-DNA ≥ 2x103–2x10? IU/mL) may develop. Patients who remain HBeAg seropositive or develop HBeAg-negative hepatitis have a high occurrence of cirrhosis (~4 and ~3% per year). Most hepatocellular carcinoma (HCC) develops in patients who have cirrhosis.

Seminar

patients with an ALT concentration of twice the upper limit of normal or more, or substantial liver disease, are candidates for drug therapy. Of note, ALT ? are may precede spontaneous HBeAg seroconversion.43 Obser-vation for 3 months before considering drug therapy is acceptable.25,36 Liver biopsy is recommended to assess the necroin?ammation grade and ?brosis stage, because signi? cant ? brosis could have developed in patients with normal ALT, except during the immunotolerant phase.92 Before drug therapy is initiated, the e? cacy, advantages and disadvantages, and cost of available therapies should be discussed with the patient.36

Approved and widely used agents are conventional interferon alfa and pegylated interferon-alfa-2a; the nucleoside analogues lamivudine, entecavir, and telbivudine; and the nucleotide analogue adefovir dipivoxil. Tenofovir, another nucleotide analogue approved for the treatment of HIV infection, was more e?ective than adefovir in hepatitis B,93 it has been approved in European countries and USA, and will probably be approved worldwide. Drug therapy should be selected according to the patient’s condition, the drug’s mechanism, rapidity of action, potency, convenience of administration, adverse e? ect pro?le, and cost (see table).

Interferon-based therapy

I

nterferon alfa and pegylated interferon have immunomodulating activity. Theoretically, interferons are the ideal treatment for patients with chronic hepatitis B, but the response rate after 4–6 months of interferon alfa is only 30–40% in HBeAg-positive patients, with a risk di?erence of 23–25% against untreated controls.94 48 weeks of pegylated interferon therapy yields a sustained HBeAg seroconversion rate of 32% when assessed 24 weeks after completion of therapy.95–97 Patients with genotype A (vs D) or B (vs C) infection tend to have a better response to interferon or pegylated interferon.3,95–97 HBeAg seroconversion response

is sustained in more than 80% of people, and can be followed by HBsAg loss,77,98,99 which is the desired end point.

Patients with HBeAg-negative chronic hepatitis B respond to interferon alfa therapy but often relapse after treatment completion.78,100 The combined response to pegylated interferon therapy (normal ALT+hepatitis B virus DNA concentration less than 2×10? copies per mL)

in HBeAg-negative patients is 36% at 6 months post treatment.101,102 I mproved response rates are achieved in patients with low serum viral DNA, raised ALT and low HBeAg concentrations at baseline, and low HBeAg after 24 weeks’ treatment.102–104 HBsAg seroconversion occurs in 3% of the pegylated interferon treated patients,96,97,101 and the rate increases to 10% at 4 years after therapy.105 These response ?gures are better than those of lamivudine monotherapy. Results from follow-up studies suggest that interferon alfa therapy has long term bene? ts by promoting cumulative HBeAg seroconversion, increasing HBsAg loss, reducing development of cirrhosis and hepatocellular carcinoma, and extending survival—especially in responders.70,77,98–100 Further advantages of interferon-based therapy are the ? nite treatment duration and that patients do not develop drug resistance. Eventually, pegylated interferon treatment will replace interferon alfa because of its improved e?ectiveness and convenient once a week administration.36,95 Interferon-based therapy is associated with many adverse events; including in? uenza-like symptoms, fatigue, anorexia, weight loss, hair loss, thyroid dysfunction, emotional instability, and bone

Seminar

marrow suppression. Patients might need symptomatic treatment, and some require dose modi? cation or discontinuation of therapy.95 Most patients are able to complete 48 weeks of pegylated interferon treatment despite the side-e? ects.96,97,101

Nucleoside or nucleotide analogues

Oral antiviral agents have fast and potent inhibitory e?ects on hepatitis B virus polymerase and reverse transcriptase activity, and are safe and e? ective for hepatitis B virus DNA suppression, ALT normalisation, and histological improvement. Results from cross-trial 1 year treatment data suggest entecavir is the most potent of the drugs, followed by tenofovir, telbivudine, lamivudine, and adefovir. However, the antiviral potency of these drugs does not result in an increase in HBeAg seroconversion—which was seen at a rate of around 20% after 1 year of treatment (see table)—and HBsAg loss is very rare.106–110 After 1 year of lamivudine treatment an HBeAg seroconversion was achieved in more than half of patients with ALT values more than ? ve times the upper limit of normal, but in only 5% of patients with ALT values less than twice the upper limit of normal.111,112 Thus, patients with a stronger endogenous immune response to the hepatitis B virus might have an improved chance of reducing cccDNA and HBeAg translation.111 Additionally, patients with ALT values more than ? ve times the upper limit of normal could be developing severe hepatitis or hepatic decompensation, especially if they have advanced ? brosis.43 These patients should be monitored every week or every two weeks so that fast-acting antiviral drugs can be started to arrest the development, or deterioration, of hepatic de-compensation.113 Similarly, nucleoside and nucleotide analogues might rescue patients with decompensated cirrhosis by increasing serum albumin concentrations, and stabilising bilirubin values and prothrombin time, removing the need for transplantation and prolonging survival.114,115

20–50% of patients who have HBeAg seroconversion will relapse with HBeAg reversion within 6–12 months o? therapy, and more patients may relapse if the duration of consolidation therapy after HBeAg seroconversion is less than 6 months.25,36

I

n HBeAg-negative patients, there is no end point such as HBeAg seroconversion, so treatment duration is inde?nite, and stopping drug therapy after 1 year is associated with a 90% relapse rate.116 Relapses are characterised by increasing hepatitis B virus DNA level followed by rising ALT or a hepatitis ? are which could be life threatening.117 Therefore, continuing long-term drug therapy is usually necessary to maintain a virological response. Results of a large randomised controlled trial in patients with advanced ? brosis or cirrhosis showed the bene? ts of long-term therapy after 3 years of lamivudine therapy were reduced dis-ease progression and hepatocellular carcinoma development.118

The emergence of drug-resistant genotypic mutations of hepatitis B virus in long term therapy is a major problem. Clinically, emergence of drug resistance is indicated by viral breakthrough—an increase of serum hepatitis B virus DNA to more than ten-fold increase in HBV concentrations from the nadir of initial response—with subsequent biochemical breakthrough or raised ALT values in more than 90% of patients.119 Hepatitis ?ares develop frequently, sometimes associated with hepatic decompensation during continued antiviral therapy,120 and, the initial clinical and histological bene?ts of antiviral therapy diminish.118,121,122

The occurrence of drug resistance rises with increasing therapy duration, although the generation of nucleoside and nucleotide analogues has improved potency and raised the genetic barrier to resistant mutations (see table). Drug resistance occurs most frequently with lamivudine, followed by telbivudine, adefovir and tenofovir, and is very low with entecavir.106–110

Figure 4: Management of patients with chronic hepatitis B virus (HBV) infection

HBeAg=hepatitis B e antigen. ULN=upper limit of normal. NA=nucleoside or nucleotide analogues. IFN=interferon-based therapy. HCC=hepatocellular carcinoma.

Seminar

Studies have shown that suppression of the hepatitis B virus to undetectable level at 24 weeks of telbivudine and lamivudine therapy is associated with low incidence of drug resistance at week 48.110 Rescue therapy for drug resistance is now available and, therefore, monitoring hepatitis B virus DNA levels during drug treatment to

detect drug resistance early enough to start rescue

therapy before serum hepatitis B virus DNA increases over 1×10? copies per mL 123,124 is very important. I n patients with drug resistance, add-on therapy without cross-resistance (adefovir and tenofovir vs lamivudine, telbivudine and entecavir) should be instituted.123,125 Switching to interferon-based therapy can be a further option.126

Drug treatment strategies

I n view of the array of drugs available, physician and patient should decide which drug should be used, and when to start and stop treatment. Oral antiviral agents with fast and potent hepatitis B virus-suppressive e? ects are preferred for patients with ensuing or overt hepatic decompensation. Interferon-based therapy is preferred in patients with compensated liver disease—particularly in young patients, women of childbearing age, and those with low ALT values—because of the ? nite

duration of treatment, sustained response, and long

term bene? ts including prevention of hepatocellular carcinoma.36,127

For oral antiviral agents, the bene? t of long-term therapy should be weighed against possible

drug resistance and durability of treatment response. If long term therapy is anticipated, the drug with the lowest rate of resistance is preferable, although cost

may a? ect choice. A combination of two or more antiviral drugs, as in H I V therapy, reduces drug resistance but does not enhance e? cacy.96,101,128,129 Figure 4

shows an algorithm for the management of patients

with chronic hepatitis B, designed on the basis of published guidelines.

25,26Drug therapy is not usually recommended for children and women of childbearing age—unless there is an absolute indication such as ensuing or overt hepatic decompensation—because of potential problems

associated with long-term therapy.36

When treatment is absolutely indicated, interferon-based therapy is preferred for non-pregnant women, and pregnancy is discouraged during treatment. Women who become pregnant while receiving oral antiviral agents can continue treatment with telbivudine or tenofovir, which are category B agents.36,130

I n patients with concurrent hepatitis C or D virus

infection, the dominant virus should be determined and treated accordingly. I n patients with HI V coinfection,

adefovir or interferon (if CD4 is greater than 500) is preferred if HI V infection does not need treatment. I f HI V treatment is required, tenofovir or combination lamivudine and tenofovir should be included in the active

antiretroviral therapy.25,36

Hepatitis B virus re-activation is a serious complication in patients undergoing transplantation, immuno-suppression, or chemotherapy. Patients should be screened for HBsAg and, if positive, prophylactic therapy with a direct antiviral agent should be started before the beginning of and at least 12 weeks after the end of the immunosuppressive treatment or chemotherapy.36,131 For all patients with hepatitis B virus-associated liver failure who are listed for transplantation, nucleoside or nucleotide analogues should be started and continued after transplantation as prophylaxis against re-infection of the allograft.25,36

Con? ict of interest statement

Yun-Fan Liaw has been involved in clinical trials or served as a global advisory board member of Roche, BMS, GSK, Novartis, Gilead Sciences. Chia-Ming Chu declares that he has no con? ict of interest.

Acknowledgments

We thank Chang-Gung Medical Research Fund and the Prosperous

Foundation, Taipei, Taiwan, for long term grant support; Ellen Donaldson and Eric Matluck for English editing; and Su-Chiung Chu for secretarial assistance.References

1 Lavanchy D. Hepatitis B virus epidemiology, disease burden,

treatment, and current and emerging prevention and control

measures. J Viral Hepatol 2004; 11: 97–107.

2 Summers J, Mason WS. Replication of the genome of a

hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 1982; 29: 403–15.

3 Kao JH. Role of viral factors in the natural course and therapy of

chronic hepatitis B. Hepatol Int 2007; 1: 415–30.

4 Wasley A, Grytdal S, Gallagher K. Surveillance for acute viral

hepatitis—United States, 2006. MMWR Morb Mortal Wkly Rep 2008; 57: 1–24.

5 Okada K, Kamiyama I, Inomata M, Imai M, Miyakawa Y . e antigen and anti-e in the serum of asymptomatic carrier mothers as

indicators of positive and negative transmission of hepatitis B virus to their infants. N Engl J Med 1976; 294: 746–49.

6 Botha JF, Ritchie MJ, Dusheiko GM, Mouton HW, Kew MC. Hepatitis B virus carrier state in black children in Ovamboland:

role of perinatal and horizontal infection. Lancet 1984; 323: 1210–12.

7 Lin HH, Kao JH, Chang TC, Hsu HY , Chen DS. Secular trend of

age-speci? c prevalence of hepatitis B surface and e antigenemia in

pregnant women in Taiwan. J Med Virol 2003; 69: 466–70.8 Chu

CJ, Kee? e EB, Han SH, et al. Prevalence of HBV precore/core promoter variants in the United States. Hepatology 2003;

38: 619–28.

9 Manesis EK. HBeAg-negative chronic hepatitis B: from obscurity to

prominence. J Hepatol 2006; 45: 343–46.10 McKnight CA, Des Jarlais DC, Perlis T, Eigo K. Syringe exchange programs—United States, 2005. MMWR Morb Mortal Wkly Rep 2007; 56: 1164–67.

11 WHO. Hepatitis B vaccines. Wkly Epidemiol Rec 2004; 79: 253–64.

12 Zuckerman J, van Hattum J, Ca?

erkey M, et al. Should hepatitis B vaccination be introduced into childhood immunisation

programmes in northern Europe? Lancet Infect Dis 2007; 7: 410–19.13 Ni YH, Huang LM, Chang MH, et al. Two decades of universal

hepatitis B vaccination in Taiwan: impact and implication for future strategies. Gastroenterology 2007; 132: 1287–93.

14 Chien YC, Jan CF, Kuo HS, Chen CJ. Nationwide hepatitis B

vaccination program in Taiwan: e? ectiveness in the 20 years after it

was launched. Epidemiol Rev 2006; 28: 126–35.15 Murray JM, Wieland SF, Purcell RH, Chisari FV. Dynamics of

hepatitis B virus clearance in chimpanzees. Proc Natl Acad Sci USA

2005; 102: 17780–85.

16 Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R,

Chisari FV. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999; 284: 825–29.

Seminar

17 Bertoletti A, Maini M, Williams R. Role of hepatitis B virus speci? c

cytotoxic T cells in liver damage and viral control. Antiviral Res

2003; 60: 61–66.

18 Thimme R, Wieland S, Steiger C, et al. CD8(+) T cells mediate viral

clearance and disease pathogenesis during acute hepatitis B virus

infection. J Virol 2003; 77: 68–76.

19 Visvanathan K, Lewin SR. Immunopathogenesis: role of innate and

adaptive immune responses. Semin Liver Dis 2006; 26: 104–15.

20 Rehermann B. Chronic infections with hepatotropic viruses:

mechanisms of impairment of cellular immune responses.

Semin Liver Dis 2007; 27: 152–60.

21 Maini MK, Boni C, Lee CK, et al. The role of virus-speci? c

CD8(+) cells in liver damage and viral control during persistent

hepatitis B virus infection. J Exp Med 2000; 191: 1269–80.

22 McMahon BJ, Alward WL, Hall DB, et al. Acute hepatitis B virus

infection: relation of age to the clinical expression of disease and

subsequent development of the carrier state. J Infect Dis 1985;

151: 599–603.

23 Liaw YF, ed. Asia-Paci? c Pocket Guide to Hepatitis B. New Jersey:

University of Wisconsin Board of Regents and MDG Development Group, 2006.

24 Chu CM, Liaw YF. Increased incidence of fulminant hepatic failure

in previously unrecognized HBsAg carriers with acute hepatitis

independent of etiology. Infection 2005; 33: 136–39.

25 Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology 2007;

45: 507–39.

26 Hadziyannis SJ. Unrevealing the natural course of the so-called

“inactive HBsAg or HBV carrier state”. Hepatol Int 2007; 1: 218–84.

27 Gish RG, Locarnini SA. Chronic hepatitis B: current testing

strategies. Clin Gastroenterol Hepatol 2006; 4: 666–76.

28 Chen HL, Chang CJ. Pediatric fulminant hepatic failure in endemic

areas of hepatitis B infection: 15 years after universal hepatitis B

vaccination. Hepatology 2004; 39: 58–63.

29 Friedt M, Gerner P, Lausch E, Trübel H, Zabel B, Wirth S.

Mutations in the basic core promotor and the precore region of

hepatitis B virus and their selection in children with fulminant and chronic hepatitis B. Hepatology 1999; 29: 1252–58.

30 Rehermann B, Ferrari C, Pasquinelli C, Chisari FV. The hepatitis B

virus persists for decades after patients’ recovery from acute viral

hepatitis despite active maintenance of a cytotoxic T lymphocyte

response. Nat Med 1996; 2: 1104–08.

31 Raimondo G, Pollicino T, Cacciola I, Squadrito G. Occult hepatitis B

virus infection. J Hepatol 2007; 46: 160–70.

32 Milich D, Liang TJ. Exploring the biological basis of hepatitis B

e antigen in hepatitis B virus infection. Hepatology 2003; 38: 1075–86.

33 Chu CM, Karayiannis P, Fowler MJF, Maujardino J, Liaw YF,

Thomas HC. Natural history of chronic hepatitis B virus infection in Taiwan: studies of hepatitis B virus DNA in serum. Hepatology

1985; 5: 431–34.

34 Hsu YS, Chien RN, Yeh CT, et al. Long-term outcome after

spontaneous HBeAg seroconversion in patients with chronic

hepatitis B. Hepatology 2002; 35: 1522–27.

35 Fattovich G, Olivari N, Pasino M, D’Onofrio M, Martone E,

Donato F. Long-term outcome of chronic hepatitis B in Caucasian patients: mortality after 25 years. Gut 2008; 57: 84–90.

36 Liaw YF, Leung N, Kao JH, et al. Asian-Paci? c Consensus statement

on the management of chronic hepatitis B: 2008 update. Hepatol Int 2008; 2: 263–83.

37 Lai CL, Ratziu V, Yuen MF, Poynard T. Viral hepatitis B. Lancet

2003; 362: 2089–94.

38 Hui CK, Leung N, Yuen ST, et al. Natural history and disease

progression in Chinese chronic hepatitis B patients in

immune-tolerant phase. Hepatology 2007; 46: 395–401.

39 Boni C, Bertoletti A, Penna A, et al. Lamivudine treatment can

restore T cell responsiveness in chronic hepatitis B.

J Clin Invest 1998; 102: 968–75.

40 Chu CM, Yeh CT, Sheen IS, Liaw YF. Subcellular localization of

hepatitis B core antigen in relation to hepatocyte regeneration in

chronic hepatitis B. Gastroenterology 1995; 109: 1926–32.

41 Chu CM Yeh CT, Lee CS, Sheen IS, Liaw YF. Precore stop mutant

in HBeAg-positive patients with chronic hepatitis B: clinical

characteristics and correlation with the course of

HBeAg-to-anti-HBe seroconversion. J Clin Microbiol 2002;

40: 16–21.42 Yuen MF, Sablon E, Yuan HJ, et al. Relationship between the

development of precore and core promoter mutations and

hepatitis B e antigen seroconversion in patients with chronic

hepatitis B virus. J Infect Dis 2002; 186: 1335–38.

43 Liaw YF. Hepatitis ? ares and hepatitis B e antigen seroconversion:

implication in anti-hepatitis B virus therapy. J Gastroenterol Hepatol 2003; 18: 246–52.

44 Yuen MF, Sablon E, Hui CK, et al. Prognostic factors in severe

exacerbation of chronic hepatitis B. Clin Infect Dis 2003;

36: 979–84.

45 Chu CM, Hung SJ, Lin J, Tai DI, Liaw YF. Natural history of

hepatitis B e antigen to antibody seroconversion in patients with

normal serum aminotransferase levels. Am J Med 2004;

116: 829–34.

46 Yuen MF, Yuan HJ, Wong DK et al. Prognostic determinants for

chronic hepatitis B in Asians: therapeutic implications. Gut 2005;

54: 1610–14.

47 Chu CM, Liaw YF. Genotype C hepatitis B virus infection is

associated with a higher risk of reactivation of hepatitis B and

progression to cirrhosis than genotype B: a longitudinal study of

hepatitis B e antigen-positive patients with normal

aminotransferase levels at baseline. J Hepatol 2005; 43: 411–17.

48 Chu CM, Liaw YF. Chronic hepatitis B virus infection acquired in

childhood:special emphasis on prognostic and therapeutic

implication of delayed HBeAg seroconversion. J Viral Hepatol 2007;

14: 147–52.

49 Chu CJ, Hussain M, Lok AS. Hepatitis B virus genotype B is

associated with earlier HBeAg seroconversion compared with

hepatitis B virus genotype C. Gastroenterology 2002; 122: 1756–62.

50 Ni YH, Chang MH, Wang KJ, et al. Clinical relevance of hepatitis B

virus genotype in children with chronic infection and hepatocellular carcinoma. Gastroenterology 2004; 127: 1733–38.

51 Yuen MF, Sablon E, Tanaka Y, et al. Epidemiological study of

hepatitis B virus genotypes, core promoter and precore mutations of chronic hepatitis B infection in Hong Kong. J Hepatol 2004;

41: 119–25.

52 Livingston SE, Simonetti JP, Bulkow LR, et al. Clearance of

hepatitis B e antigen in patients with chronic hepatitis B and

genotypes A, B, C, D, and F. Gastroenterology 2007; 133: 1452–57.

53 Manno M, Cammà C, Schepis F, et al. Natural history of chronic

HBV carriers in northern Italy: morbidity and mortality after

30 years. Gastroenterology 2004; 127: 756–63.

54 Zacharakis GH, Koskinas J, Kotsiou S, et al. Natural history of

chronic HBV infection: a cohort study with up to 12 years follow-up in North Greece (part of the Interreg I-II/EC-project). J Med Virol

2005; 77: 173–79.

55 Bortolotti F, Guido M, Bartolacci S, et al. Chronic hepatitis B in

children after e antigen seroclearance: ? nal report of a 29-year

longitudinal study. Hepatology 2006; 43: 556–62.

56 Ni YH, Chang MH, Chen PJ, et al. Viremia pro? les in children with

chronic hepatitis B virus infection and spontaneous e antigen

seroconversion. Gastroenterology 2007; 132: 2340–45.

57 McMahon BJ, Holck P, Bulkow L, Snowball M. Serologic and

clinical outcomes of 1536 Alaska Natives chronically infected with hepatitis B virus. Ann Intern Med 2001; 135: 759–68.

58 Chu CM, Liaw YF. HBsAg seroclearance in asymptomatic carriers

of high endemic areas: appreciably high rates during a long-term

follow-up. Hepatology 2007; 45: 1187–92.

59 Sánchez-Tapias JM, Costa J, Mas A, Bruguera M, Rodés J. In? uence

of hepatitis B virus genotype on the long-term outcome of chronic hepatitis B in western patients. Gastroenterology 2002; 123: 1848–56.

60 Yuen MF, Wong DK, Sablon E, et al. HBsAg seroclearance in

chronic hepatitis B in the Chinese: virological, histological, and

clinical aspects. Hepatology 2004; 39: 1694–701.

61 Chen YC, Sheen IS, Chu CM, Liaw YF. Prognosis following

spontaneous HBsAg seroclearance in chronic hepatitis B patients with or without concurrent infection. Gastroenterology 2002;

123: 1084–89.

62 Arase Y, Ikeda K, Suzuki F, et al. Long-term outcome after

hepatitis B surface antigen seroclearance in patients with chronic

hepatitis B. Am J Med 2006; 119: 71 e9–16.

63 Bonino F, Brunetto MR. Chronic hepatitis B e antigen (HBeAg)

negative, anti-HBe positive hepatitis B: an overview. J Hepatol 2003;

39 (suppl): 160–63.

Seminar

64 Chu CM, Liaw YF. Spontaneous relapse of hepatitis in inactive

HBsAg carriers. Hepatol Int 2007; 1: 311–15.

65 Chu CM, Liaw YF. Predictive factors for reactivation of hepatitis B

following hepatitis B e antigen seroconversion in chronic

hepatitis B. Gastroenterology 2007; 133: 1458–65.

66 Feld JJ, Ayers M, El-Ashry D, Mazzulli T, Tellier R, Heathcote EJ.

Hepatitis B virus DNA prediction rules for hepatitis B e

antigen-negative chronic hepatitis B. Hepatology 2007; 46: 1057–70.

67 Iloeje UH, Yang HI, Su J, Jen CL, You SL, Chen CJ. The Risk

Evaluation of Viral Load Elevation and Associated Liver

Disease/Cancer-In HBV (the REVEAL-HBV) Study Group

Predicting cirrhosis risk based on the level of circulating hepatitis B viral load. Gastroenterology 2006; 130: 678–86.

68 Chen CJ, Yang HI, Su J, et al. Risk of hepatocellular carcinoma

across a biological gradient of serum hepatitis B virus DNA level.

JAMA 2006; 295: 65–73.

69 Iloeje UH, Yang HI, Jen CL, et al. Risk Evaluation of Viral Load

Elevation and Associated Liver Disease/Cancer-hepatitis B Virus

Study Group. Risk and predictors of mortality associated with chronic hepatitis B infection. Clin Gastroenterol Hepatol 2007; 5: 921–31.

70 Liaw YF. Hepatitis B virus replication and liver disease progression:

the impact of antiviral therapy. Antivir Ther 2006; 11: 669–79.

71 Liaw YF, Tai DI, Chu CM, Chen TJ. The development of cirrhosis in

patients with chronic type B hepatitis: a prospective study.

Hepatology 1988; 8: 493–96.

72 Yang HI, Lu SN, Liaw YF, et al. Hepatitis B e antigen and the risk of

hepatocellular carcinoma. N Engl J Med 2002; 347: 168–74.

73 Kao JH, Chen PJ, Lai MY, Chen DS. Hepatitis B genotypes correlate

with clinical outcomes in patients with chronic hepatitis B.

Gastroenterology 2000; 118: 554–59.

74 Sumi H, Yokosuka O, Seki N, et al. In? uence of hepatitis B virus

genotypes on the progression of chronic type B liver disease.

Hepatology 2003; 37: 19–26.

75 Yuen MF, Sablon E, Yuan HJ, et al. Signi? cance of hepatitis B

genotype in acute exacerbation, HBeAg seroconversion,

cirrhosis-related complications, and hepatocellular carcinoma.

Hepatology 2003; 37: 562–67.

76 Duong TN, Horiike N, Michitaka K, et al. Comparison of

genotypes C and D of the hepatitis B virus in Japan: a clinical and

molecular biological study. J Med Virol 2004; 72: 551–57.

77 Lin SM, Yu ML, Lee CM, et al. Interferon therapy in HBeAg positive

chronic hepatitis reduces cirrhosis and hepatocellular carcinoma.

J Hepatol 2007; 46: 45–52.

78 Brunetto MR, Oliveri F, Coco B, et al. Outcome of anti-HBe positive

chronic hepatitis B in alpha-interferon treated and untreated

patients: a long term cohort study. J Hepatol 2002; 36: 263–70.

79 Park BK, Park YN, Ahn SH, et al. Long-term outcome of chronic

hepatitis B based on histological grade and stage.

J Gastroenterol Hepatol 2007; 22: 383–88.

80 Liaw YF, Chen YC, Sheen IS, et al. Impact of acute hepatitis C virus

superinfection in patients with chronic hepatitis B virus infection.

Gastroenterology 2004; 126: 1024–29.

81 Chu CM, Liaw YF. Hepatitis B virus-related cirrhosis: natural

history and treatment. Semin Liver Dis 2006; 26: 142–52.

82 Chen YC, Chu CM, Yeh CT, Liaw YF. Natural course following the

onset of cirrhosis in patients with chronic hepatitis B: a long-term follow-up study. Hepatol Int 2007; 1: 267–73.

83 Fattovich G, Pantalena M, Zagni I, Realdi G, Schalm SW,

Christensen E; European Concerted Action on Viral Hepatitis

(EUROHEP). E? ect of hepatitis B and C virus infections on the

natural history of compensated cirrhosis: a cohort study of

297 patients. Am J Gastroenterol 2002; 97: 2886–95.

84 Yu MW, Chang HC, Liaw YF, et al. Familial risk of hepatocellular

carcinoma among chronic hepatitis B carriers and their

relatives. J Natl Cancer Inst 2000; 92: 1159–64.

85 Kao JH, Chen PJ, Lai MY, Chen DS. Core promoter mutations of

hepatitis B virus increase the risk of hepatocellular carcinoma in

hepatitis B carriers. Gastroenterology 2003; 124: 327–34.

86 Chan HL, Hui AY, Wong ML, et al. Genotype C hepatitis B virus

infection is associated with an increased risk of hepatocellular

carcinoma. Gut 2004; 53: 1494–98.

87 Yu MW, Yeh SH, Chen PJ, et al. Hepatitis B virus genotype and

DNA level and hepatocellular carcinoma: a prospective study in

men. J Natl Cancer Inst 2005; 97: 265–72.88 Chen CH, Hung CH, Lee CM, et al. Pre-S deletion and complex

mutations of hepatitis B virus related to advanced liver disease in

HBeAg-negative patients. Gastroenterology 2007; 133: 1466–74.

89 Chou YC, Yu MW, Wu CF, et al. Temporal relationship between

hepatitis B virus enhancer II/basal core promoter sequence

variation and risk of hepatocellular carcinoma. Gut 2008; 57: 91–97.

90 Liaw YF, Sollano JD. Factors in? uencing liver disease progression

in chronic hepatitis B. Liver Int 2006; 26 (suppl 2): 23–29.

91 Ong SC, Mak B, Aung MO, Li SC, Lim SG. Health-related quality of

life in chronic hepatitis B patients. Hepatology 2008; 47: 1108–17.

92 Lai M, Hyatt BJ, Nasser I, Curry M, Afdhal NH. The clinical

signi? cance of persistently normal ALT in chronic hepatitis B

infection. J Hepatol 2007; 47: 760–67.

93 Marcellin P, Heathcote J, Gane E, et al. Tenofovir disoproxil fumarate

(TDF) demonstrated superior antiviral e? cacy to adefovir dipivoxil in two pivotal, randomized, double-blind, studies for the treatment of

HBeAg-negative and HBeAg-positive chronic hepatitis B (CHB):

study 102 and study 103. Hepatol Int 2008; 2: A139.

94 Craxì A, Di Bona D, Cammà C . Interferon-alpha for HBeAg-positive

chronic hepatitis B. J Hepatol 2003; 39 (suppl 1): 99–105.

95 Cooksley WGF, Piratvisuth T, Lee SD et al. Peginterferon alpha

2a(40kDa): an advance in the treatment of hepatitis B e antigen-

positive chronic hepatitis B. J Viral Hepat 2003; 10: 298–305.

96 Lau GK, Piratvisuth T, Luo KX, et al. Peginterferon Alfa-2a,

lamivudine, and the combination for HBeAg-positive chronic

hepatitis B. N Engl J Med 2005; 352: 2682–95.

97 Janssen HLA, van Zonneveld M, Senturk H, et al. Pegylated

interferon alfa-2b alone or in combination with lamivudine for

HBeAg-positive chronic hepatitis B: a randomised trial. Lancet 2005;

365: 123–29.

98 Niederau C, Heintges T, Lange S, et al. Long-term follow-up of

HBeAg-positive patients treated with interferon alfa for chronic

hepatitis B. N Engl J Med 1996; 334: 1422–27.

99 van Zonneveld M, Honkoop P, Hansen BE, et al. Long-term

follow-up of alpha-interferon treatment of patients with chronic

hepatitis B. Hepatology 2004; 39: 804–10.

100 Papatheodoridis GV, Dimou E, Dimakopoulos K, et al. Outcome of hepatitis B e antigen-negative chronic hepatitis B on long-term

nucleos(t)ide analog therapy starting with lamivudine. Hepatology

2005; 42: 121–29.

101 Marcellin P, Lau GKK, Bonino F, et al. Peginterferon alfa-2a alone, lamivudine alone and the two in combination in patients with

HBeAg negative chronic hepatitis B. N Engl J Med 2004;

35: 1206–17.

102 Bonino F, Marcellin P, Lau GK, et al. Predicting response to peginterferon alpha-2a, lamivudine and the two combined for

HBeAg-negative chronic hepatitis B. Gut 2007; 56: 699–705.

103 Piratvisuth T, Lau G, Chao YC, et al. Sustained response to peginterferon alfa-2a (40 kD) with or without lamivudine in Asian patients with HBeAg-positive and HBeAg-negative chronic

hepatitis B. Hepatol Int 2008; 2: 102–10.

104 Fried MW, Piratvisuth T, Lau GK, et al. HBeAg and hepatitis B virus DNA as outcome predictors during therapy with

peginterferon alfa-2a for HBeAg-positive chronic hepatitis B.

Hepatology 2008; 47: 428–34.

105 Marcellin P, Piratvisuth T, Brunetto M, et al. Virological and biochemical response in patients with HBeAg-negative chronic

hepatitis B treated with Pegasys with or without lamivudine: results of 4-year follow-up. Hepatol Int 2008; 2: A114.

106 Marcellin P, Chang TT, Lim SG, et al. Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B.

N Engl J Med 2003; 348: 808–16.

107 Hadziyannis SJ, Tassopoulos NC, Heathcote EJ, et al. Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic

hepatitis B for up to 5 years. Gastroenterology 2006; 131: 1743–51.

108 Lai CL, Shouval D, Lok AS, et al. Entecavir versus lamivudine for patients with HBeAg-negative chronic hepatitis B. N Engl J Med

2006; 354: 1011–20.

109 Gish RG, Lok AS, Chang TT, et al. Entecavir therapy for up to

96 weeks in patients with HBeAg-positive chronic hepatitis B.

Gastroenterology 2007; 133: 1437–44.

110 Lai CL, Gane E, Liaw YF, et al. A comparison of telbivudine and lamivudine in patients with chronic hepatitis B. N Engl J Med 2007;

357: 34–46.

Seminar

111 Chien RN, Liaw YF, Atkins M, for Asian hepatitis Lamivudine Trial Group. Pretherapy alanine transaminase level as a determinant for hepatitis B e antigen seroconversion during lamivudine therapy in patients with chronic hepatitis B. Hepatology 1999; 30: 770–74.

112 Perrillo RP, Lai CL, Liaw YF, et al. Predictors of HBeAg loss after lamivudine treatment for chronic hepatitis B. Hepatology 2002;

36: 186–94.

113 Chien RN, Lin CH, Liaw YF. The e? ect of lamivudine therapy in hepatic decompensation during acute exacerbation of chronic

hepatitis B. J Hepatol 2003; 38: 322–27.

114 Fontana RJ, Hann HW, Perrillo RP, et al. Determinants of early mortality in patients with decompensated chronic hepatitis B

treated with antiviral therapy. Gastroenterology 2002; 123: 719–27. 115 Hann HW, Fontana RJ, Wright T, et al. A United States compassionate use study of lamivudine treatment in

nontransplantation candidates with decompensated hepatitis B

virus-related cirrhosis. Liver Transpl 2003; 9: 49–56.

116 Tassopoulos NC, Volpes R, Pastore G, et al. E? cacy of lamivudine in patients with hepatitis B e antigen-negative/hepatitis B virus

DNA-positive (precore mutant) chronic hepatitis B. Hepatology 1999;

29: 889–96.

117 Chien RN, Liaw YF. Short term lamivudine therapy in active HBeAg-negative chronic hepatitis B patients in Taiwan. Antivir Ther 2006; 11: 947–52.

118 Liaw YF, Sung JJY, Chow WC, et al. Lamivudine for patients with chronic hepatitis B and advanced liver disease. N Engl J Med 2004;

351: 1521–31.

119 Lok AS, Zoulim F, Locarnini S, et al. Antiviral drug-resistant HBV: standardization of nomenclature and assays and recommendations for management. Hepatology 2007; 46: 254–65.

120 Liaw YF, Chien RN, Yeh CT, Tsai SL, Chu CM. Acute exacerbation and hepatitis B virus clearance after emergence of YMDD motif mutation during lamivudine therapy. Hepatology

1999; 30: 567–72.121 Dienstag JL, Goldin RD, Heathcote EJ, et al. Histological outcome during long-term lamivudine therapy. Gastroenterology 2003;

124: 105–17.

122 Di Marco V, Marzano A, Lampertico P, et al. Clinical outcome of HBeAg-negative chronic hepatitis B in relation to virological

response to lamivudine. Hepatology 2004; 40: 883–91.

123 Rapti I, Dimou E, Mitsoula P, Hadziyannis SJ. Adding-on versus switching-to adefovir therapy in lamivudine-resistant

HBeAg-negative chronic hepatitis B. Hepatology 2007; 45: 307–13. 124 Lampertico P, Viganò M, Manenti E, et al. Low resistance to adefovir combined with lamivudine: a 3-year study of 145 lamivudine-resistant hepatitis B patients. Gastroenterology 2007; 133: 1445–51.

125 Zoulim F, Perrillo R. Hepatitis B: re? ections on the current approach to antiviral therapy. J Hepatol 2008; 48 (suppl): 2–19.

126 Flink HJ, Hansen BE, Heathcote EJ, et al. Successful treatment with peginterferon alfa-2b of HBeAg-positive HBV non-responders to standard interferon or lamivudine. Am J Gastroenterol 2006;

101: 2523–29.

127 Lau G, Marcellin P, Peters M. Chronic hepatitis B: a global health problem requiring coherent worldwide treatment strategies.

Hepatol Int 2007; 1: 316–25.

128 Lai CL, Leung N, Teo EK, et al. A 1-year trial of telbivudine, lamivudine, and the combination in patients with hepatitis B

e antigen-positive chronic hepatitis B. Gastroenterology 2005;

129: 528–36.

129 Sung JJ, Lai JY, Zeuzem S, et al. Lamivudine compared with lamivudine and adefovir dipivoxil for the treatment of

HBeAg-positive chronic hepatitis B. J Hepatol 2008; 48: 728–35.

130 Hoofnagle JH, Doo E, Liang TJ, Fleischer R, Lok AS. Management of hepatitis B: summary of a clinical research workshop. Hepatology 2007; 45: 1056–75.

131 Lau GKK. Hepatitis B reactivation after chemotherapy: two decades of clinical research. Hepatol Int 2008; 2: 152–62.

蠕虫的行为特征描述和工作原理分析

蠕虫的行为特征描述和工作原理分析* 郑辉** 李冠一 涂菶生  (南开大学 20-333# ,天津,300071) E-mail: zhenghui@https://www.wendangku.net/doc/0d17560782.html, https://www.wendangku.net/doc/0d17560782.html,/students/doctor/spark/zhenghui.htm 摘要:本文详细讨论了计算机蠕虫和计算机病毒的异同,指出它们除了在复制和传染方面具有相似性之外,还有很多不同点,如蠕虫主要以计算机为攻击目标,病毒主 要以文件系统为攻击目标;蠕虫具有主动攻击特性,而病毒在传播时需要计算机 使用者的触发。通过详细区分它们的不同行为特征,确定了在计算机网络安全防 范体系中不同角色的责任。然后描述了蠕虫发展的历史,从中可以看到,蠕虫产 生了越来越大的危害。通过分析计算机蠕虫的工作原理、功能结构、实体组成, 提出了蠕虫的统一功能结构模型,并给出了有针对性的对计算机蠕虫攻击进行防 范的措施。最后本文分析了一些新的蠕虫技术发展趋势,指出计算机蠕虫本质上 是黑客入侵行为的自动化,更多的黑客技术将被用到蠕虫编写当中来,由此可以 看出对蠕虫攻击的防治和对抗将是长期而困难的工作。 关键词:蠕虫,计算机病毒,计算机网络安全,蠕虫定义,蠕虫历史,行为特征,功能模型 一、 引言 计算机病毒给世界范围内的计算机系统带来了不可估量的危害,给人们留下了深刻的印象。同时给人们一种误解,认为危害计算机的程序就是病毒。从而不加区分把计算机病毒(Virus)、计算机蠕虫(Worm)、木马程序(Trojan Horse)、后门程序(Backdoor)、逻辑炸弹(Logic Bomb)等等这些概念都称为计算机病毒。这种误解不仅体现在媒体的宣传中,而且体现在病毒技术研究人员的文章[1][2]中,反病毒厂商对产品的介绍说明中,甚至政府部门制定的法律法规[3]当中。这种相近概念上的误解导致不能有效的给出针对不同类型危害计算机安全的程序的有效防治措施,也为整体的计算机安全防护带来了一定困难。另外,同一程序的不同分类也不利于对其性质的进一步研究和分析。 计算机病毒和计算机蠕虫在传播、复制等特性上非常相似,尤其容易造成人们的误解。导致误解的原因有很多,一方面由于反病毒技术人员自身知识的限制,无法对这两种程序进行清楚细致的区分;另一方面虽然病毒的命名有一定的规范[4][5],但病毒编写者在为自己的程序起名字的时候并不一定遵循这个规范,利用网络功能如电子邮件进行传播的病毒常常被病毒编写者冠以蠕虫的名字,这也给人们带来一些误导。为了照顾这种病毒的命名,曾有文献试图将蠕虫细分为活动蠕虫和邮件蠕虫[6]。由于用计算机病毒这个称谓不能涵盖所有危害计算机的程序的特征,而且容易产生误导,所以有的文献采用了含义更广泛的称谓“恶意软件”(malware)[7]来统一称呼它们。从蠕虫产生开始,十几年来,很多研究人员对蠕 *高等学校博士点学科点专项科研基金资助课题(编号:2000005516)。 **作者简介:郑辉(1972~),男,吉林伊通人,博士研究生,主要研究领域为网络与信息安全。李冠一(1978~),女,辽宁鞍山人,硕士研究生,主要研究领域为模式识别,计算机视觉与图像处理等。涂奉生(1937~),江西南昌人,博士生导师,主要研究领域为CIMS, DEDS理论,制造系统及通讯理论。

全国计算机统考押题计算机安全

单选题 1、下面,关于信息泄露,说法正确的是____。 A.信息的泄露只在信息的传输过程中发生 B.信息的泄露只在信息的存储过程中发生 C.信息的泄露在信息的传输和存储过程中都会发生 D.当信息加密后,在信息的传输和存储过程中就不再会发生信息泄露答案:C 2、下面,不是360安全卫士的重要功能的是______。 A.系统修复 B.木马防火墙 C.软件管家 D.系统升级 答案:D 3、计算机安全属性中的可用性是指_______。 A.得到授权的实体在需要时能访问资源和得到服务 B.网络速度要达到一定的要求 C.软件必须功能完整 D.数据库的数据必须可靠 答案:A 4、下面说法正确的是____。 A.信息的泄露在信息的传输和存储过程中都会发生 B.信息的泄露在信息的传输和存储过程中都不会发生 C.信息的泄露只在信息的传输过程中发生 D.信息的泄露只在信息的存储过程中发生 答案:A 5、一个未经授权的用户访问了某种信息,则破坏了信息的_____。 A.不可抵赖性 B.完整性 C.可控性 D.可用性 答案:C 6、下面,不能有效预防计算机病毒攻击的做法是______。 A.定时开关计算机 B.定期备份重要数据 C.定期用防病毒软件杀毒 D.定期升级防病毒软件 答案:A 7、下面,不是信息安全所包含的内容是______。 A.要保障信息不会被非法阅读 B.要保障信息不会被非法修改 C.要保障信息不会被非法泄露 D.要保障信息不会被非法使用

答案:D 8、下面能有效预防计算机病毒的方法是______。 A.尽可能地多做磁盘碎片整理 B.及时升级防病毒软件 C.尽可能地多做磁盘清理 D.把重要文件压缩存放 答案:B 9、下列不属于可用性服务的技术是_____。 A.备份 B.身份鉴别 C.在线恢复 D.灾难恢复 答案:B 10、下面并不能有效预防病毒的方法是_______。 A.尽量不使用来路不明的U盘 B.使用别人的U盘时,先将该U盘设置为只读属性 C.使用别人的U盘时,先将该U盘用防病毒软件杀毒 D.别人要拷贝自己的U盘上的东西时,先将自己的U盘设置为只读属性答案:B 11、下面关于系统更新说法正确的是______。 A.其所以系统需要更新是因为操作系统存在着漏洞 B.系统更新后,可以不再受病毒的攻击 C.即使计算机无法上网,系统更新也会自动进行 D.所有的更新应及时下载安装,否则系统会很快崩溃 答案:A 12、计算机安全属性中的保密性是指_______。 A.用户的身份要保密 B.用户使用信息的时间要保密 C.用户使用的主机号要保密 D.确保信息不暴露给未经授权的实体 答案:D 13、在以下人为的恶意攻击行为中,属于主动攻击的是________。 A.截获数据包 B.数据窃听 C.数据流分析 D.身份假冒 答案:D 14、下面,说法正确的是_______。 A.计算机安全既包括硬件资源的安全、软件资源的安全以及系统安全 B.计算机安全包括除上述所说的内容外,还包括计算机工作人员的人身安全 C.计算机安全技术对安装了盗版软件的计算机无能为力 D.对未联网的计算机而言,计算机安全技术就是做好防病毒工作 答案:A 15、关于防火墙的功能,说法错误的是_____。

病毒感染细胞实验整体流程及原理

病毒感染细胞实验整体 流程及原理 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

病毒感染细胞实验整体流程及原理 目的基因不能直接整合到大多数真核细胞,常用的手段是将目的基因包装成病毒来感染细胞,从而得到表达满足实验需求。 1、病毒的种类 病毒有很多种,常见的有慢病毒和腺病毒 慢病毒 慢病毒(Lentivirus)是逆转录病毒的一种。构建的siRNA / miRNA慢病毒载体,与化学合成的siRNA 和基于瞬时表达载体构建的普通 siRNA 载体相比,一方面可以扩增替代瞬时表达载体使用,另一方面,Lentivirus-siRNA 克隆经过慢病毒包装系统包装后,可用于感染依靠传统转染试剂难于转染的细胞系如原代细胞、悬浮细胞和处于非分裂状态的细胞,并且在感染后可以整合到受感染细胞的基因组,进行长时间的稳定表达。 1)直接包装成为假病毒颗粒,对分裂和非分裂细胞均有感染作用,适合 RNAi 研究和体内实验中难于转染的细胞 (比如神经元细胞、干细胞或其它原代细胞)。 2)可以通过简单方式,在短时间内获得稳定表达特定基因的多种细胞株。 3)可用于基因敲除、基因治疗和转基因动物研究。 4)无需任何转染试剂,操作简便。 5)可以根据客户需要制备多种标记。 1)含有目的基因的慢病毒 RNAi 干扰载体的构建和质粒纯化提取。 2)慢病毒载体,包装系统共转染病毒包装细胞293T等。 3)培养 48hrs - 72hrs 左右,收集含有病毒的上清培养液。 4)病毒的纯化和浓缩。 5)分装、- 80 ℃保存。 6)滴度测定目的基因检定,并出具检测报告。 、腺病毒 原理

蠕虫病毒的特征与防治.doc

研究生课程论文 蠕虫病毒的特征与防治 摘要 随着网络的发展,以网络传播的蠕虫病毒利用网络全球互联的优势和计算机系统及网络系统安全性上的漏洞,己经成为计算机系统安全的一大的威胁。采用网络传播的蠕虫病毒与传统的计算机病毒在很多方面都有许多不同的新特点。本文对蠕虫病毒的特征和防御策略进行了研究,透彻分析了几个流行的蠕虫病毒的本质特征和传播手段,并提出了防治未知病毒以及变形病毒的解决方案与虚拟机相结合的基于攻击行为的着色判决PN机蠕虫检测方法。 关键词: 蠕虫,病毒特征,病毒防治

1引言 “蠕虫”这个生物学名词于1982年由Xerox PARC的John F. Shoeh等人最早引入计算机领域,并给出了计算机蠕虫的两个最基本的特征:“可以从一台计算机移动到另一台计算机”和“可以自我复制”。最初,他们编写蠕虫的目的是做分布式计算的模型试验。1988年Morris蠕虫爆发后,Eugene H. Spafford为了区分蠕虫和病毒,给出了蠕虫的技术角度的定义。“计算机蠕虫可以独立运行,并能把自身的一个包含所有功能的版本传播到另外的计算机上。”计算机蠕虫和计算机病毒都具有传染性和复制功能,这两个主要特性上的一致,导致二者之间是非常难区分的。近年来,越来越多的病毒采取了蠕虫技术来达到其在网络上迅速感染的目的。因而,“蠕虫”本身只是“计算机病毒”利用的一种技术手段[1]。 2蠕虫病毒的特征及传播 1、一般特征: (1)独立个体,单独运行; (2)大部分利用操作系统和应用程序的漏洞主动进行攻击; (3)传播方式多样; (4)造成网络拥塞,消耗系统资源; (5)制作技术与传统的病毒不同,与黑客技术相结合。 2、病毒与蠕虫的区别 (l)存在形式上病毒寄生在某个文件上,而蠕虫是作为独立的个体而存在;

计算机一级考试理论试题第部分计算机安全与职业道德

第9部分计算机安全与职业道德判断题 (1) .[T]宏病毒可感染PowerPoint或Excel文件。 (2) .[T]计算机病毒在某些条件下被激活之后,才开始起干扰破坏作用。 (3) .[T]对重要程序或数据要经常备份,以便感染上病毒后能够得到恢复。 (4) .[T]当发现病毒时,它们往往已经对计算机系统造成了不同程度的破坏,即使清除了病毒,受到破坏的内容有时也很难恢复。因此,对计算机病毒必须以预防为主。 (5) .[F]计算机病毒只会破坏软盘上的数据和文件。 (6) .[T]计算机病毒也是一种程序,它能在某些条件下激活并起干扰破坏作用。 (7) .[F]计算机只要安装了防毒、杀毒软件,上网浏览就不会感染病毒。 (8) .[F]若一台微机感染了病毒,只要删除所有带毒文件,就能消除所有病毒.。 (9) .[F]若一张软盘上没有可执行文件,则不会感染病毒。 (10) .[F]CIH病毒能够破坏任何计算机主板上的BIOS系统程序。 (11) .[T]开机时应先开显示器后开主机电源,关机时应先关主机后关显示器电源。 (12) .[T]冷启动和热启动的区别是主机是否重新启动电源以及是否对系统进行自检。 (13) .[T]1991年我国首次颁布了《计算机软件保护条例》。 (14) .[T]由于盗版软件的泛滥,使我国的软件产业受到很大的损害。 (15) .[T]计算机职业道德包括不应该复制或利用没有购买的软件,不应该在未经他人许可的情况下使用他人的计算机资源。 (16) .[T]远程医疗、远程教育、虚拟现实技术、电子商务、计算机协同工作等是信息应用的新趋势。 (17) .[T]IT行业有一条法则恰如其分的表达了“计算机功能、性能提高”的发展趋势。这就是美国Intel 公司的创始人摩尔提出的“摩尔法则”。 (18) .[T]根据计算机领域十分着名的摩尔法则,芯片上能够集成的晶体管数量每18~月将增加1倍。 第9部分计算机安全与职业道德单选 (1) .[C]关于计算机病毒,正确的说法是______。 (A) 计算机病毒可以烧毁计算机的电子元件 (B) 计算机病毒是一种传染力极强的生物细菌 (C) 计算机病毒是一种人为特制的具有破坏性的程序 (D) 计算机病毒一旦产生,便无法清除 (2) .[D]防止计算机中信息被窃取的手段不包括______。 (A) 用户识别 (B) 权限控制 (C) 数据加密 (D) 病毒控制 (3) .[D]计算机感染病毒后,症状可能有______。 (A) 计算机运行速度变慢 (B) 文件长度变长 (C) 不能执行某些文件 (D) 以上都对 (4) .[C]防止软磁盘感染计算机病毒的有效方法是______。 (A) 保持计算机机房清洁 (B) 在软磁盘表面擦上酒精 (C) 使软磁盘处于写保护状态 (D) 软磁盘贴上标签,写好使用日期

病毒免疫逃逸和抗病毒应答新机制

病毒免疫逃逸和抗病毒应答新机制 在流感病毒感染中,有细胞毒性潜力的CD4~+T细胞在感染部位分化成熟。这些有细胞毒性潜力的CD4~+T细胞的分化依赖于STAT2依赖性的I型IFNs信号及IL-2/IL-2Rα信号通路,导致转录因子T-bet和Blimp-1的表达。 另外,我们发现在CD4~+T细胞中,Blimp-1能够促进T-bet结合到溶细胞基因的启动子区,而T-bet的结合对于在体外和体内诱导的有细胞毒性潜力的 CD4~+T细胞发挥其细胞毒性功能是必须的。我们的结果揭示了在急性呼吸道病毒感染中调节细胞毒CD4~+T细胞分化的分子机制(1)。 本研究还从病毒特异性体液和细胞免疫水平两个方面对单价pH1N1疫苗接种者、pH1N1流感感染病例、流感患者密切接触者、健康对照4组人群进行了比较,pH1N1流感病毒感染诱发的特异性细胞免疫和体液免疫应答水平及抗体中和能力均高于疫苗接种者。疫苗接种组在诱导产生病毒特异性IgG方面没有比健康人群表现出特别强的优势,但有较高的特异性IgG与血凝抑制水平,和病毒感染后的免疫应答反应相比,其不能诱导产生有效的细胞免疫应答。 2009年甲型H1N1流感流行一年后约70%的健康人群发生了隐性或轻型 pH1N1流感感染(101)。B7-H1是B7家族中一个重要的共抑制分子,能诱导肝细胞内CD8+T细胞的凋亡。 我们发现IFN-γ和TNF-α能协同诱导肝细胞表达B7-H1。二者中,IFN-γ起主要作用,TNF-α起辅助作用,IFN-γ能单独诱导肝细胞表达B7-H1,TNF-α不能,二者在诱导其各自的转录因子STAT1和NF-κB活性上没有协同作用,但STAT1 和NF-κB的激活又是IFN-γ和TNF-α协同诱导肝细胞表达B7-H1所必需的。 在肝细胞中TNF-α和IFN-γ在诱导IRF-1表达上具有协同性,NF-κB和

[VIP专享]病毒感染细胞实验整体流程及原理

病毒感染细胞实验整体流程及原理 目的基因不能直接整合到大多数真核细胞,常用的手段是将目的基因包装成病毒来感染细胞,从而得到表达满足实验需求。 1、病毒的种类 病毒有很多种,常见的有慢病毒和腺病毒 1.1慢病毒 1.1.1原理 慢病毒(Lentivirus)是逆转录病毒的一种。构建的siRNA / miRNA慢病毒载体,与化学合成的siRNA 和基于瞬时表达载体构建的普通siRNA 载体相比,一方面可以扩增替代瞬时表达载体使用,另一方面,Lentivirus-siRNA 克隆经过慢病毒包装系统包装后,可用于感染依靠传统转染试剂难于转染的细胞系如原代细胞、悬浮细胞和处于非分裂状态的细胞,并且在感染后可以整合到受感染细胞的基因组,进行长时间的稳定表达。 1.1.2特点 1)直接包装成为假病毒颗粒,对分裂和非分裂细胞均有感染作用,适合RNAi 研究和体内实验中难于转染的细胞(比如神经元细胞、干细胞或其它原代细胞)。 2)可以通过简单方式,在短时间内获得稳定表达特定基因的多种细胞株。 3)可用于基因敲除、基因治疗和转基因动物研究。 4)无需任何转染试剂,操作简便。 5)可以根据客户需要制备多种标记。 1.1.3慢病毒包装简要流程: 1)含有目的基因的慢病毒RNAi 干扰载体的构建和质粒纯化提取。 2)慢病毒载体,包装系统共转染病毒包装细胞293T等。 3)培养48hrs - 72hrs 左右,收集含有病毒的上清培养液。 4)病毒的纯化和浓缩。 5)分装、- 80 ℃保存。 6)滴度测定目的基因检定,并出具检测报告。 1.2、腺病毒

1.2.1原理 腺病毒(Adenovirus,Ad)是一种无包膜的线状双链DNA病毒,其复制不依赖于宿主细胞的分裂。有近50个血清型,大多数Ad载体都是基于血清型2和5,通过转基因的方式取代E1和E3基因,降低病毒的复制能力。这些重组病毒仅在高水平表达E1和E3基因的细胞中复制,因此是一种适用于治疗的高效控制系统。 1.2.2特点 1)几乎可以感染所有类型的细胞 2)可以获得复制缺陷型(E1 和E3 缺失) 的腺病毒 3)病毒滴度高,产生病毒经过浓缩后可以达到1012 PFU/mL,能有效的进行增殖。 4)腺病毒载体感染宿主的范围比较广,制备容易,操作简单. 5)感染细胞时,不整合到染色体中,不存在激活致癌基因或插入突变等危险,生物安全性高。 1.2.3腺病毒包装简要流程 1)构建表达siRNA/miRNA 的腺病毒载体 2)采用PacI 消化纯化的质粒。 3)消化好的腺病毒表达载体转染293A 细胞,收获细胞以制备病毒粗提液。 4)将病毒粗提液感染293A 细胞以扩增病毒。 5)分装,-80℃保存。 1.3、慢病毒和腺病毒的比较 慢病毒载体系统和腺病毒载体系统比较 病毒表达系统慢病毒表达系统(Lentivirus)腺病毒表达系统(Adenovirus)病毒基因组RNA病毒双链DNA病毒复制自主复制自主复制 是否整合病毒基因组整合于宿主基因组,长时 间、稳定表达外源基因病毒基因组游离于宿主基因组外,瞬 时表达外源基因 感染细胞类型感染分裂和不分裂细胞,适用于难转 染的原代细胞(如神经细胞)及体内 实验 感染分裂和不分裂细胞表达风度中水平表达高水平表达

局域网蠕虫病毒的传播方式和保护方法

局域网蠕虫病毒的传播方式和保护方法 近来,威金(w32.looked系列)、熊猫烧香(w32.fujacks系列)等局域网蠕虫病毒大肆流行,这种病毒具有传播速度快,覆盖面广,破坏性大,自我恢复功能强等特点,并且还会自动连接到Internet升级变种并下载其它木马和恶意软件,给广大计算机用户带来了很大的麻烦。良好的基本安全习惯配合具有最新病毒定义和扫描引擎的杀毒软件,能够最大限度地保护您的电脑不受此类蠕虫病毒的影响,以及重复感染。了解蠕虫病毒的在局域网内传播机制,能让我们采用更有针对性的防护,下面就介绍这种局域网蠕虫的传播机制和保护方法:局域网蠕虫的传播安先后顺序分为扫描、攻击、复制三个过程。假设您局域网中有一台电脑感染了蠕虫,而这台脑又没有安装杀毒软件或者杀毒软件的病毒定义比较旧,没有办法检测出这个蠕虫病毒,那么它就会成为一个局域网内的攻击源。 第一步:扫描的过程就是用扫描器扫描主机,探测主机的操作系统类型、版本,主机名,用户名,开放的端口,开放的服务,开放的服务器软件版本等。这一过程中,扫描的范围一般是随机选取某一段IP地址,然后对这一地址段上的主机扫描。但是有些蠕虫会不断的重复扫描过程,就会造成发送大量的数据包,造成网络拥塞,影响网络通信速度等危害。但是这样,管理员也会很快找出感染源所在的地址,因此有些蠕虫会有意的减少数据发送量,包括不重复扫描几次以上,随机选择扫描时间段,随机选择小段IP地址段等等。根据扫描返回的结果确定可以攻击的电脑。

第二步:攻击的过程一般分为两种类型。一种是利用漏洞的攻击,如果扫描返回的操作系统信息或者某些软件的信息是具有漏洞的版本,那么就可以直接用对该漏洞的攻击代码获得相应的权限。例如利用windows的MS04-011漏洞的震荡波(w32.sasser系列)病毒,利用MS06-040漏洞的魔鬼波 (w32.ircbot系列)等。另外一种就是基于文件共享和弱密钥的功击,这种攻击需要根据搜集的信息试探猜测用户密码,一般的蠕虫都有试探空密码,简单密码,与已知密码相同密码等机制。猜出正确的密码后也就有了对远端主机的控制权。威金、熊猫烧香等病毒都基于这种攻击方式。 第三步:复制的实际上就是一个文件传输的过程,就是用相应的文件传输的协议和端口进行网络传输。 为了防止您的电脑受到局域网蠕虫病毒的攻击而感染此类病毒,赛门铁克现建议用户采取以下基本安全措施:1)开启个人防火墙:无论是SCS的防火墙,还是其它安全厂商的个人防火墙,还是windows系统自带的防火 墙,都可以对扫描、攻击、复制三个过程起到保护的 作用。例如,在一般的默认规则下,供击者扫描后不 会得到返回结果;攻击代码不会到达被防火墙保护的 电脑;无法向被防火墙保护的电脑复制病毒文件等。 如果管理员根据公司的应用情况和针对某类病毒,设 定诸如一些协议、端口、程序、入侵检测等的防护规 则,其防护效果就会更佳。 2)尽量关闭不需要的文件共享。除了用户自行设定的共享文件windows操作系统一般都有C$, D$,ADMIN$, IPC$等默认的共享,而一般情况下普通用户不一定需

10计算机病毒(答案)

计算机病毒 1.下面哪个渠道不是计算机病毒传染的渠道? A: 硬盘 B: 计算机网络 C: 操作员身体感冒 D: 光盘 2.下面哪种恶意程序对网络威胁不大? A: 计算机病毒 B: 蠕虫病毒 C: 特洛伊木马 D: 死循环脚本 3.计算机病毒的主要危害有 A: 干扰计算机的正常运行 B: 影响操作者的健康 C: 损坏计算机的外观 D: 破坏计算机的硬件 4.计算机病毒是一种______。 A: 微生物感染 B: 化学感染 C: 特制的具有破坏性的程序 D: 幻觉 5.计算机病毒的特点具有___。 A: 传播性,潜伏性,破坏性 B: 传播性,破坏性,易读性 C: 潜伏性,破坏性,易读性 D: 传播性,潜伏性,安全性 6.计算机病毒的主要特点是 A: 人为制造,手段隐蔽 B: 破坏性和传染性 C: 可以长期潜伏,不易发现 D: 危害严重,影响面广 7.计算机病毒是一种 A: 特殊的计算机部件 B: 游戏软件 C: 人为编制的特殊程序 D: 能传染的生物病毒 8.下面哪种属性不属于计算机病毒? A: 破坏性 B: 顽固性 C: 感染性 D: 隐蔽性 9.下面哪种功能不是放火墙必须具有的功能?

A: 抵挡网络入侵和攻击 B: 提供灵活的访问控制 C: 防止信息泄露 D: 自动计算 10.计算机病毒是一种___。 A: 幻觉 B: 程序 C: 生物体 D: 化学物 11.下列叙述中正确的是 A: 计算机病毒只传染给可执行文件 B: 计算机软件是指存储在软盘中的程序 C: 计算机每次启动的过程之所以相同,是因为RAM 中的所有信息在关机后不会丢失 D: 硬盘虽然安装在主机箱内,但它属于外存 12.关于计算机病毒,下列说法正确的是 A: 计算机病毒是一种程序,它在一定条件下被激活,只对数据起破坏作用,没有传染性B: 计算机病毒是一种数据,它在一定条件下被激活,起破坏作用,并没有传染性 C: 计算机病毒是一种程序,它在一定条件下被激活,起破坏作用,并有极强的传染性,但无自我复制能力 D: 计算机病毒是一种程序,它在一定条件下被激活,破坏计算机正常工作,并有极强的传染性 13.目前最好的防病毒软件的作用是 A: 检查计算机是否染有病毒,消除已感染的任何病毒 B: 杜绝病毒对计算机的感染 C: 查出计算机已感染的任何病毒,消除其中的一部分 D: 检查计算机是否染有病毒,消除已感染的部分病毒 14.下列说法中错误的是___。 A: 计算机病毒是一种程序 B: 计算机病毒具有潜伏性 C: 计算机病毒是通过运行外来程序传染的 D: 用防病毒卡和查病毒软件能确保微机不受病毒危害 15.关于计算机病毒的传播途径,不正确的说法是___。 A: 通过软件的复制 B: 通过共用软盘 C: 通过共同存放软盘 D: 通过借用他人的软盘 16.防火墙技术主要用来 A: 减少自然灾害对计算机硬件的破坏 B: 监视或拒绝应用层的通信业务 C: 减少自然灾害对计算机资源的破坏 D: 减少外界环境对计算机系统的不良影响 17.宏病毒是随着Office 软件的广泛使用,有人利用宏语言编制的一种寄生于_____的宏中 的计算机病毒。 A: 应用程序

关于慢病毒感染的相关知识总结..

慢病毒使用操作手册 一、慢病毒的储存与稀释: 1. 病毒的储存:收到病毒液后在很短时间内即使用慢病毒进行实验,可以将病毒暂时放置于4 ℃保存;如需长期保存请放置于-80℃(病毒置于冻存管,并使用封口膜封口) ①病毒可以存放于-80℃6个月以上;但如果病毒储存时间超过6个月,建议在使用前需要重新滴定病毒滴度 ②反复冻融会降低病毒滴度:每次冻融会降低病毒滴度10%;因此在病毒使用过程中应仅尽量避免反复冻融,为避免反复冻融,建议收到病毒后按照每次的使用量进行分装。 2. 病毒的稀释:如果需要稀释病毒,请将病毒取出置于冰浴融解后,使用培养目的细胞用PBS或无血清培养基(含血清或含双抗不影响病毒感染)。混匀分装后4℃保存(请尽量在三天内用完) 分装后使用。 二、慢病毒用于体外(In Vitro)实验: 感染培养原代细胞和建系细胞。慢病毒对各种细胞和组织的亲嗜性不同,在使用慢病毒之前可以通过查阅相关文献,了解慢病毒对您的目的细胞的亲嗜性,感染复数(MOI 值)以及在体(In Vivo)注射所需要的病毒量。如果没有相关文献支持,可以通过感染预实验得到合适的感染复数(MOI 值)(使用24孔板检测病毒对目的细胞的亲嗜性)。 慢病毒感染目的细胞预实验 1. 慢病毒感染目的细胞预实验注意事项: ①测定慢病毒对目的细胞的亲嗜性时,需要同时设置对慢病毒亲嗜性较高的细胞(HEK293T,Hela)作为平行实验的对照细胞。 ②在进行慢病毒感染实验时,可以用完全培养基(培养目的细胞用)稀释;理论上,含有血清,双抗或者其他营养因子的完全培养基不影响慢病毒的感染效率。 ③一般慢病毒单位为TU/ml,即每毫升中含有具有生物活性的病毒颗粒数。如:病毒滴度为>1X108 TU/ml 即每毫升病毒液中至少含有1X108个具有生物活性的慢病毒颗粒。 2. 以24孔培养板为例,进行目的细胞和HEK293T 细胞的感染预实验实验前按照不同的MOI设置不同的感染孔,并根据MOI和细胞数量计算所需要的病毒量,如有必要可以使用PBS溶液或者无血清培养基稀释病毒原液。 第一天,准备细胞:在24孔培养板接种若干孔,每个孔内接种3~5X104个目的细胞,铺板时细胞的融合率为50%左右,每孔培养基体积为100 μl;进行病毒感染时细胞的融合度约为70%左右。 第二天,准备病毒:取出4℃保存的病毒,使用台式离心机离心20 秒(使病毒完全悬于离心管底部即可);如果是冻存在-80℃的病毒需要先在冰上融化后使用。亦可以根据实验室的实际情况将按照MOI准确计算好的慢病毒稀释到培养基中,并尽可能保证所获得的含

计算机病毒的主要危害

计算机病毒的主要危害有: 1.病毒激发对计算机数据信息的直接破坏作用大部分病毒在激发的时候直接破坏计算机的重要信息数据,所利用的手段有格式化磁盘、改写文件分配表和目录区、删除重要文件或者用无意义的“垃圾”数据改写文件、破坏CMO5设置等。磁盘杀手病毒(D1SK KILLER),内含计数器,在硬盘染毒后累计开机时间48小时内激发,激发的时候屏幕上显示“Warning!! Don'tturn off power or remove diskette while Disk Killer is Prosessing!” (警告!D1SK KILLER ll1在工作,不要关闭电源或取出磁盘),改写硬盘数据。被D1SK KILLER破坏的硬盘可以用杀毒软件修复,不要轻易放弃。 2.占用磁盘空间和对信息的破坏寄生在磁盘上的病毒总要非法占用一部分磁盘空间。引导型病毒的一般侵占方式是由病毒本身占据磁盘引导扇区,而把原来的引导区转移到其他扇区,也就是引导型病毒要覆盖一个磁盘扇区。被覆盖的扇区数据永久性丢失,无法恢复。文件型病毒利用一些DOS功能进行传染,这些DOS功能能够检测出磁盘的未用空间,把病毒的传染部分写到磁盘的未用部位去。所以在传染过程中一般不破坏磁盘上的原有数据,但非法侵占了磁盘空间。一些文件型病毒传染速度很快,在短时间内感染大量文件,每个文件都不同程度地加长了,就造成磁盘空间的严重浪费。 3.抢占系统资源除VIENNA、CASPER等少数病毒外,其他大多数病毒在动态下都是常驻内存的,这就必然抢占一部分系统资源。病毒所占用的基本内存长度大致与病毒本身长度相当。病毒抢占内存,导致内存减少,一部分软件不能运行。除占用内存外,病毒还抢占中断,干扰系统运行。计算机操作系统的很多功能是通过中断调用技术来实现的。病毒为了传染激发,总是修改一些有关的中断地址,在正常中断过程中加入病毒的“私货”,从而干扰了系统的正常运行。 4.影响计算机运行速度病毒进驻内存后不但干扰系统运行,还影响计算机速度,主要表现在: (1)病毒为了判断传染激发条件,总要对计算机的工作状态进行监视,这相对于计算机的正常运行状态既多余又有害。 (2)有些病毒为了保护自己,不但对磁盘上的静态病毒加密,而且进驻内存后的动态病毒也处在加密状态,CPU 每次寻址到病毒处时要运行一段解密程序把加密的病毒解密成合法的CPU指令再执行;而病毒运行结束时再用一段程序对病毒重新加密。这样CPU额外执行数千条以至上万条指令。 (3)病毒在进行传染时同样要插入非法的额外操作,特别是传染软盘时不但计算机速度明显变慢,而且软盘正常的读写顺序被打乱,发出刺耳的噪声。 5.计算机病毒错误与不可预见的危害计算机病毒与其他计算机软件的一大差别是病毒的无责任性。编制一个完善的计算机软件需要耗费大量的人力、物力,经过长时间调试完善,软件才能推出。但在病毒编制者看来既没有必要这样

免疫学 病毒感染与免疫机制

现代免疫学 1.病毒感染之后如何诱发机体产生免疫应答并产生免疫保护作用? 2.同一种病毒再次感染机体,发生的免疫应答有何变化? 病毒是除了类病毒外最简单的生命有机体,由核酸和包裹核酸的蛋白质衣壳组成。病毒完全依靠宿主细胞的生物合成系统来复制病毒蛋白及其遗传物质并进行病毒体组装。他们利用细胞表面受体感染细胞,其中许多与免疫系统有关。病毒成功感染宿主细胞后,其遗传物质暴露于胞质内,并开始指导病毒大分子的合成以及病毒体的组装。少数病毒如CMV能与宿主细胞和平共处,长期寄生,称之为非细胞毒性病毒。多数病毒是细胞毒性病毒,其在胞内的繁殖和寄生很快导致宿主细胞的死亡。 机体针对病毒的防御在3个层次上展开,1)抑制病毒在宿主细胞内的复制与繁殖——IFN和TNF等细胞因子;2)杀伤被病毒感染的宿主细胞——NK细胞和CTL;3)阻断病毒感染细胞的能力——中和抗体。 1.针对病毒感染的固有免疫应答: 在针对病毒入侵的强有力的特有免疫建立之前,固有免疫应答是机体抵御病毒入侵的第一道防线。主要是通过I型干扰素对病毒的抑制和自然杀伤细胞对感染细胞的杀伤来实现的。病毒通过皮肤或黏膜表面进入机体后遇到NK细胞,后者通过细胞裂解作用而将被病毒感染的细胞清除。这是在特异性免疫应答尚未建立的病毒感染早期机体抗病毒感染的主要方式。 病毒双链RNA可以刺激受感染组织细胞、巨噬细胞以及单核细胞等分泌产生IFN-α和β等I型干扰素,以诱导临近细胞进入抗病毒状态。【图:干扰素的抗感染作用:细胞被病毒感染后表达并分泌干扰素-左,干扰素作用与临近细胞,使其进入抗病毒状态-右】干扰素通过与核细胞表面的I型干扰素受体结合,促使细胞产生可抑制病毒复制的酶以达到对病毒的抑制,从而抗病毒感染。I型干扰素还能激活NK细胞,使其更有效地杀伤被感染的宿主细胞,清除病毒赖以藏身和复制的“工厂”。NK细胞大量分泌IFN-γ,发挥免疫调节作用。巨噬细胞受到病毒和IFN-γ的刺激后被活化,分泌IL-1 IL-6 IL-8 IFN-γ和IL-12等细胞因子和趋化因子,促进毛细血管内皮细胞上调粘附分子,以便于中性粒细胞和单核细胞浸润感染局部。 固有免疫对于防控病毒的入侵和感染有着重要的作用,然而病毒一旦已经完成入侵并造成感染,特异性免疫应答,特别是T细胞介导的特异性免疫将发挥消除病毒感染的决定性作用。 2.针对病毒感染的适应性免疫应答: 病毒可借助其表面的受体分子和宿主细胞表面相应分子结合从而感染细胞,机体针对入侵病毒表面分子产生的特异性抗体在防治病毒感染的体液免疫中发挥重要的作用,这些抗体可作用于感染早期体液中的病毒和感染细胞溶解后释放的病毒。 抗体的抗病毒效应体现在以下几个方面:1)中和病毒感染力:抗体与病毒表面蛋白质的结合可以阻断其与细胞表面受体的接触或者干扰病毒向细胞内的侵入,黏膜表面的IgA分子在这方面的作用尤为重要;2)致敏病毒颗粒:抗体结合病毒之后通过激活补体导致病毒颗粒直接被裂解,在此过程中产生的C3a和C5a等补体片段趋化白细胞;3)介导抗体依赖的细胞毒作用——ADCC:有些病毒膜蛋白能够表达于被感染宿主细胞的表面。病毒特异性抗体通过对这些病毒蛋白的识别标记被感染细胞,诱发NK细胞和巨噬细胞对这些细胞的杀伤。

蠕虫和病毒传播处置预案

XX公司 蠕虫和病毒传播处置预案 2019年12月

文档控制 更改记录

一、总则 第一条目的 本预案为蠕虫和病毒攻击和传播的安全事件处理专项预案,其目的主要是为了进一步规范对蠕虫和病毒攻击和传播安全事件的处理方法和处理程序,提高对此类安全事件的反应速度。 第二条基本原则 1.防范为主,加强监控。通过加强信息安全防范意识,提高网络系统的安全性。完善信息安全事件的日常监测、发现机制,及时采取有效的应对措施,迅速控制事件影响范围,力争将损失降到最低程度,从而缓解或抵御病毒爆发事件的安全威胁。 2.以人为本,协同作战。把保障公共利益以及本单位和其他组织的合法权益的安全作为首要任务。相关部门协同配合、具体实施,及时获取充分而准确的信息。通过跟踪研判,果断决策,迅速处置,以最大程度地减少危害和影响。 3.规范操作,常备不懈。加强防病毒技术储备,规范应急处置措施与操作流程,确保应急预案切实有效,实现信息安全突发事件应急处置的科学化、程序化与规范化。 第三条适用范围 本预案适用于本单位中遇到病毒攻击情况下的应急响应工作。

二、术语与定义 第四条计算机病毒 计算机病毒(Computer Virus)是编制者在计算机程序中插入的破坏计算机功能或者数据的代码,能影响计算机使用,能自我复制的一组计算机指令或者程序代码。计算机病毒有独特的复制能力,能够快速蔓延,并难以根除。 第五条蠕虫病毒 蠕虫病毒(worm)和一般的病毒有着很大的区别。对于蠕虫,现在还没有一个成套的理论体系。一般认为:蠕虫是一种通过网络传播的恶性病毒,它具有病毒的一些共性,如传播性、隐蔽性、破坏性等等,同时具有自己的一些特征,如不利用文件寄生(有的只存在于内存中),对网络造成拒绝服务,以及和黑客技术相结合等。在产生的破坏性上,蠕虫病毒也不是普通病毒所能比拟的,网络快速发展使得蠕虫可以在短短的时间内蔓延整个网络,造成整个网络瘫痪! 三、病毒分析阶段 第六条事件分析 (1)使用netstat –ano命令查看操作系统是否存在异常连接。 (2)查看windows、recycle目录下是否存在异常文件。 (3)通过Pchunter等进程查看工具,查看是否存在异常进程在运行,定位至程序存放目录。 (4)分析病毒传播机制,如通过文件共享传播、通过邮件或文

计算机病毒与防护作业题

1.描述计算机病毒的概念和特征 答:在《计算机信息系统安全保护条例》中明确定义,病毒指“编制者在计算机程序中插入的破坏计算机功能或者破坏数据,影响计算机使用并且能够自我复制的一组计算机指令或者程序代码”。其特征有:1、可执行性;2. 寄生性;3. 诱惑欺骗性;4. 非授权性;5. 针对性;6. 衍生性;7. 传染性;8. 潜伏性;9. 可触发性;10. 隐蔽性;11. 破坏性; 12. 持久性;13. 不可预见性 2.叙述计算机病毒的四大功能模块及其作用。 答:1、感染标志;2、引导模块;3感染模块;4、破坏表现模块 引导模块是感染、破坏表现模块的基础; 感染模块是病毒的核心; 破坏表现模块依赖感染模块扩大攻击的范围。 3.描述宏病毒、脚本病毒、木马和蠕虫的特征,及其防范策略。答:宏病毒是使用宏语言编写的恶意程序。或者说是利用宏语言编写的一个或多个具有病毒特点的宏的集合。 1、office文档大量使用,传播快; 2、宏语言编写方便,变种多; 3、宏语言可以调用系统函数,破坏性大; 4、Office文档可以再不同平台使用,多平台感染。 1、在Normal模板发现有AutoOpen或Document_Open、Document_Close 等自动宏,而自己又没有加载,这就有可能有病毒了。 2、禁止所有自动执行的宏。

3、提高office软件自身对宏的审核与限制。如:Word菜单\工具\宏\安全性\有两个选项:安全级应为“中及其以上”, 4、可靠发行商应不信任对VB项目的访问。 5、提高office软件自身对宏的审核与限制。 6、对于已染毒的模板文件(Normal.dot),应先将其中的自动宏清除,然后将其置成只读方式。 7、对于其他已染毒的文件均应将自动宏清除。 8、对于在另存菜单中只能以模板方式存盘.或者无法使用“另存为(Save As)”,或不能再被转存为其它格式的文件。 9、平时使用时要加强预防。对来历不明的宏最好删除。 10、安装反病毒软件。 脚本病毒是用脚本语言(如VBscript、Javascript、PHP等)编写而成的恶意代码。 脚本语言的特点: 1.语法结构简单。 2.学习使用容易。 3.以解释方式执行。 4.开发较快,广泛使用。 5.执行较慢。 一般防范: 1.卸载VB脚本依赖的WSH。 2.增强IE安全设置。

肿瘤的免疫逃避

肿瘤的免疫逃避 正常机体每天有许多细胞可能发生突变,并产生有恶性表型的瘤细胞,但一般都不会发生肿瘤。对此,Burner提出了免疫监视学说,认为机体免疫系统通过细胞免疫机制能识别并特异地杀伤突变细胞,使突变细胞在未形成肿瘤之前即被清除。但当机体免疫监视功能不能清除突变细胞时,则可形成肿瘤。 然而,尽管机体有如此多样的抗肿瘤免疫效应,但肿瘤仍可在体内发生、发展,并且随着肿瘤的增长,肿瘤细胞能产生一些细胞因子。这些因子可以诱导机体产生一些抑制免疫的细胞,并诱导机体产生体液抑制因子,从而抑制抗肿瘤的免疫功能。肿瘤细胞自身也可以分泌一些具有免疫抑制作用的产物,侵犯局部转移的淋巴结,导致机体局部乃至全身的免疫功能低下。提示肿瘤具有一系列的免疫逃避机制来对抗机体的免疫系统。 1、肿瘤抗原调变作用 在肿瘤免疫过程中,T细胞的免疫功能起着关键性的作用。可溶性肿瘤抗原经抗原提呈细胞(APC)摄入后经加工处理,然后将处理后的抗原提呈给辅助性T细胞,后者通过分泌细胞因子促进杀伤性T细胞增殖,并产生特异杀伤作用。然而许多肿瘤细胞并没有死于机体的免疫杀伤,可以通过多种机制逃逸T细胞的免疫监视作用。 大多数肿瘤抗原的免疫原性很弱,不能诱发有效的抗肿瘤免疫应答。机体对肿瘤抗原的免疫应答导致肿瘤细胞表面抗原减少或丢失,从而肿瘤细胞不被免疫系统识别,逃避了机体的免疫攻击,这种现象称为“抗原调变”(Antigen Modulation)。这一理论在小鼠白血病细胞系中得到证实,该细胞系经抗体、补体处理后,丧失了细胞表面的胸腺白细胞抗原(TL抗原)。抗TL抗原的抗体与肿瘤细胞结合后,细胞表面出现斑点样的抗原分布改变,以后该抗原逐渐消失。在其他实验中也发现抗肿瘤抗体导致肿瘤抗原消失的类似现象。将肿瘤细胞与特异抗体或者细胞毒性淋巴细胞(CTLs)共同培养,也可以迅速诱导肿瘤抗原的丢失。抗原调变这一现象在生长快速的肿瘤普遍存在,抗原调变可由于细胞自身的机制或抗原抗体复合物脱落所致。这种肿瘤细胞表面抗原丢失仅反映肿瘤细胞表型的改变,经调变的细胞再次进入原宿主,抗原将再次出现,并重新诱发抗体产生。

实用指导(二):慢病毒感染贴壁细胞实验步骤

实用指导(二):慢病毒感染贴壁细胞实验步骤 和元生物|2016-03-1513:51 慢病毒慢病毒(Lentivirus)是一类改造自人免疫缺陷病毒(HIV)的病毒载体,基因组为RNA,对分裂细胞和非分裂细胞均具有感染能力。慢病毒基因组进入细胞后,在细胞浆中反转录为DNA,形成DNA整合前复合体,进入细胞核后,DNA整合到细胞基因组中。整合后的DNA转录成mRNA,回到细胞浆中,表达目的蛋白;或产生小RNA。慢病毒介导的基因表达或小RNA干扰作用持续且稳定,并随细胞基因组的分裂而分裂。 以24孔为例: 第一天:准备细胞将状态良好的目的细胞接种到24孔板中,细胞计数后,进行铺板,每孔加入500ul培养基。保证第二天感染病毒时融合效率达到30-40%。通常,24孔板内以 5-8*10^4cells/孔的密度铺板。 第二天:病毒感染,换液1计算病毒加药量 选择合适MOI值,进行病毒感染。 加药量计算方法:(细胞数×MOI值/病毒原液滴度)×10^3=病毒加药量(μl)。 2弃去部分培养基 将每组中加入的病毒及感染增强剂的体积去掉,保证加入病毒和感染增强剂后,每孔中仍保持500ul的液体量。 3加入慢病毒加药量计算方法

(细胞数×MOI值/病毒原液滴度)×10^3=病毒加药量(μl),培养基的总量必须充分覆盖住细胞。 4添加感染增强剂polybrene,保证终浓度为5ug/ml Polybrene是一种聚阳离子,可以中和电荷以促进假病毒外壳与细胞膜的作用。Polybrene 最佳浓度因不同细胞株而异并应根据经验而定(通常范围为2-10μg/ml)。过长时间暴露于Polybrene(>12小时)可对某些细胞产生毒性作用。 5病毒感染8~12小时后,观察细胞状态。 如细胞状态差,尽快换新鲜培养基;如细胞状态良好,可以在24小时内换液,但不宜超过24小时。弃去培养基后每孔加入500μl新鲜的完全培养基。5%CO2培养箱培养。 第五天:观察荧光表达情况病毒感染细胞72h后,在荧光显微镜下观察细胞,估计慢病毒感染目的细胞的效率。若荧光弱,可到96h后观察。如果96h仍无荧光,即感染实验失败。

计算机病毒与防范基础知识测试题

计算机病毒知识测试题(单选) 姓名得分: 注:每题5分,满分100分 1.下面是关于计算机病毒的两种论断,经判断______ (1)计算机病毒也是一种程序,它在某些条件上激活,起干扰破坏作用,并能传染到其他程序中去;(2)计算机病毒只会破坏磁盘上的数据. A)只有(1)正确B)只有(2)正确 C)(1)和(2)都正确D)(1)和(2)都不正确 2.通常所说的“计算机病毒”是指______ A)细菌感染B)生物病毒感染 C)被损坏的程序D)特制的具有破坏性的程序 3.对于已感染了病毒的U盘,最彻底的清除病毒的方法是_____ A)用酒精将U盘消毒B)放在高压锅里煮 C)将感染病毒的程序删除D)对U盘进行格式化 4.计算机病毒造成的危害是_____ A)使磁盘发霉B)破坏计算机系统 C)使计算机内存芯片损坏D)使计算机系统突然掉电 5.计算机病毒的危害性表现在______ A)能造成计算机器件永久性失效 B)影响程序的执行,破坏用户数据与程序 C)不影响计算机的运行速度 D)不影响计算机的运算结果,不必采取措施 6.计算机病毒对于操作计算机的人,______ A)只会感染,不会致病B)会感染致病 C)不会感染D)会有厄运 7.以下措施不能防止计算机病毒的是_____ A)保持计算机清洁 B)先用杀病毒软件将从别人机器上拷来的文件清查病毒 C)不用来历不明的U盘 D)经常关注防病毒软件的版本升级情况,并尽量取得最高版本的防毒软件 8.下列4项中,不属于计算机病毒特征的是______ A)潜伏性B)传染性C)激发性D)免疫性 9.下列关于计算机病毒的叙述中,正确的一条是______ A)反病毒软件可以查、杀任何种类的病毒

相关文档
相关文档 最新文档