文档库 最新最全的文档下载
当前位置:文档库 › 有限元仿真结构计算单位制

有限元仿真结构计算单位制

有限元仿真结构计算单位制

结构仿真单位制

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

钢结构设计计算公式及计算用表

钢结构设计计算公式及计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表1采用。钢铸件的强度设计值应按表2采用。连接的强度设计值应按表3~5采用。

元计算国内外有限元软件的模块分析

元计算----国内外有限元软件的模块分析 6.1、ANSYS 的模块分析 ANSYS 是一个多用途的有限元法计算机设计程序,可以用来求解结构、流 体、电力、电磁场及碰撞等问题。因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。 图3-1 ANSYS 的模块分类 ANSYS CFX 是全球第一个通过 ISO9001 质量认证的大型商业 CFD 软件,拥有诸如气蚀、多孔介质、相间传质、非牛顿流、动静干涉、真实气体等大批

实用模型,可解决航空航天、旋转机械、能源、石油化工、机械制造、汽车、 生物技术、水处理、火灾安全、冶金、环保等领域中的大量物理问题。 ANSYS CFX 可以解决以下物理问题:可压与不可压流体; 耦合传热; 热辐射; 多相流; 粒子输送过程; 化学反应和燃烧。 CFX 自从被纳入 ANSYS 产品大家族后,不到得到改进和完善,目前不需要第三方工具,能与 ANSYS 结构软件直接进行各种流固耦合分析。另外,CFX 可以为旋转机械客户提供从设计,网格,求解到后处理的专业解决方案。 POLYFLOW 用于塑料、树脂等粘弹性材料的流动模拟,可解决关于挤出成型、吹塑成型、拉丝、层流混合、涂层过程中的流动及传热和化学反应问题。也可 用于模拟聚合物问题的流动,可进行聚合物熔化、石油、洗涤剂、印墨、悬浮物、泥土、液态食品原料及熔融玻璃的流动模拟。 POLYFLOW 具有以下特点: POLYFLOW 具有多种多样的粘性模型、内容丰富的粘弹性材料库,这个数据库每年都在不断地进行更新;

POLYFLOW 在模拟复杂的流变特性流体或者粘弹性流体的时候,主要具有三种模型:广义牛顿模型;屈服应力模型;粘弹性模型 (拥有多种可扩展的特性); POLYFLOW 应用范围极其广泛:热传输;挤出成型;共挤出成型;吹塑成型;流涎薄膜;纺丝;热成型;涂复成型;模压成型;共混;反应加工;渗流;玻 璃熔炉中的流动;轮胎面的制造与设计;其它。 FLUENT 用来模拟从不可压缩到高度可压缩范围内的复杂流动,能够精确地模拟无粘流、层流、湍流。灵活的非结构化网格和基于解的自适应网格技术及 成熟的物理模型,使 FLUENT 在转捩与湍流、传热与相变、化学反应与燃烧、 多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。 FLUENT 具有如下特点: FLUENT 软件采用基于完全非结构化网格的有限体积法,而且具有基于网 格节点和网格单元的梯度算法; FLUENT 软件具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等; FLUENT 软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术。 FLUENT 软件中的动/变形网格技术主要解决边界运动的问题,用户只需指 定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。 网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。其局部

基于有限元的电磁场仿真与数值计算介绍

鼠笼异步电动机磁场的有限元分析 摘要 鼠笼异步电动机具有结构简单、价格低廉、运行可靠、效率较高、维修方便等一系列的优点,在国民经济中得到广泛的应用。工业、农业、交通运输、国防工程以及日常生活中都大量使用鼠笼异步电动机。随着大功率电子技术的发展,异步电动机变频调速得到越来越广泛的应用,使得鼠笼异步电动机在一些高性能传动领域也得到使用。 鼠笼异步电动机可靠性高,但由于种种原因,其故障仍时有发生。由于电动机结构设计不合理,制造时存在缺陷,是造成故障的原因之一。对电机内部的电磁场进行正确的磁路分析,是电机设计不可或缺的步骤。利用有限元法对电机内部磁场进行数值分析,可以保证磁路分析的准确性。本文利用Ansys Maxwell软件,建立了鼠笼式异步电机的物理模型,并结合数学模型和边界条件,完成了对鼠笼式异步电动机的磁场仿真,得到了物理模型剖分图,磁力线和磁通分布图,为电机的进一步设计研究提供了依据。 关键词:Ansys Maxwell;鼠笼式异步电机;有限元分析

一、前言 当电机运行时,在它的内部空间,包括铜与铁所占的空间区域,存在着电磁场,这个电磁场是由定、转子电流所产生的。电机中电磁场在不同媒介中的分布、变化及与电流的交链情况,决定了电机的运行状态与性能。因此,研究电机中的电磁场对分析和设计电机具有重要的意义。 在对应用于交流传动的异步电机进行电磁场的分析计算时,传统的计算方法因建立在磁场简化和实验修正的经验参数的基础之上,其计算精度就往往不能满足要求。如果从电磁场的理论着手,研究场的分布,再根据课题的要求进行计算,就有可能得到满意的结果。电机电磁场的计算方法大致可以分为解析法、图解法、模拟法和数值计算法。数值解法是将所求电磁场的区域剖分成有限多的网格或单元,通过数学上的处理,建立以网格或单元上各节点的求解函数值为未知量的代数方程组。由于电子计算机的应用日益普遍,所以电机电磁场的数值解法得到了很大发展,它的适用范围超过了所有其它的解法,并能达到足够的精度。对于电机电磁场问题,常用的数值解法有差分法和有限元法两种。用有限元法时单元的剖分灵活性大,适用性强,解的精度高。因此我们采用有限元法对电机电磁场进行数值计算。 Maxwell2D 是一个功能强大、结果精确、易于使用的二维电磁场有限元分析软件。在这里,我们利用Ansys的Maxwell2D 有限元分析工具对一个三相四极电机进行有限元分析,构建鼠笼式异步电机电动机的物理模型,并结合电机的数学模型、边界条件进行磁场分析。

有限元热力学常见概念汇总

Film Coefficient(对流换热系数) 流体与固体表面之间的换热能力,比如说,物体表面与附近空气温差1℃,单位时间单位面积上通过对流与附近空气交换的热量。单位为W/(m^2·℃)。表面对流换热系数的数值与换热过程中流体的物理性质、换热表面的形状、部位、表面与流体之间的温差以及流体的流速等都有密切关系。物体表面附近的流体的流速愈大,其表面对流换热系数也愈大。如人处在风速较大的环境中,由于皮肤表面的对流换热系数较大,其散热(或吸热)量也较大。对流换热系数可用经验公式计算,通常用巴兹公式计算 1、详细内容 对流传热系数也称对流换热系数。对流换热系数的基本计算公式由牛顿于1701年提出,又称牛顿冷却定律。牛顿指出,流体与固体壁面之间对流传热的热流与它们的温度差成正比,即: q = h*(tw-t∞) Q = h*A*(tw-t∞)=q*A 式中: q为单位面积的固体表面与流体之间在单位时间内交换的热量,称作热流密度,单位W/m^2; tw、t∞分别为固体表面和流体的温度,单位K; A为壁面面积,单位m^2; Q为面积A上的传热热量,单位W; h称为表面对流传热系数,单位W/(m^2.K)。 2、理论发展 对流换热系数h的物理意义是:当流体与固体表面之间的温度差为1K时,1m*1m壁面面积在每秒所能传递的热量。h的大小反映对流换热的强弱。 如上所述,h与影响换热过程的诸因素有关,并且可以在很大的范围内变化,所以牛顿公式只能看作是传热系数的一个定义式。它既没有揭示影响对流换热的诸因素与h之间的内在联系,也没有给工程计算带来任何实质性的简化,只不过把问题的复杂性转移到传热系数的确定上去了。因此,在工程传热计算中,主要的任务是计算h。计算传热系数的方法主要有实验求解法、数学分析解法和数值分析解法。 影响对流传热强弱的主要因素有: 1. 对流运动成因和流动状态; 2. 流体的物理性质(随种类、温度和压力而变化); 3. 传热表面的形状、尺寸和相对位置; 4. 流体有无相变(如气态与液态之间的转化)。 3、实例应用 在不同的情况下,传热强度会发生成倍直至成千倍的变化,所以对流换热是一个受许多因素影响且其强度变化幅度又很大的复杂过程。 4、对流换热系数的大致量级: 空气自然对流 5 ~ 25 气体强制对流 20 ~ 100 水的自然对流 200 ~1000 水的强制对流 1000 ~ 15000

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

钢结构计算题-答案完整

《钢结构设计原理计算题》 【练习1】两块钢板采用对接焊缝(直缝)连接。钢板宽度L=250mm ,厚度t=10mm 。钢材采用Q235,焊条E43系列,手工焊,无引弧板,焊缝采用三级检验质量标准, 2/185mm N f w t =。试求连接所能承受的最大拉力?=N 解:无引弧板时,焊缝的计算长度w l 取实际长度减去2t ,即250-2*10mm 。 根据公式 w t w f t l N

【变化】若取消端焊缝,问?=N 解:上题中令03=N ,622001?-=w l ,得kN N N 344.5051==

有限元分析软件比较分析

有限元分析软件 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50 年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC 四个比较知名比较大的公司,其中ADINA、ABAQUS 在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC 进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA 以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS 软件与ANSYS 软件的对比分析: 1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。由于ANSYS 产品进入中国市场早于ABAQUS,并且在五年前ANSYS 的界面是当时最好的界面之一,所以在中国,ANSYS 软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域:ANSYS 软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS 则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3.性价比:ANSYS 软件由于价格政策灵活,具有多种销售方案,在解决常规的

有限元分析中的单位问题

有限元分析中的单位问题 大多数有限元计算程序都不规定所使用的物理量的单位,不同问题可以使用不同的单位,只要在一个问题中各物理量的单位统一就可以。但是,由于在实际工程问题中可能用到多种不同单位的物理量,如果只是按照习惯采用常用的单位,表面上看单位是统一的,实际上单位却不统一,从而导致错误的计算结果。比如,在结构分析中分别用如下单位:长度– m;时间– s;质量– kg;力- N;压力、应力、弹性模量等– Pa,此时单位是统一的。但是如果将压力单位改为MPa,保持其余单位不变,单位就是不统一的;或者同时将长度单位改为mm,压力单位改为MPa,保持其余单位不变,单位也是不统一的。由此可见,对于实际工程问题,我们不能按照手工计算时的习惯来选择各物理量的单位,而是必须遵循一定的原则。 物理量的单位与所采用的单位制有关。所有物理量可分为基本物理量和导出物理量,在结构和热计算中的基本物理量有:质量、长度、时间和温度。导出物理量的种类很多,如面积、体积、速度、加速度、弹性模量、压力、应力、导热率、比热、热交换系数、能量、热量、功等等,都与基本物理量之间有确定的关系。基本物理量的单位确定了所用的单位制,然后可根据相应的公式得到各导出物理量的单位。具体做法是:首先确定各物理量的量纲,再根据基本物理量单位制的不同得到各物理量的具体单位。

基本物理量及其量纲: ·质量m; ·长度L; ·时间t; ·温度T。 导出物理量及其量纲: ·速度:v = L/t; ·加速度:a = L/t2; ·面积:A = L2; ·体积:V = L3; ·密度:ρ= m/L3; ·力:f = m·a = m·L/t2; ·力矩、能量、热量、焓等:e = f·L = m·L2/t2;·压力、应力、弹性模量等:p = f/A = m/(t2·L) ;·热流量、功率:ψ= e/t = m·L2/t3; ·导热率:k =ψ/ (L·T) = m·L/(t3·T); ·比热:c = e/(m·T) = L2/(t2·T); ·热交换系数:Cv = e/(L2·T·t) = m/(t3·T) ·粘性系数:Kv = p·t = m/(t·L) ; ·熵:S = e/T = m·l2/(t2·T); ·质量熵、比熵:s = S/m = l2/(t2·T);

电磁仿真算中的有限元法

1电磁仿真算法中的有限元法 1.1常规的电磁计算方法简介 从上世纪50年代以来,伴随着计算机技术的进步,电磁仿真算法也蓬勃发展起来,这其中主要包括:单矩法、矩量法和有限元法等属于频域技术的算法; 传输线矩阵法、时域积分方程法以及时域有限差分法等属于时域技术的算法。除了这些以外, 还有属于高频技术的集合衍射理论等。本文根据国内外计算电磁学的发展状况,对日常生活中比较常用的电磁计算方法做了介绍,并对有限元法做了重点说明。 ⑴矩量法 矩量法属于电磁场的数值计算方法中频域技术的一种, 它的基本原理是利用把待解的微积分方程转化成的算子方程, 然后将由一组线性组合表示的待求函数代入第一步中的算子方程, 然后将算子方程转化成矩阵方程, 最后再通过计算机进行大量的数值计算从而得到数值结果。该方法在求解非均勻和不规则形状对象时,面很广,但会生成病态矩阵,所以会在一定程度上受到限制。矩量法的特点就是适用于求解微积分方程, 并且求解方法统一简单。但缺点就是会占用大量计算机内存,影响计算速度。 (2)单矩法 单矩法是一种解析方法和数值方法相结合的混合数值算法法,该方法的关键在于,如何合理的选择一个球面最小的半径,使得能够将分析对象的结构全部包含在内,以便将内外场进行隔离。外边的散射场单独使用其他函数表示,而包围的内部区域使用有限元法亥姆赫兹(Helmholtz)方程。此方法对于计算复杂形体乃至复杂埋入体内的电磁散射是种极为有效的手段。 (3)时域有限差分法 时域有限差分法(FDTD)近几年来越来越受到各方的重视, 因为一方面它处理庞大的电磁福射系统方面和复杂结构的散射体时很突出,另外一方面则在于它不是传统的频域算法, 它是种时域算法, 直接依靠时间变量求解麦克斯韦方程组,可以在有限的时间和体积内对场进行数据抽样, 这样同时也能够保证介质边界

有限元分析在结构分析和计算机仿真中的应用

第20卷增刊重庆交通学院学报2001年11月VoI.20Sup.JOURNAL OF CHONGOING JIAOTONG UNIVERSITY NoV., ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 2001文章编号:1001-716 (2001)S0-0124-03 有限元分析在结构分析和计算机仿真中的应用" 韩西,钟厉,李博 (重庆交通学院结构工程部级重点实验室,重庆400074) 摘要:简要论述了有限元分析方法在结构分析和计算机仿真的发展趋势和应用情况. 关键词:有限元分析;结构分析;计算机仿真 中图分类号:TU311.41文献标识码:B 自1943年数学家Courant第一次尝试应用定义在三角形区域上的分片连续函数的最小位能原理求解St.Venant扭转问题以来,许多数学家、物理学家和工程师由于各种原因都涉及过有限单元的概念.但由于即使一个小规模的工程问题,用有限元分析都将产生较大的计算工作量.直到1960年后,随着计算机技术的发展,有限元分析这门特别依赖数值计算的学科才真正进入了飞速发展阶段.到目前为止,有限元法已成为最强有力的数值分析方法之一,在固体力学、流体力学、机械工程、土木工程、电气工程等领域得到了广泛的应用.由于其所涉及问题和算法基本上全部来源于工程实际、应用于工程中,其解决工程实际问题的能力愈来愈强.由于计算机技术作为有限元分析的计算平台和应用支撑工具,故有限元分析成为CAE(Computer Aided Engineering,计算机辅助工程)这一学科类的主要研究内容.与此同时,由于有限元分析所建模型具有和实际结构相对应的几何、材料、力学特性,对实际结构具有“真实”的模拟特性,和单纯的几何仿真有着本质的区别,所以可以称之为“真实的仿真”(ReaIity SimuIation),可以想象,其模型和计算的数据量将比单纯的几何仿真要大得多,当前,计算机并行多处理器技术正迅猛发展,如SGI OONU-MA体系使计算能力达到工程应用水平,极大地促进了有限元分析计算的发展[2]. 1现状与发展趋势 1.1现状 1956年,Tuner,CIough等人将刚架位移法推广应用于弹性力学平面问题,并用于分析飞机结构,这是现代有限元法第一次成功的尝试.他们第一次给出了用三角形单元求解平面应力问题的正确解答,其研究工作打开了利用计算机求解复杂平面问题的新局面.1963~1964年,BesseIing、MeIosh 和Jones等证明有限单元法是基于变分原理的Ritz 法的另一种形式,从而使Ritz分析的所有理论基础都适用于有限元法,确认了有限元法是处理连续介质问题的一种普遍方法. 几十年来,有限元法的应用已由弹性力学平面问题扩展到空间问题、板壳问题,由静力平衡问题扩展到稳定问题、动力问题和波动问题;分析的对象从弹性材料扩展到塑性、粘塑性和复合材料等;从固体力学扩展到流体力学、传热学等连续介质力学领域.在工程分析中的作用已从分析比较扩展到优化设计并和CAD(计算机辅助设计)结合越来越紧密. 有限元分析理论的逐步成熟主要经历了60年代的探索发展时期,70~80年代的独立发展专家应用时期和90年代与CAD相辅相成的共同发展、推广使用时期. 有限元分析作为一种强有力的数值分析方法,在结构分析和仿真计算中有着极大的应用价值.目前,结构仿真中的静力分析、动力分析、稳定性计 "收稿日期:2001-03-19 作者简介:韩西(1964-),男,重庆人,工学博士,副教授,主要从事振动工程、结构损伤识别、结构动力及计算机仿真分析研究.

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

ansys有限元计算

1.1 课程设计的意义、目的 1)ANSYS模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,他们是承受动态载荷的重要参数,也可作为其他动力学分析的起点,是进行谱分析或模态叠加法普响应分析或瞬态动力学分析所必需的前期分析过程。模态分析在动力学分析过程中必不可少的一个步骤,在谱响应分析、瞬态动力学分析的分析过程中均要求先进行模态分析才能进行其他步骤。 2)根据课堂讲授内容,学生做相应的自主练习,消化课堂所讲解的内容;通过调试典型例题或习题积累调试ANSYS程序的经验;通过完成课程设计中中的编程题,逐渐培养学生的编程能力、用ANSYS解决实际问题的能力。 1.2课程设计研究的内容 求解外受两端压力带孔薄板的系统或局部的位移、应变、应力。 ANSYS详细设计步骤 1问题分析 如图所示,E=30e6,两端压力100,中心孔内线压分布力500向外。中心孔直径为5。板厚为1。

基于ANSYS分析的简要步骤 (1)启动ANSYS,进入ANSYS界面。 (2)定义工作文件名 GUI : Utility Menu > File > Change Jobname 单击Utility Menu菜单下File中的Change Jobname按钮,会弹出Change Jobname对话框, 输入有限元分析作为工作文件名,单击Ok。 (3)定义分析标题 GUI:Utility Menu > File > Change Title 在弹出的对话框中,输入cui作为分析标题,单击OK。 (4)重新显示 GUI: Utility Menu>Plot>Replot 单击该按钮后,所命名的分析标题和工作文件名会出现在ANSYS中。 (5)选择分析类型 在弹出的对话框中,选择分析类型,由于此例属于结构分析,故选择Structural 这一项,单击OK。 (6)定义单元类型 GUI:Main Menu > Preprocessor > Element Type > Add/Edit/Delete 单击弹出对话框中的Add按钮,弹出单元库对话框,在材料的单元库中选择Plane82单元。即在左侧的窗口中选取Solid单元,在右侧选择8节点的82单元,然后单击OK。

有限元分析方法

百度文库- 让每个人平等地提升自我 第1章有限元分析方法及NX Nastran的由来 有限元分析方法介绍 计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。 有限单元法的形成 近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE(Computer Aided Engineering)。这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性: ?CAE仿真可有效缩短新产品的开发研究周期。 ?虚拟样机的引入减少了实物样机的试验次数。 ?大幅度地降低产品研发成本。 ?在精确的分析结果指导下制造出高质量的产品。 ?能够快速对设计变更作出反应。 ?能充分和CAD模型相结合并对不同类型的问题进行分析。 ?能够精确预测出产品的性能。 ?增加产品和工程的可靠性。 ?采用优化设计,降低材料的消耗或成本。 ?在产品制造或工程施工前预先发现潜在的问题。 ?模拟各种试验方案,减少试验时间和经费。 ?进行机械事故分析,查找事故原因。 当前流行的商业化CAE软件有很多种,国际上早在20世纪50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国1

钢结构强度稳定性计算书

钢结构强度稳定性计算书 计算依据: 1、《钢结构设计规范》GB50017-2003 一、构件受力类别: 轴心受压构件。 二、强度验算: 1、轴心受压构件的强度,可按下式计算: σ = N/A n≤ f 式中N──轴心压力,取N= 10 kN; A n──净截面面积,取A n= 298 mm2; 轴心受压构件的强度σ= N / A n = 10×103 / 298 = 33.557 N/mm2; f──钢材的抗压强度设计值,取f= 205 N/mm2; 由于轴心受压构件强度σ= 33.557 N/mm2≤承载力设计值f=205 N/mm2,故满足要求! 2、摩擦型高强螺栓连接处的强度,按下面两式计算,取最大值: σ = (1-0.5n1/n)N/A n≤ f 式中N──轴心压力,取N= 10 kN; A n──净截面面积,取A n= 298 mm2; f──钢材的抗压强度设计值,取f= 205 N/mm2; n──在节点或拼接处,构件一端连接的高强螺栓数目,取n = 4; n1──所计算截面(最外列螺栓处)上高强螺栓数目;取n1 = 2; σ= (1-0.5×n1/n)×N/A n=(1-0.5×2/4)×10×103/298=25.168 N/mm2; σ = N/A ≤ f 式中N──轴心压力,取N= 10 kN; A──构件的毛截面面积,取A= 354 mm2; σ=N/A=10×103/354=28.249 N/mm2; 由于计算的最大强度σmax = 28.249 N/mm2≤承载力设计值=205 N/mm2,故满足要求! 3、轴心受压构件的稳定性按下式计算: N/φA n≤ f

(完整word版)有限元分析软件的比较

有限元分析软件的比较(购买必看)-转贴 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element A nalysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PA FEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件

ANASYS有限元计算与材力公式计算结果比较

ANASYS有限元计算与材力公式计算结果比较 摘要:基于有限元单元法理论,使用ANASYS软件计算悬臂和两端固定两种梁在简单荷载作用下的位移与应力,并与使用材料力学公式计算的结果作比较,分析误差产生的原因,以加深对有限单元法的理解。 关键词:ANASYS;有限元;材料力学 ANASYS FEM calculation and build formula results Abstract:Based on the theory of finite element method yuan, calculated using software ANASYS cantilever beam and two fixed ends in a simple load of displacement and stress, and the use of the mechanical formula for the results of comparative analysis of the reasons for the error, to deepen the understanding of the finite element method. Key words: ANASYS; finite element method; material mechanics 1.前言 有限单元法是当今工程分析中获得最广泛应用的数值计算方法,其分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适且较简单的近似解,然后推导求解这个域总的满足条件,从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发。软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。前处理模块提供了一个强大的实体建模及网格划分工具,可以方便地构造有限元模型,分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析等,软件提供了100种以上

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插

相关文档
相关文档 最新文档