文档库 最新最全的文档下载
当前位置:文档库 › 地质雷达自校

地质雷达自校

地质雷达自校
地质雷达自校

地质雷达仪器自校方法

本方法适用于新购、使用中以及检修后的地质雷达仪器的效验,目的是检查仪器是否处于正常工作状态,测试精度是否满足要求。

一、自校方法

1.1 外观检查。

1.2 使用高频天线实测空气电磁波速度值与空气电磁波速度标准值对比。

1.3 使用低频天线实测空气电磁波速度值与空气电磁波速度标准值对比。

二、仪器组成

2.1主机、笔记本电脑、800MHz屏蔽天线、100MHz屏蔽天线。

三、技术要求

3.1 外观应清洁无损伤,仪器各部件能正常连通工作。

3.2 使用高频天线实测空气电磁波速度值Cc1与空气电磁波速度标准值Co之间的相对误差值β1≤±5%。

3.3 使用低频天线实测空气电磁波速度值Cc2与空气电磁波速度标准值Co之间的相对误差值β2≤±5%。

四、自校流程

4.1 连接地质雷达仪器各部件,开机检查各部件是否工作正常。

4.2 使用高频天线实测空气电磁波速度值与空气电磁波速度标准值对比:

4.2.1 选择一处空旷的地方,其周围一定范围内应无金属导线、块体等良导体类物质,选一较平整的地面水平放置一块面积为0.5m×0.5m、厚度为5cm的正方形金属铁板。

4.2.2 在金属铁板中心正上方d1=20cm距离处水平架放800MHz屏蔽天线。

4.2.3 观测并记录电磁波通过空气遇金属铁板后反射的雷达波形图。

4.2.4 由原始记录的雷达波形图,读取金属铁板反射的双程历时t1,进而计算空气电磁波传播速度Cc1,见下式(1)。

Cc1=2×d1/t1 (1)

4.2.5 根据空气电磁波速度标准值(Co=0.3m/ns),按下式(2)计算使用高频天线实测空气电磁波速度值Cc1与空气电磁波速度标准值Co之间的相对误差值β1。

β1= (Cc1-Co)/ Co×100% (2)

4.2.6 若β1≤±5%,即认为合格,反之则认为不合格。

4.3 使用低频天线实测空气电磁波速度值与空气电磁波速度标准值对比:

4.3.1 选择一处空旷的地方,其周围一定范围内应无金属导线、块体等良导体类物质,选一较平整的地面水平放置一块面积为2m×2m、厚度为5cm的正方形金属铁板。

4.3.2 在金属铁板中心正上方d2=3m距离处水平架放100MHz屏蔽天线。

4.3.3 观测并记录电磁波通过空气遇金属铁板后反射的雷达波形图。

4.3.4 由原始记录的雷达波形图,读取金属铁板反射的双程历时t2,进而计算空气电磁

波传播速度Cc2,见下式(3)。

Cc2=2×d2/t2 (3)

4.3.5 根据空气电磁波速度标准值(Co=0.3m/ns),按下式(4)计算使用低频天线实测

空气电磁波速度值Cc2与空气电磁波速度标准值Co之间的相对误差值β2。

β2= (Cc2-Co)/ Co×100% (4)

4.3.6 若β2≤±5%,即认为合格,反之则认为不合格。

五、自校结果处理

全部满足上述3个技术要求则评定该仪器自校结果为合格。

六、自校周期、记录与证书

自校周期为12个月,或使用前自校。自校记录格式见下表,自校证书格式附后。

七、量值溯源图

地质雷达测量技术

地质雷达测量技术 内容提要:本文在简述地质雷达基本原理的基础上,介绍了地质雷达检测隧道衬砌质量的工作方法,通过理论分析、实际资料计算、实测效果等方面说明采用地质雷达技术检测隧道衬砌质量的必要性和可靠性。 关键词:地质雷达测量技术 1 前言 地质雷达(Geological Radar)又称探地雷达(Ground Penetrating Radar),是一项基于不破坏受检母体而获得各项检测数据的检测方法,在我国已在数百项工程中得到了应用,并取得了显著成效。同时,随着交通、水利、市政建设工程等基础设施的大力发展,以及国家对工程质量的日益重视,工程实施过程中仍急需用物理勘探的手段解决大量的地质难题,因此,地质雷达极其探测技术市场前景十分广阔。 地质雷达作为一项先进技术,具有以下四个显著特点:具有非破坏性;抗电磁干扰能力强;采用便携微机控制,图象直观;工作周期短,快速高效。它不仅用于管线探测,还可用于工程建筑,地质灾害,隧道探测,不同地层划分,材料,公路工程质量的无损检测,考古等等。 2 地质雷达技术原理 地质雷达是运用瞬态电磁波的基本原理,通过宽带时域发射天线向地下发射高频窄脉冲电磁波,波在地下传播过程中遇到不同电性介质界面时产生反射,由接收天线接收介质反射的回波信息,再由计算机将收到的数字信号进行分析计算和成像处理,即可识别不同层面反射体的空间形态和介质特性,并精确标定物体的深度(图1)。

图1 地质雷达检测原理图 3 雷达的使用特性 3.1无损、连续探测,不破坏原有母体,避免了后期修补工作,可节约大量的时间和费用。 3.2 操作简便,使用者经过2-3天培训就能掌握。 探测时,主机显示器实时成像,操作人员可直接从屏幕上判读探测结果,现场打印成图,为及时掌握施工质量提供资料,提高了检测速度和科学水平。并且通过数据分析,还可以了解道路的结构情况,发现道路路基的变化和隐性灾害,使日常管理和维护更加简单。 3.3 测量精度高,测试速度快。在车载工作方式下,测试速度大大提高,当车速达80Km/h时,系统仍能正常工作。 3.4 收、发天线离地面的探测高度可以针对不同的埋地目标进行调整,以达到最佳的探测能力和探测分辨率:同时还可以调节收发天线之间的距离寻找系统工作的最好效果。 3.5 测点密度不受限制,便于点测和普查。 工作方式的灵活使得用户可以连续普查某一段工程的质量,也可随时对异常区域进行重点探测 和分析。 3.6 便于维护与保养。 本系统采用了结构化设计,对于使用不当或其它原因造成的质量问题,简单地更换接插件即可保证雷达的正常工作。 3.7 可扩充配置。 通过选择相应的发射源和收发天线,再配上相应的处理软件,就可以在中、深层探测范围,如地下管线、地基空洞、钢筋分布、堤坝密实程度等方面扩大应用。 4 地质雷达在检测隧道衬砌质量中的应用 新建隧道施工中为确保隧道衬砌质量,采用传统“钻、看”的检测方法显然已不能满足“多断面、全方位”的检测要求,业主和施工单位都在探索采用无损检测技术有效监控和确保隧道衬砌质量的新方法。 隧道衬砌的质量检测包括1)隧道衬砌厚度,2)隧道衬砌背后未回填的空区,3)隧道衬砌的密实程度,4)施工时坍方位置及坍方的处理情况。5)有时还可检测围岩中地下水向隧道侵入的位置。4.1 工作方法

第二讲 国内外地质雷达技术发展状况

第二讲国内外地质雷达技术发展状况(历史与现状) 探地雷达的历史最早可追溯到20世纪初,1904年,德国人Hulsmeyer首次将电磁波信号应用与地下金属体的探测。1910年Leimback和Lowy以专利形式在1910年的专利,他们用埋设在一组钻孔里的偶极子天线探测地下相对高的导电性质的区域,并正式提出了探地雷达的概念。1926年Hulsenbeck第一个提出应用脉冲技术确定地下结构的思路,指出只要介电常数发生变化就会在交界面会产生电磁波反射,而且该方法易于实现,优于地震方法[1,2]。但由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,使得探地雷达技术和应用受到了很多的限制,初期的探测仅限于对波吸收很弱的冰层厚度(1951,B.O.Steenson,1963,S.Evans)和岩石和煤矿的调查(J.C.Cook)等。随着电子技术的发展,直到70探地雷达技术才重新得到人们的重视,同时美国阿波罗月球表面探测实验的需要,更加速了对探地雷达技术的发展,其发展过程大体可分为三个阶段: 第一阶段,称为试验阶段,从20世纪70年代初期到70年代中期,在此期间美国,日本、加拿大等国都在大力研究,英国、德国也相继发表了论文和研究报告,首家生产和销售商用GPR的公司问世,即Rex Morey和Art Drake成立的美国地球物理测量系统公司(GSSI),日本电器设备大学也研制出小功率的基带脉冲雷达系统。此期间探地雷达的进展主要表现在,人们对地表附近偶极天线的辐射场以及电磁波与各种地质材料相互作用的关系有了深刻的认识,但这些设备的探测精度、地下杂乱回波中目标体的识别、分别率等方面依然存在许多问题。 第二阶段,也称为实用化阶段,从20世纪70年代中后其到80年代,在次期间技术不段发展,美国、日本、加拿大等国相继推出定型的探地雷达系统,在国际市场,主要有美国的地球物理探测设备公司(GSSI)的SIR系统,日本应用地质株式社会(OYO)的YL-R2地质雷达,英国的煤气公司的GP管道公司雷达,在70年代末,加拿大A-Cube公司的Annan和Davis等人于1998年创建了探头及软件公司(SSI),针对SIR系统的局限性以及野外实际探测的具体要求,在系统结构和探测方式上做了重大的改进,大胆采用了微型计算机控制、数字信号处理以及光缆传输高新技术,发展成了EKKO Ground Penetrating Radar 系列产品,简称EKKO GPR系列。瑞典地质公司(SGAB)也生产出RAMAC 钻孔雷达系统,此外,英国ERA公司、SPPSCAN公司,意大利IDS公司、瑞典及丹麦也都在生产和研制各种不同型号的雷达。80年代全数字化的GPR问世,具有划时代的意义,数字化GPR不仅提供了大量数据存储的解决方案,增强了实时和现场数据处理的能力,为数据的深层次后处理带来方便,更重要的是GPR 因此显露出更大的潜力,应用领域得以向纵身拓展。 第三阶段,从上个世纪80年代至今,可称为完善和提高阶段。在此期间,GPR技术突飞猛进,更多的国家开始关注探地雷达技术,出现了很多探地雷达的研究机构,如荷兰的应用科学研究组织和代尔夫大学,法国_德国的Saint-Louis 研究所(ISL),英国的DERA,瑞典的FOA,娜威科技大学和地质研究所,比利时的RMA,南非的开普敦大学,澳大利亚昆士兰大学,美国的林肯实验室和Lawrence Livermore国家实验室以及日本的一些研究机构等等。同时,探地雷达也得到了地球物理和电子工程界的更多关注,对天线的改进、信号的处理、地下目标的成像等方面提出了许多新的见解。GSSI公司在商业上取得了极大的成功,

地质雷达记录的波相识别

7地质雷达记录的波相识别 地质雷达反射记录的波形比地震波复杂的多,一方面是由于地质雷达分辨率高记录的信号丰富,另一方面是由于电磁波的干扰因素多,此外还由于雷达发射的子波比较复杂,并非简单的脉冲。因而雷达资料的处理与解释是一项复杂细致的工作。特别是各种地层、目标体、干扰波的识别需要坚实的理论基础和丰富的实践经验。 7.1 地质雷达的波组特征 雷达天线发射的是子波而不是单脉冲,子波由几个震荡波形组成,占有一定的时间宽度,反射与折射波依然保持有原来子波的特点,只是幅值上有所变化。这里将雷达子波的周期、持续时间长度和衰减比三个参量作为子波的波阻特征。子波的频率成分与天线的主频相近,持续一个半到两个周期,后续振相略有衰减。例如对于100MHz天线的子波,持续时间可到15-20ns,对于1GHz的天线,持续时间约2ns。子波的波形的确定对于后期处理是非常重要的,它是小波处理的基础。有很多方法可以获得各种频率天线的子波,最简单的方法是利用金属板反射。将一块较大的金属板放置于地面上,发射与接受天线与金属板平行,相距为3个周期的时程,进行数据采集,即可获得子波记录。不同类型的雷达、不同型号的天线,雷达子波的形状是不同的。天线与介质的距离、介质的电导特性对子波的形态和特点也有一定的影响,应根据现场工作条件从记录中分离子波。从下边的记录中也可以辨认出子波的特征。表面反射波、内界面反射波都是近联各州其的衰减波形。对其进行分析可以得到子波的波组特征 7.2 地质与工程介质结构及反射特征 雷达的探测对象通常是多界面结构,如各类地层、岩性,松散层、风化层等都是多层结构。隧道中的围岩、初衬、二衬等,也是多界面结构。雷达波向介质内传播时,被称为下行波,经反射回表面的波称为上形波。下行波每遇到一个界面就发生一次反射和折射,入射波能量即被分成两部分,一部分经折射继续向下传播,另一部分经反射掉头向上,变成上行波。反射与折射能量的分配与反

SIR-3000作业指导书

GSSI公司SIR-3000仪器参数 顺序系统参数Parameters 1500MHz 900MHz 400MHz 270MHz 100MHz 1* 系统调用SYSTEM->SETUP->RECALL 1500GrayCart 1500BlueCart 900met 400mhzTime 400mhz623Cart 400mhz620SW 270_SW 100met 2 显示刻度(竖直方向) SYSTEM->UNITS->VSCALE Time/Depth Time/Depth Time/Depth Time/Depth Time/Depth 天线COLLECT->RADAR->ANTENNA 1500mhz 900mhz 400mhz 270mhz 100mhz 发射率COLLECT->RADAR->T_RA TE 100KHz 100KHz 100KHz 100KHz 50KHz 6 测量模式(水平方向) COLLECT->RADAR->MODE Time/Distance Time/Distance Time/Distance Time/Distance Time/Point GPS COLLECT->RADAR->GPS None None None none None 采样点数COLLECT->SCAN->SAMPLES 512 512 512 512 512/1024 数据位COLLECT->SCAN->FORMA T(bits) 16 16 16 16 16 4* 记录长度(纳秒)COLLECT->SCAN->RANGE(ns) 12 15-20-25-30 40-50-80-100 50-80-100-120 100-200-300 介电常数COLLECT->SCAN->DIEL 6 6 6 6 6 7 扫描速度(扫描/秒) COLLECT->SCAN->RA TE 60-120 60-120 60-120 60-120 16 8 测点(扫描/单位)距离COLLECT->SCAN->SCN/UNIT 20-50-100-200 10-20-50-100 10-20-50 10-20-50 10 5* 增益:类型-点数COLLECT->GAIN->AUTO-POINTS Y-1 Y-2--3-4-5 Y-5 Y-5 Y-5 3-1 信号位置:模式COLLECT->POSTION->MODE MANUAL MANUAL MANUAL MANUAL MANUAL 3-2 信号位置:延时COLLECT->POSTION-> OFFSET 0 0 -14 3-3 信号位置:地面COLLECT->POSTION->SURFACE(%) 0 0 0 0 0 滤波COLLECT->FILTERS 低通-无限响应滤波器-> LP_IIR (mhz) 0 2500 800 700 300 高通-无限响应滤波器-> HP_IIR (mhz) 10 225 100 75 25 低通-有限响应滤波器-> LP_FIR (mhz) 3000 0 0 0 0 高通-有限响应滤波器-> HP_FIR (mhz) 250 0 0 0 0 叠加(扫描) COLLECT->FILTERS ->STACKING 0 0 0 0 3-64 背景去除(扫描) COLLECT->FILTERS->BGR_RMVL 0 0 0 0 0 9-1 颜色表OUTPUT->DISPLAY->C_TABLE 9-2 颜色变换表OUTPUT->DISPLAY->C_XFORM 10 保存参数SYSTEM->SETUP->SA VE SETUP15 SETUP09 SETUP04 Setup03 SETUP01 11* 数据采集RUN/SETUP 12* 数据传输OUTPUT->TRANSFER->FLASH Y Y Y Y Y

地质雷达操作规程

地质雷达法检测操作规程 1、地质雷达法适用范围 地质雷达法可用于地层划分、岩溶和不均匀体的探测、工程质量的检测,如检测衬砌厚度、衬砌背后的回填密实度和衬砌内部钢架、钢筋等分布,地下管线探查及隧道超前地质预报等。 2、地质雷达主机技术指标: (1)系统增益不低于150dB; (2)信噪比不低于60dB; (3)采样间隔一般不大于、A/D模数转换不低于16位; (4)计时误差小于1ns; (5)具有点测与连续测量功能,连续测量时,扫描速率大于64次/秒; (6)具有可选的信号叠加、实时滤波、时窗、增益、点测与连续测量、手动与自动位置标记功能; (7)具有现场数据处理功能,实时检测与显示功能,具有多种可选方式和现场数据处理能力。 3、地质雷达应符合下列要求: (1)探测体的厚度大于天线有效波长的1/4,探测体的宽度或相邻被探测体可以分辨的最小间距大于探测天线有效波第一聂菲儿带半径。 (2)测线经过的表面相对平缓、无障碍、易于天线移动。 (3)避开高电导屏蔽层或大范围的金属构件。

4、地质雷达天线可采用不同频率的天线组合,技术指标为: (1)具有屏蔽功能; (2)最大探测深度应大于2m; (3)垂直分辨率应高于2cm。 5、现场检测 (1)测线布置 1、隧道施工过程中质量检测应以纵向布线为主,横向布线为辅。纵向布线的位置应在隧道的拱顶、左右拱腰、左右边墙和隧道底部各布置一条;横向布线可按检测内容和要求布设线距。一般情况线距8~12m;采用点测时每断面不少于6点。检测中发现不合格地段应加密测线或测点。 2、隧道竣工验收时质量检测应纵向布线,必要时可横向布线。纵向布线的位置应在隧道拱顶、左右拱腰和左右边墙各布一条;横向布线线距8~12m;采用点测时每断面不少于5个点。需确定回填空洞规模和范围时,应加密测线和测点。 3、三线隧道应在隧道拱顶部位增加2条测线。 4、测线每5~10m应有一历程标记。 (2)介质参数的标定: 检测前应对衬砌混凝土的介电常数或电磁波速做现场标定,且每座隧道不少于一处,每处实测不少于3次,取平均值为该隧道的介电常数或电磁波速。当隧道长度大于3km、衬砌材料或含水率变化较大时,应适当增加标定点数。

地质雷达

地质雷达在隧道超前地质预报中的应用 摘要:本文简要介绍了地质雷达基本原理及其探测深度、精度,并结合实例阐述了地质雷达的工程应用。 关键词:地质雷达;隧道超前地质预报;掌子面 引言 目前,我国修建大量穿越山岭的特长隧道。由于这些隧道大都处于地下各种复杂的水文地质、工程地质岩体中。为了摸清和预知周围的水文地质和工程地质条件,隧道地质超前预报显示出越来越重要的作用。在隧道开挖掘进过程中,提前发现隧道前方的地质变化,为施工提供较为准确的地质资料,及时调整施工工艺,减少和预防工程事故的发生非常重要。一、地质雷达基本原理及探测深度、精度 地质雷达( Ground Penetrating Radar, 简称GPR, 也称探地雷达) 是利用超高频(106Hz~109Hz)电磁脉冲波的反射探测地下目的体分布形态及特征的一种地球物理勘探方法。发射天线( T) 将信号送入地下,遇到地层界面或目的体反射后回到地面再由接收天线( R) 接收电磁波的反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征(见图1)

图1 地质雷达反射探测原理图 根据波动理论,电磁波的波动方程为: P = │P│e-j(αx-αr)﹒e-βr(1)(1)式中第二个指数-βr是一个与时间无关的项,它表示电磁波在空间各点的场值随着离场源的距离增大而减小,β为吸收系数。式中第一个指数幂中αr表示电磁波传播时的相位项,α为相位系数,与电磁波传播速度V的关系为: V = ω/α(2)当电磁波的频率极高时,上式可简略为: V = c/ε1/2(3)式中c为电磁波在真空中的传播速度;ε为介质的相对介电常

GR地质雷达介绍

GR-III地质雷达产品介绍 1 技术指标 1.1 主机: (1)数据采集方式:点测、连续测量、测距轮控制 (2) 触发方式:时间触发、键盘触发、测距轮触发 (3) A/D转换:16位 (4) 采样率: 10ps采样间隔 (5) 扫描速度:200KHz脉冲频率 (6) 测量时窗:5-3000ns (7) 功耗:35W (8)最大系统动态范围:156 dB 1.2 天线 (1)天线种类:屏蔽式地面耦合TE极化天线。 (2)天线频率:50MHz/100MHz/200MHz/400MHz/750MHz/1000MHz (3)天线前端模控噪声放大器:+20dB~- 60dB 1.3 软件基本功能 软件系统包括以下八大功能: (一) 项目管理 采用文件项目管理模式: ●用户可以将测区所用测线导入该测区的项目中。 ●通过下拉选择框,用户可以方便选取测区的任何测线。 ●对任何测线的任何处理在测线列表中保留其处理过程,在测线列表中,用户 可以方便选择任意处理文件,并方便对任意处理文件进行删除和叠加操作。 ●用户可以输入测区所有测线坐标位置,可以在平面图上观察所有测线的分布,

同时可以直接在测线平面分布图上选取测线。 (二) 输入输出 ●雷达剖面的打印输出。 ●雷达剖面的图像文件输出。 ●将当前数据转换为SEGY等地震格式 (三) 标记管理 既可以在屏幕上直接删除和插入标记,也可以通过对话框编辑标记实现。 (四) 里程管理 可以进行标记控制里程管理,也可以进行道间距里程管理。这两种里程管理模式可以相互转换。 (五) 处理功能 处理功能很多,主要参见如下: (六) 数据分析 ●速度分析 ●各种谱值分析 (七) 解释系统 解释系统是本软件具有独特功能的研究成果 ●层位自动识别和追踪,与里程结合起来自动解释。 ●公路评价系统:自动评价公路厚度的合格率等重要参数。

地质雷达的应用

地质雷达的应用领域 探地雷达(Ground Penetrating Radar,简称GPR),又称地质雷达,是近些年发展起来的高效的浅层地球物理探测新技术,它利用主频为数十兆赫至千兆赫兹波段的电磁波,以宽频带短脉冲的形式,由地面通过天线发射器发送至地下,经地下目的体或地层的界面反射后返回地面,为雷达天线接受器所接受,通过对所接受的雷达信号进行处理和图像解译,达到探测前方目的体的目的。与传统的地球物理方法相比,探地雷达最大的优点就是具有快速便捷、探测精度高以及对原物体无破坏作用。因此,探地雷达在道路建设和公路质量检测领域已逐渐被认识到并广泛应用起来。 地质雷达自上世纪70年代开始应用至今将近30年了,其应用领域逐渐扩大,在考古、建筑、铁路、公路、水利、电力、采矿、航空各领域都有重要的应用,解决场地勘查、线路选择、工程质量检测、病害诊断、超前预报、地质构造研究等问题。在工程地球物理领域有多种探测方法,包括反射地震、地震CT、高密度电法、地震面波和地质雷达等,其中地质雷达的分辨率最高,而且图象直观,使用方便,所以很受工程界信赖和欢迎。 1.1 工程场地勘察 地质雷达最早用于工程场地勘查,解决松散层厚度分布,基岩风化层分布,以及节理带断裂带等问题。有时也用于研究地下水分布,普查地下溶洞、人工洞室等。在粘土补发育的地区,探查深度可达20m以上,效果很好。 1.2 埋设物与考古探察 考古是地质雷达应较早的领域,在欧洲有成功的实例,如意大利罗马遗址考古、中国长江三峡库区考古等项目都应用了雷达技术。利用雷达探测古建筑基础、地下洞室、金属物品等。在现今城市改造中,有时也需要了解地下管网,如电力管线、热力管线、上下水管线、输气管线、通信电缆等,这对于地质雷实是很容易的。目前地质雷达为地下管线探测发展了

浅谈地质雷达在岩溶隧道超前地质预报中的运用

浅谈地质雷达在岩溶隧道超前地质预报中的运用 蒋帅男 (1.成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川成都610059) 摘要:近年来,随着我国交通事业的迅猛发展和西部大开发战略的实施,在岩溶地区修筑的隧道越来越多,而在岩溶地区隧道施 工中,对掌子面前方一定范围的地质情况进行准确超前预报却是保证隧道施工安全的关键。本文以中坝隧道为例,通过对拟掘进段 隧道勘察资料及工程地质条件的解读、隧道掌子面地质编录情况的判别和解译结果的综合分析,预判拟掘进段存在溶腔,并通过 超前钻孔揭示验证,得以及时采取有效措施,确保了生命及生产安全,表明在岩溶地区采用地质雷达进行超前地质预报是可行的。关键词:隧道;超前地质预报;地质雷达;岩溶; 1 前言 由于地面水和地下水的溶蚀作用,在碳酸盐岩地区发育着各种类型的岩溶地貌和岩溶形态,给工程建设带来一定的复杂性,每年都因不同程度的岩溶危害而造成巨大的经济损失和危及人身安全,而随着我国交通事业的迅猛发展和西部大开发战略的实施,在岩溶地区修筑的隧道越来越多,因此在岩溶地区隧道施工中,对掌子面前方一定范围的地质情况进行准确超前预报是保证隧道施工安全的关键。 超前地质预报方法用来准确预测隧道开挖工作面前方工程地质状况,可以减少施工的盲目性。采用科学的、先进的隧道超前隧道岩溶超前预报的手段有很多种,比如TSP、超前地质钻孔和地质雷达等。而地质雷达探测具有分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图像显示、处理速度快等优点,近年来在国内外岩溶预报上,比较受亲睐[1]。 本文以中坝隧道为例,具体阐述了地质雷达的基本工作原理及其在岩溶隧道超前地质预报中的测试方法,并针对岩溶预报雷达图像进行了具体的解译。最后通过对拟掘进段隧道勘察资料及工程地质条件的解读、隧道掌子面地质编录情况的判别和解译结果的综合分析[2],预判拟掘进段存在溶腔,并通过超前钻孔验证预判的准确性,得以及时采取有效措施,确保了生命及生产安全,实例表明在岩溶地区采用地质雷达进行超前地质预报是可行的。下面就将地质雷达在中坝隧道超前地质预报应用情况做一些阐述,并将其在岩溶预报上的规律进行总结,以期望对后续类似的工作具有借鉴意义。 2地质雷达的探测原理及方法 2.1探测原理 地质雷达是利用频率介于106~109Hz的无线电波来确定地下介质的一种地球物理探测仪器。岩溶洞穴、破碎带、岩溶水与完整围岩存在明显的电性差异, 对地质雷达发射的电磁波能形成强反射界面, 以此来探测不良地质体。地质雷达的基本原理如图1所示。 发射天线将高频短脉冲电磁波定向送入地下, 电磁波的传播取决于地质体的电性如电导率μ和介电常数ε。电导率μ主要影响电磁波的穿透深度, 介电常数ε决定电磁波在地质体中的传播速度。电磁波在传播过程中遇到存在电性差异的地层或目标体就会发生反射和透射, 接收天线收到反射波信号并将其数字化, 然后由电脑以反射波波形的形式记录下来。对所采集的数据进行相应的处理后, 可根据反射波的传播时间、幅度和波形, 判断地下目标体的空间位置、结构及其分布。探地雷达是在对反射波形特性分析的基础上来判断地下目标体的, 所

探地雷达操作规程

探地雷达操作规程 (文件编号:****-010) 共1页第1页版本/版次:D/ 0 生效日期:2016-01-01 1. 目的 为了使检测员更好地熟悉和掌握检测仪器的操作方法,保证检测数据的科学、公正和准确性,特制定本规程。 2. 适用范围 适用于探地雷达仪器 3 操作步骤 3.1测试前的安装准备 检查所有部件是否带齐,包括:电池、雷达主机、数据线、处理器电源线、信号线、工具箱、备件、固定用绑扎带、记录本; 3.2试验/检测的工作程序 (1)测试连接。将地质雷达天线通过支架安装。 (2)在扫描前调试主机并对主机进行参数设置。 (3)打开电源,控制天线移动的人员根据操作主机的人员口令,将天线紧贴待测界面上匀速移动。 (4)测试结束。按下stop结束测试点,保存文件并退出; (5)拆除信号线,拆除天线,支架。 3.3扫描之前的仪器调试和参数设置 (1)菜单系统—>设置—>调用,选择所用的天线。 (2)系统—>单位垂直刻度设为时间,单位为ns (3)测程:900M天线探测混凝土的量程约为15纳秒,为使所有有效信号完全显示,一般设置为20ns (4)采样点数:一般设为512或1024 采样点数越多,扫描曲线越光滑,垂直分辨率越好。但是采样点数增大,使得扫 描速率下降 (5)每秒扫描数:64 (6)增益点数:2 (7)垂向高通滤波器:225MHz

(8)垂向低通滤波器:2500MHz (9)数据位:16位 (10)发射率:100 KHz,发射功率越高,采集速度越快,但若采集过高,易损坏雷达系统 (11)信号位置设为手动 (12)表面设为0 (13)调出完整的直达波(首波),调整延时参数 若检测结构与上次相同,可不再次设置以上参数,系统默认上次检测参数。 (14)增益设置为自动,增益函数手动设置,可以改变增益点数多少、并且可以调整各增益点的函数大小,进而调整信号强度。增益函数调整过大,在探测资料中可能 人为造成假象。设置方法为先设为手动,再设为自动。 编制/日期:批准/日期:

地质雷达在工程中的应用

地质雷达在工程中的应用 李勃 (辽宁省有色地质局一0八队,沈阳 110121) 摘 要:探地雷达是近年来发展起来的一种物探新技术新方法。本文介绍了其基本原理及在岩溶地质勘探、地下管线探测、高速公路检测中应用的实例分析,重点阐述了雷达图像的推断解释,同时表明地质雷达具有快速经济、灵活方便、剖面直观等优点,具有良好的实用性。 关 键 词:地质雷达 实例分析 实用性 1 前 言 地质雷达,全称地质勘探雷达系统(Ground Penetrating Radar )(简称GPR)。它是通过向所探测地面下方发射高频电磁波束、并接受来自地下的介质界面的反射波来探测地下介质分布的地球物理勘探设备。其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图像显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、矿产资源研究、生态环境检测、城市地下管网普查等众多领域,取得了显著的探测效果和社会经济效益,本文以三个实例,说明探地雷达技术在工程中的应用效果。 2 基本原理 地质雷达是一种使用高频电磁波探测地下介质分布的非破坏性探测仪器。它 通过剖面扫描的方式获得地下剖面的扫描图像(图1)。雷达通过在地面上移动的发射天线向地下发射高频电磁波, 电图1 地质雷达探测工作 图2 雷达波形记录示意图 天线天线 地面基岩面溶洞 点位(m) 12345670 双 程 时 间 (ns)

磁波在介质中传播时,其电磁波强度与波形将随所通过介质的电性质及几何形态而变化。因此,根据接收到波的旅行时间(亦称双程走时)、幅度与波形资料,可推断介质的结构。雷达图形常以脉冲反射波的波形形式记录,波形的正负峰分别以黑、白表示,或者以灰度或彩色表示。这样同相轴以等灰度、等色线即可形象地表征出地下反射面。图2为波形记录的示意图,图上对照一个简单的地质模型,画出了波形的记录,在波形记录图上各测点均以测线的铅垂方向记录波形,构成雷达时间剖面,通过对雷达图像的判读,可确定地下界面或地质体的空间位置及结构。 3 工程实例 3.1 岩溶地质勘探 本次工作任务是探测挖掘坑深部15米内有无岩溶洞穴、溶槽溶沟、溶蚀裂隙。挖掘坑为一溶洞,根据钻探资料可知,上面为洞穴堆积物,下面基岩层为灰岩。 地质雷达的观测方法采用剖面法。根据所揭示的地层分布特征,覆盖层的电 磁波平均速度一般为0.06~0.08 m/ns , 下伏灰岩电磁波平均速度一般为0.09~ 0.12m/ns;考虑雷达波的穿透能力,采用 100Mhz 天线,设定探测窗口为500ns , 采样点为1024,采取连续观测采集数据。 在隐伏基岩为灰岩的地区,溶蚀破碎带是一种较为常见的地质现象,一般情况下,致密的灰岩雷达波相特征是非常弱的反射或无反射,其周期较上覆黏土层应明显增加。而当致密的灰岩层在地下水的作用下发生溶蚀后,首先是以细微裂隙形式存在,且伴随溶蚀程度的提高而逐渐扩大,当这些细小的裂隙发展到一定程度后,常常会上下,左右连通,致使周围岩石破碎,进而形成溶蚀破碎结构。由于这些破碎的裂隙空间常常被空气、水以及黏土等物质所充填,进而使得裂隙与围岩之间接触面两侧的波阻抗存在差异,因此,当雷达波运行到这些波阻抗存在差异的接触面时,将会发生反射、折射和绕射,形成杂乱的强波阻抗反射特征。 当溶蚀裂隙扩展到一定程度,便发育成溶洞。溶洞雷达图像的特点是被溶图3 溶蚀破碎带雷达变面积曲线图 破碎

地质雷达报告

福州绕城公路东南段 南峰隧道超前地质预报 (地质雷达) 编号:BG-CQYB-A16-001 合同段:A16合同段 施工单位:中铁十七局集团第一工程有限公司探测范围:右线出口LYK8+335~LYK8+310 编制: 校核: 检测单位:中国科学院武汉岩土力学研究所 检测日期:2013年12月27日 报告日期:2013年12月27日

一、工作概况 2013年12月27日,中国科学院武汉岩土力学研究所对福州绕城公路东南段A16合同段南峰隧道出口右洞进行了超前地质预报,采用GSSI 公司生产的SIR-20地质雷达进行数据采集,配属100MHZ 的屏蔽天线进行了探测。本次探测范围为右线出口LYK8+335~LYK8+310,共25m 。 二.预报的方法技术 (一) 地质雷达超前预报的基本原理 地质雷达(Ground Penetrating Radar ,简称GPR)是近年来应用于浅层地质构造、岩性检测的一项新技术,其特点是快速、无损、连续检测,并以实时成象方式显示地下结构剖面,使探测结果一目了然,分析、判读直观方便。因探测精度高、样点密、工作效率高而倍受关注。随着该项技术的不断完善和发展,其应用领域不断扩展。 隧道地质雷达超前预报方法是一种用于确定隧道掌子面前方介质分布变化的广谱电磁波技术。如图1所示,利用一个天线向掌子面前方发射无载波电磁脉冲,另一个天线接收由岩体中不同介质界面反射的回波,利用电磁波在岩体介质中传播时,其路径、电磁场强度与波形将随所通过介质的电性 质(如介电常数Er) 及几何形态的变化差异,根据接收到的回波旅行时间、幅度和波形等信息,来探测掌子面前方介质的地层结构与异常地质体。 理论研究与实验室模拟试验证明,电磁波在物体或介质中的传播速度v 、走时t 、与介质的相对介电常数Er 有如下关系: v x z t 2 24+= r c v ε=

浅谈煤矿开采中地质勘探技术的重要作用

摘要:矿产资源是国民经济和社会发展的重要物质基础,,如何准确有效的进行矿产勘查是摆在地质工作者面前的一个问题,因此我们应重视新理论、新技术、新方法的利用,同时结合以往多种勘查手段,以期提高各类矿床发现能力,取得良好的经济效益。文分析了煤田矿井开采中的地质勘探问题,论述了当前煤田矿井地球物理勘探主要技术方法的应用及特点, 提出了多波多分量地震勘探、矿井高密度直流电法、矿井瞬变电磁法及地质雷达等新技术新方法及其综合应用将在煤矿地质因素预测预报中发挥重要作用。 关键词:矿产勘查成矿理论技术研究煤矿开采地质勘探工作面

浅谈煤矿开采中地质勘探技术的重要作用 一、前言 (一)煤矿开采技术的介绍 矿井由于受地质条件差、断层发育、煤厚变化大等地质因素的影响,造成生产接续紧张,采用综合勘探方法,多种勘探手段结合并用,地面采用三维物探手段,井下先期施工多用途探巷,整理配合钻探及井下物探等手段,针对影响生产的地质因素开展各项专题研究,不断进行资料的动态综合分析,取得了较好的地质效果,为矿井的安全高效生产提供了有利的地质勘探预报保障。 1、开发煤矿高效集约化生产技术、建设生产高度集中、高可靠性的高产高效矿井开采技术。以提高工作面单产和生产集中化为核心,以提高效率和经济效益为目标,研究开发各种条件下的高效能、高可靠性的采煤装备和工艺,简单、高效、可靠的生产系统和开采布置,生产过程监控与科学管理等相互配套的成套开采技术,发展各种矿井煤层条件下的采煤机械化,进一步改进工艺和装备,提高应用水平和扩大应用范围,提高采煤机械化的程度和水平。 2、开发“浅埋深、硬顶板、硬煤层高产高效现代开采成套技术”,主要解决以下技术难题。硬顶板控制技术,研究埋深浅、地压小的硬厚顶板控制技术,主要通过岩层定向水力压裂、倾斜深孔爆破等顶板快速处理技术,使直接顶能随采随冒,提高顶煤回收率,且基本顶能按一定步距垮落,既有利于顶煤破碎,又保证工作面的安全生产。硬厚顶煤控制技术,研究开发埋深浅、支承压力小条件硬厚顶煤的快速处理技术,包括高压注水压裂技术和顶煤深孔预爆破处理技术,使顶煤体能随采随冒,提高其回收率。顶煤冒放性差、块度大的综放开采成套设备配套技术,研制既有利于顶煤破碎和顶板控制,又有利于放顶煤的新型液压支架,合理确定后部输送机能力。两硬条件下放顶煤开采快速推进技术,研究合适的综放开采回采工艺,优化工序,缩短放煤时间,提高工作面的推进度,实现高产高效。5~5.5m宽煤巷锚杆支护技术,通过宽煤巷锚杆支护技术的研究开发和应用,有利于综采配套设备的大功率和重型化,有助于连续采煤机的应用,促进工作面的高产高效。 3、缓倾斜薄煤层长壁开采。主要研究开发:体积小、功率大、高可靠性的薄煤层采煤机、刨煤机;研制适合刨煤机综采的液压支架;研究开发薄煤层工

地质超前预报作业指导书

地质超前预报作业指导书 一、目的 为确保隧道施工安全质量,根据设计提供的工程及水文地质资料,结合地质超前预报,进行分析研究,制定完整的施工技术方案。做好技术、物质、机械设备的储备,避免地质灾害的发生。使之达到施工设计及施工规范的要求及工期目标的实现,特制订本作业指导书。 二、使用范围 本指导书适用于隧道黄土Ⅴ级围岩洞身段开挖施工。 三、依据 1、双线客运专线施工技术指南(报批搞); 2、铁路隧道施工规范及验收规范《铁建设【2005】160号》; 3、铁路隧道喷锚构筑法技术规范《TB10108-2002》。 4、甬台温铁路施工图; 5、《铁路隧道施工规范》-TB10204-2002 6、《铁路隧道工程质量检验评定标准》-TB10417-98 四、加强隧道地质预报和围岩监控测量 山后隧道穿越地段工程地质条件复杂主要为粉质粘土、角砾土、粉砂岩及硅质岩层,隧道安全问题为隧道工程施工的重点。为此成立

专门的地质预报小组,工程施工中采用超前TSP-203型地质预报仪及BK2000型地质雷达进行探测预报不良地质,严格按新奥法原则进行施工,采用CRD、CD、台阶法进行施工,并建立完善的安全控制体系,确保施工安全。 五、超前地质预报 山后隧道根据地质特点,本着以“早预报、早预防”的原则组织施工,本隧道采用地质调查、TSP-203超前地质预报、钻孔超前探测、开挖面及其附近的地质观测素描和地质作用等综合手段,预测不良地质的位置、性质、规模和对施工的影响程度。 针对本隧有断层破碎带、岩溶等不良地质和设计阶段地质勘测异常区,采用超前地质预测方法主要有: 地质素描法进行预报;TSP203超前地质预报仪进行距离100m~200m的超前预报;采用地质雷达、红外探水仪、HSP水平声波反射法和超前地质钻孔进行距离在30m~50m的预报。 超前地质预报工作内容及方法分别见图5-1“主要地质预报工作范围图”和表5-2“各不良地质段采取的地质预报方法”。 图5-1 主要地质预报工作范围图

美国GSSI地质雷达隧道超前预报介绍与资料处理

美国地质雷达隧道超前预报工作介绍目前我们国家地下隧道建设工作量大,地质条件复杂,有灰岩地区、花岗岩地区、黄土高原、第四季覆盖等等。 隧道开挖中常常遇到岩溶发育、出现大的空洞,充水或者充泥,有时地下暗河发育;也会遇到构造带,或者岩石破碎,同时地下水发育,这给隧道开挖和建设造成很多困难,同时也给隧道运营造成一定的隐患。因此需要采用一定的手段对这些地质构造和地质灾害进行探测和预报,提前采取措施来排除灾害。 工作任务 为了能够探明隧道开挖面(俗称"掌子面")前方的地质构造,通常采用多种方法进行综合分析、探测、预报。常见的方法有:地质分析,地球物理探测(声波法、直流电法、电磁波方法),钻孔方法,或者超前导洞等等。采用各种地球物理方法进行探测,分别给出探测结果,综合地质构造情况,进行综合解释,给出掌子面前方的地质构造和可能的地质灾害信息。 探测前提条件 隧道开挖中遇到的地下材料或者介质,主要有石灰岩、花岗岩、大理岩、砂岩、第四季覆盖、沙土、黄土,还有地下水、空洞等等。由于这些材料的物理性质有很多种,比如密度、导电率、介电常数、磁导

率等等。 声波超前预报。由于密度不同、声波传播速度不同,可以采用声波法进行探测,出现了地震波超前预报。 直流电法超前预报。根据导电率的差异采用直流电法,预报掌子面前方材料的导电率差异,尤其是含盐份的地下水表现为良导体、而空气为高阻体; 地质雷达预报。根据导电率、介电常数、磁导率的差异,采用地质雷达高频电磁波方法进行探测,获取掌子面前方材料的介电常数差异信息, 瞬变电磁预报。由于岩石、土壤、水、空气的电磁响应不同,采用瞬变电磁方法探测材料的差异。 目前这4种方法在隧道超前预报中都有使用,尤其是地质雷达超前预报方法得到了普遍使用,利用地质雷达方法在隧道掌子面上进行探测,对隧道开挖超前预报,下面介绍这部分内容。 探测仪器 地质雷达方法通常采用高频电磁波发射法工作,频带范围为几兆赫兹到几千兆赫兹,不同的频率探测深度不同,低频电磁波探测深度较大,因而出现了不同中心频率的天线,商业地质雷达通常采用窄脉冲宽频带电磁波信号工作,一般情况下100兆天线在土壤、破碎的岩石、基岩上探测深度范围从几米到十几米甚至30米左右。 目前隧道开挖地质超前预报距离正好是要求在十几米到30米左

地质雷达

探地雷达使用提纲 1、适用范围及适用条件 2、设计规范及收费标准 3、不同地质情况的雷达波形特征 1、适用范围及适用条件 1.1适用范围: 探地雷达法适用于基岩深度、水位深度、软土层厚度与深度,断裂构造等地质工程探查,城市路面塌陷、岩溶塌陷、土洞、滑坡面等地质灾害调查,地下水污染带监测,地基加固效果评价,路面、机场跑道、洞室衬砌检测,堤坝隐患,地下泄露,地下管线及其他埋设物探测,考古探查等。 1.2适用条件: (1)探测目的体与周边介质之间应存在明显介电常数差异,电性稳定,电磁波发射信号明显; (2)目的体在探测深度或距离范围内,其尺寸应满足探测分辨率的要求; (3)测线上天线经过的表面应相对平缓,无障碍,且易于天线移动; (4)测区内不应存在大范围金属构件、无线电发射频源等较强的电磁波干扰,或通过处理无法消除的干扰; (5)不应存在极低阻屏蔽层; (6)单孔或跨孔检测时不得有金属套管; 2地质雷达测线测点设计规范及收费标准 2.1测线测点设计规范 2.1.1工程物探应根据任务要求、探测方法、目的物的规模与埋深等因素综合确定工作比例尺,测网布置应与工作比例尺一致,测网密度应能保证异常的连续、完整和便于追踪; 2.1.2布置测线时,测线方向宜避开地形及其它干扰的影响,应垂直于或大角度相交于目的物或已知异常的走向,岩溶、采空区、防空洞等走向多变体的探测宜布设两组相互正交的测线; 2.1.3测线长度应保证异常的完整和具有足够的异常背景; 2.1.4探测范围内有已知点时,测线应通过或靠近该已知点的布设;

2.1.5点测时,测点布设位置、测量应满足资料解释推断的需要; 2.1.6工作比例尺确定后,宜参照表1选择测网密度。 表1 工作比例尺与测网密度 比例尺线距(m)点距(m)点测(点/km2)1∶25000 250 25-50 10-20 1∶10000 100 10-20 80-120 1∶5000 50 10-20 300-400 1∶2000 20 5-10 2000-2500 1∶1000 10 1-5 -- 1∶500 5 0.5-2 -- 2.2收费标准 地质雷达探测收费参见《工程勘察设计收费标准》第7章——工程物探,收费标准见表2 表2 地质雷达收费标准 地质雷达 工作方式工程勘探路面质量点测点20 (元/点)20(元/点) 连续km 13500(元/km)6300(元/km)探淤深度>10m,附加调整系数为1.3;不足4个组日按4个组日计

浅谈探地雷达法检测路面结构层

浅谈探地雷达法检测路面结构层 【摘要】以探测雷达在某高速公路上的路面结构层缺陷检测为例,阐述了探测雷达在路面结构检测的原理、方法、数据结果分析等。 【关键词】探测雷达;路面结构;检测 1路面结构层缺陷检测的意义 随着我国道路交通量日益增大,车辆迅速大型化以及超载现象,使公路路面面临严峻的考验。因此路面病害检测的作用凸显出来,其中路面结构层缺陷检测是路面病害检测的一项重要内容,通过探地雷达的检测可以达到识别地下目标物和道路结构层内隐伏缺陷的目的。根据病害程度采取相应的补救措施,保证路面的通行质量同时也有利于对公路路面的设计、施工等各方面提供有力的资料和经验。本文通过探地雷达法对某高速部分路段检测为例浅谈路面结构层缺陷检测。 2设备原理 图2.1探地雷达工作原理示意图 探地雷达方法(Ground Penetration Radar,简称GPR)是一种采用短脉冲宽带高频电磁波信号检测地下介质分布的新技术。根据电磁波在有耗介质中的传播特性,通过天线连续拖动的方式以宽频带短脉冲的形式向地下发射高频电磁波,电磁波信号在地下介质内部传播时遇到不同介质的界面时,就会发生反射、透射,其反射系数(反射信号的强度)主要由上、下层介质的相对介电常数决定。上、下层介质的介电常数差异越大,反射的电磁波能量也越大;反之,越小。反射的电磁波被与发射天线同步移动的接收天线接收后,通过雷达主机精确记录反射回的电磁波的运动特征,获得地下介质的扫描图像,通过对扫描图像进行处理,对地质雷达剖面上目标层(体)的反射波时间延迟、波形特征以及剖面的宏观和微观形态组合进行解译,达到识别地下目标物和道路结构层内隐伏缺陷的目的。 电磁波在特定介质中的传播速度V是不变的,因此,根据探地雷达记录上的地面反射波与地下反射波的时间差△T,即可据下式算出地下异常的埋藏深度H: H=V·△T/2(1) 式中,H即为目标层厚度;V是电磁波在地下介质中的传播速度,由下式表示: V=C/■(2) 式中,C是电磁波在大气中的传播速度,约为3×108m/s;ε为相对介电常数,取决于地下各层构成物质的介电常数。 雷达波反射信号的振幅与反射系数成正比,在以位移电流为主的低损耗介质中,反射系数r可表示为: r=■(3) 式中,ε1、ε2为界面上、下介质的相对介电常数。对公路检测而言,ε1为面层的相对介电常数,ε2为基层的相对介电常数。由公式(3)可知,雷达波的穿透深度主要取决于地下介质的电性和中心频率。导电率越高,穿透深度越小;中心频率越高,穿透深度越小,反之亦然。反射信号的强度主要取决于上、下介质的电性差,电性差越大,反射信号越强;反之,越小。对沥青混凝土面层而言,面层与基层(稳定层)存在明显的电性差,可以预期面层底部会有强反射出现。不同面层(上、中、下)之间所用材料也存在细微差别,因此也可以得到较弱的

相关文档