文档库 最新最全的文档下载
当前位置:文档库 › 加筋壁板在不同边界条件下的稳定性分析_徐建

加筋壁板在不同边界条件下的稳定性分析_徐建

加筋壁板在不同边界条件下的稳定性分析_徐建
加筋壁板在不同边界条件下的稳定性分析_徐建

图1试验件

加筋壁板在不同边界条件下的稳定性分析

建,朱书华,童明波

(南京航空航天大学飞机设计技术研究所,南京210016)

要:对T800纤维增强复合材料加筋壁板进行压缩稳定性有限元分析和试验,研究加载端固支与四边简支条件

下,边界条件对结构的屈曲模态和屈曲载荷的影响。有限元数值分析和试验结果表明,在不发生板平屈曲的条件下,两类不同的边界条件对屈曲模态和载荷都有所影响。同时,试验还有效地验证了有限元数值分析结果。通过有限元分析得到的屈曲载荷和模态与试验得到的结果也能较好地吻合。关键词:复合材料加筋壁板;边界条件;压缩;屈曲中图分类号:V214.1

文献标识码:A

文章编号:1671-654X (2012)06-0041-04

Analysis of Stiffened Panel Stability under Different Boundary Conditions

XU Jian ,ZHU Shu-hua ,TONG Ming-bo

(Aircraft Design and Research Institute ,Nanjing University of Aeronautics and Astronautics ,Nanjing 210016,China )

Abstract :The stability test and FEM simulation under compression load was investigated for the T800composite stiffened panel.This paper analyzed the influence of boundary conditions to buckling model and buckling load of structures with loading end fixed and four sides simply -supported.The results of FEM and test indicated that two different kinds of boundary conditions both had some influence on the buckling model and buckling load without overall buckling.Meanwhile ,the test sufficiently verified the results of FEM simulation.Finally ,the results of buckling model and buckling load from FEM analysis also fit the test results well.

Key words :composite stiffened panel ;boundary condition ;compression ;buckling

引言

随着国内工业化程度和制造水平的提升,飞机机翼等主要承载结构已经开始广泛使用先进的复合材

料。尤其是在国内大力发展大飞机的契机下,复合材料典型结构的力学性能成为很多专家学者研究的重点内容之一。

复合材料薄壁结构是工程中应用比较广泛的一种结构,受面内压缩、剪切等载荷作用时,常见的失效模

式为屈曲失稳

[1-3]

。目前,国内外学者对复合材料加筋板的屈曲问题

进行了大量的理论和试验研究

[4-5]

,但大部分学者和

专家都忽略了边界条件对此类结构的影响分析。作者对工型复合材料加筋壁板进行轴压载荷下的试验研究和有限元分析,得出边界条件对典型复合材料结构稳定性的模态和载荷影响。为改型结构在实际工程应用提供试验和分析参考。

1试验件及夹具

试验件为550mm ?590mm 和550mm ?710mm

的大尺寸复合材料工型加筋壁板结构,试件的端部通过灌注含玻璃珠的环氧进行加强,试件如图1所示。固支边界的试验件编号为C1,而简支边界的试验件边界为C2。试件的考察段均为550mm ?500mm 的中间区域。

收稿日期:2012-08-21

基金项目:南京航空航天大学基本科研业务费专项科研项目资助(56XZA11061)作者简介:徐

建(1987-),男,江苏南京人,硕士,主要研究方向为飞机复合材料结构设计。

第42卷第6期航空计算技术

Vol.42No.62012年11月Aeronautical Computing Technique

Nov.2012

试验依照边界的不同,共有加载端固支和四边简支两类试件。两类试件均采用T800材料,材料的单层厚度均为0.188mm,采用碳纤维织物/环氧预浸料,蒙皮与工型筋条共固化成型。

为了能够准确地实现试验中的简支加载条件,试验设计了一套特有的辅助夹具。试验中须保证夹具有足够大的刚度以至于在结构失效时夹具不发生明显的变形。

最后,本试验通过使用静态应变仪DH3816完成对指定位置的应变采集,测量中预设点的应变片轴向与载荷的施加方向一致,应变片的具体位置如图2所示。图中应变片位置的确定是基于有限元软件ABAQUS/EXPLIC线性屈曲模态的分析。

图2正反面应变片布局

2有限元仿真与试验

2.1有限元分析

根据试件的实际情况,在试验前使用有限元数值分析软件ABAQUS/EXPLIC对试件进行了有限元建模和分析,模型中的蒙皮和筋条均采用壳单元,而树脂填充段采用三维实体进行模拟。

通过计算,最终选取在1#应变片位置处所得的有限元数值分析结果和试验结果进行对比,得到不同边界条件下的载荷-应变曲线。

2.2试验

试验分为固支压缩试验和简支压缩试验。

固支压缩试验通过加载平台与试验件的面接触来实现固支条件。试验中,试验机的轴向压缩载荷通过试验加载平台转换为均布载荷施加在试验件上来完成试验加载。试验中通过采集预设测量点的应变以及试验机的压缩载荷是否出现突变来确定试件是否发生屈曲,最终得到试件的屈曲载荷和应变数值。

简支条件下,由于简支试件C2的筋条间距与筋条长度的比值小于1:4,根据经典的稳定性分析理论,确定此类试件在轴向压缩载荷下不会发生板平屈曲。基于这样一个条件,本试验设计了一套简单有效的夹具来实现简支加载条件。因此,简支压缩试验是在固支试验的基础上增加了一套辅助夹具来实现的,试验中须确保考察段在加载的过程中处于简支条件下。

两类试验中,试验人员均只需观察同一位置正反两面的应变片的数值是否出现分叉来判断该结构是否发生屈曲。

2.3载荷-应变曲线

分别选取两类试件,说明有限元数值分析和试验情况。图3选取固支条件下的压缩试验件C1在1#、2#位置下应变片的载荷-应变曲线;而图4则是简支条件下的压缩试件C2在相同位置下的载荷-应变曲线。

图3C1试件的有限元和试验结果

图4C2试件的有限元和试验结果

图4中的虚线表示有限元分析的结果,实线则为试验结果。可以看出在相同位置下,两类试件在屈曲前的曲线线性度和正反面应变的重合度都非常理想,这表明在试验的过程中并未出现载荷偏心等人为因素和机器原因造成的试验误差。

通过对比分析,图中试验测得的屈曲载荷要略低于计算得到的结果,而屈曲应变值则要略高于计算值。结果表明实际结构的材料强度和刚度都要低于名义

·

24

·航空计算技术第42卷第6期

值,其主要原因是由于试件的加工误差和初始缺陷造成的。

从图中的曲线还可以看出,在应变到达3300με左右时曲线出现明显的分叉,这表明试件在测量点已经开始出现屈曲变形,结构开始出现局部屈曲,此刻得到的载荷应为试件的初始屈曲载荷。而曲线的后端的非线性区域则表明试件已经进入后屈曲阶段。此外,当图中测量点的应变到达3300με左右时,曲线向上表明此处出现的是波谷,而曲线向下则表明此处出现的是波峰。

对比四组曲线,可以明显地看出通过有限元计算数值分析得到的结果无论是在屈曲前,还是进入后屈曲段,曲线的变化趋势都与试验值很吻合。这表明计算中结构的受力形式和承载能力都与真实结构非常接近,结果表明有限元数值分析对试验有很好的预见性和参考性。

2.4屈曲模态与屈曲载荷

分别从有限元分析数值分析和试验中得到试件的压缩屈曲模态和屈曲载荷,并对比有限元分析结果与试验结果存在的误差以及两类边界条件对试件在相同

图5C1试件的有限元一阶屈曲模态

图6C1试件的Moire云纹屈曲模态考察区的影响。图5、图6为试件C1的有限元屈曲模态和试验中Moire云纹屈曲模态。

本试验均从试件的中间位置开始观测波形,由于试验条件限制未能进行全场光学测量。然而,经过对比分析试验得到的屈曲模态与有限元计算得到的结果,两者基本吻合。但是在固支和简支条件下,试件在考察区域的屈曲波形不一致,简支条件与固支条件相比整体偏移了半个波形。分析表明试件C2的简支夹具起到了隔波效果的作用。

选取在1#位置处所得的有限元数值分析和试验的屈曲载荷和应变结果进行比较分析,如表1所示。

表1试件的屈曲载荷和应变

方法

固支(C1)

屈曲载荷

/kN

屈曲应变

/με

简支(C2)

屈曲载荷

/kN

屈曲应变

/με

有限元1067-31531133-3270

试验1025-33461130-3609

从表1中的的结果可以看出试验值和分析值较吻合,载荷和应变的分布趋势也和之前理论分析的也基本一致。

3结果对比与分析

通过对两类边界条件下的复合材料加筋板进行的轴向压缩试验,得出以下相关结果:包括载荷-应变曲线,屈曲模态以及屈曲载荷,并通过建立符合试验方法的有限元模型进行数值模拟仿真。

选取在1#位置处所得的有限元数值分析和试验的屈曲载荷和应变结果进行对比,有限元数值分析所产生的误差如表2所示。

表2载荷和应变的有限元误差

约束载荷误差/%应变误差/%固支(C1)4.985.77

简支(C2)2.659.39

通过表2对有限元结果的误差分析,误差较为理想。由于实际试件的结构缺陷和材料缺陷,造成以上误差在工程上是可以接受的。同时,试验结果还表明,如果在不允许此类试验进行的条件下,该类结构的有限元数值分析结果是可信的,有限元的分析方法是可行的。

对比分析两类边界条件对压缩试件的稳定性影响,结果如表3所示。

从表3中可以看出固支条件与简支条件下的载荷和应变的相对误差较为理想,而造成误差的主要原因

·

34

·

2012年11月徐建等:加筋壁板在不同边界条件下的稳定性分析

表3载荷和应变的试验数值对比结果

方法

固支(C1)

屈曲载荷

/kN

屈曲应变

/με

简支(C2)

屈曲载荷

/kN

屈曲应变

/με

试验1025-33461130-3609相对误差/%10.247.86

可能是夹具对试件C2有少许的附加刚度和试件本身的尺寸偏大有关。因此,简支条件下考察区的试验数据偏大也是符合规律的。

4结论

1)通过对同一类压缩试件在两种不同边界条件下的试验分析,基本可以确定该类试件的屈曲模态是有所不同的。但是,两类试件均出现了对称局部失稳波形。

2)在不考虑试件加工和试验误差的影响下,可以确定两类边界条件对相同压缩试件的失稳载荷几乎没有影响。

3)通过试验得到的数值还对有限元分析方法进行了验证,由于有限元模型采用名义尺寸建模,分析中所得到的数值与实际试验值有所偏差,但所造成的误差均在理想的工程误差范围之内。此外,有限元分析得到的数据的增长趋势与试验结果基本一致,为今后改型结构在实际工程应用提供试验和分析参考。

参考文献:

[1]中国航空研究院.复合材料结构设计手册[M].北京:航空工业出版社,2001.

[2]中国航空研究院.复合材料结构稳定性分析指南[M].北京:航空工业出版社,2002.

[3]孙为民,童明波,董登科.加筋壁板轴压载荷下后屈曲稳定性试验研究[J].实验力学,2008,23(4):333-338.[4]Hwang Shunfa,Liu Guihuan.Buckling Behavior of Composite Laminates with Multiple Delamination under Uniaxial Com-

pression[J].Composite Structures,2001,53(1):235-243.[5]Kong C W,Lee I C,Kim C G,et al.Postbuckling and Failure of Stiffened Composite Panels under Axial Compression[J].

Composite Structures,1998,42(1):13-21.

(上接第40页)

换热分布的影响,在深入分析旋转附加力的基础之上,得出了以下结论:

1)旋转状态下,通道内各面换热的变化是和通道内流场的变化密切相关的,由于哥氏力在垂直于旋转半径的截面上的不均匀分布,中间大四周小,引起了流动主流向哥氏力指向面的偏移和二次流旋涡的出现,对通道内各面换热的影响比较大。

2)旋转附加力推动中心流体流向尾缘并沿两侧壁形成回流,形成了涡心偏向侧壁的双涡结构。

3)由于旋转导致内流通道流场的变化,进而影响了通道各壁面的换热情况,Ro=0.00,0.12,0.24三种转数下通道的同一截面温度场分布各不相同,Ro越大温度梯度越大。

4)随着旋转数Ro的增加努塞尔数Nu增大,换热效果越明显,并且通道的前表面要比后表面换热效果好。

参考文献:

[1]徐国强,杨博,陶智,等.哥氏力对旋转方通道内流动与换

热的影响[J].热科学与技术,2008,7(4):291-295.[2]刘传凯,丁水汀,陶智.旋转附加力对方通道内流动与换热的影响机理[J].北京航空航天大学学报,2009,35(3):

276-321.

[3]邓宏武,陶智,徐国强,等.旋转带肋U型通道内流动与换热的数值模拟[J].推进技术,2005,26(4):206-301.[4]Mohammad A Elyyan,Danesh K Tafti.Effect of Coriolis Forces in a Rotating Channel with Dimples and Protrusions

[J].International Journal of Heat and Fluid Flow,2010,31

(1):1-18.

[5]丁水汀,王彬,刘传凯,等.不同宽高比旋转方形通道内部流体流动与换热的数值研究[J].热科学与技术,2007,6

(4):304-308.

[6]金文.旋转对涡轮工作叶片内冷通道换热影响的研究[J].汽轮机技术,2008,50(4):273-275.

[7]王福军.计算流体动力学分析———CFD软件原理与应用[M].北京:清华大学出版社,2004.

·

44

·航空计算技术第42卷第6期

《土木工程力学》课程标准[详]

《土木工程力学》课程标准 课程名称:土木工程力学 适用专业:建筑工程技术专业 总学时:120 理论学时:108 实践学时:12 学分:8 1前言 1.1课程的性质 《土木工程力学》是建筑工程技术专业的一门专业必修课程,是建筑工程技术专业其他专业课程的基础,主要任务是阐明在外荷载作用下,建筑构件的受力分析方法,建立静力学平衡方程,解决杆件的受力问题,并给出相应的强度、刚度、稳定性的计算方法;研究结构的组成规律和合理形式以及结构在外因作用下的强度、刚度和稳定性的计算原理与计算方法,为保证所设计的结构既安全可靠又经济合理提供科学依据;学习土力学的基本概念,同时亦为后续课程如《建筑结构》提供必要的基础知识。1.2设计思路 本课程标准的总体设计思路:变三段式课程体系为任务引领型课程体系,打破传统的文化基础课、专业基础课、专业课的三段式课程设置模式,紧紧围绕完成工作任务的需要来选择课程容;变知识学科本位为职业能力本为,打破了传统的以“了解”、“掌握”为特征的学科型课程目标,从“任务与职业能力”分析出发,设定职业能力培养目标;变书本知识的传授为主为知识应用能力的培养为主,打破传统的知识传授方式的框架,以“工作项目”为主线,创设工作情景,培养学生的实践能力。 本课程标准以建筑工程技术专业学生的就业为导向,根据行业专家对建筑工程技术专业所涵盖的岗位群进行的任务与职业能力分析,以本专业共同具备的岗位能力为依据,遵循学生认知规律,紧密结合职业书中施工技能要求,确定本课程的工作模块和课程容。主要包括土木工程力学基本概念与基本原理、平面力系的平衡问题、平面体系的几何组成、构件的力计算、静定结构的力计算、构件的应力与强度计算、压杆的稳定计算、静定结构的位移计算与刚度校核、土力学基础。 本课程建议课时数为120学时。课时数以课程容的重要性和容量来确定。 2 课程目标 通过任务引领型的项目活动,掌握土木工程力学的相关理论知识,完成本专业相关岗位的工作任务。具有诚实、守信、善于沟通与合作的品质,树立工程安全意识,和良好的职业道德,为发展职业能力奠定良好的基础。

边界条件的设置

第二章:边界条件 这一章主要介绍使用边界条件的基本知识。边界条件能够使你能够控制物体之间平面、表面或交界面处的特性。边界条件对理解麦克斯韦方程是非常重要的同时也是求解麦克斯韦方程的基础。 §2.1 为什么边界条件很重要 用Ansoft HFSS求解的波动方程是由微分形式的麦克斯韦方程推导出来的。在这些场矢量和它们的导数是都单值、有界而且沿空间连续分布的假设下,这些表达式才可以使用。在边界和场源处,场是不连续的,场的导数变得没有意义。因此,边界条件确定了跨越不连续边界处场的性质。 作为一个 Ansoft HSS 用户你必须时刻都意识到由边界条件确定场的假设。由于边界条件对场有制约作用的假设,我们可以确定对仿真哪些边界条件是合适的。对边界条件的不恰当使用将导致矛盾的结果。 当边界条件被正确使用时,边界条件能够成功地用于简化模型的复杂性。事实上,Ansoft HFSS 能够自动地使用边界条件来简化模型的复杂性。对于无源RF 器件来说,Ansoft HFSS 可以被认为是一个虚拟的原型世界。与边界为无限空间的真实世界不同,虚拟原型世界被做成有限的。为了获得这个有限空间,Ansoft HSS使用了背景或包围几何模型的外部边界条件。 模型的复杂性通常直接与求解问题所需的时间和计算机硬件资源直接联系。在任何可以提高计算机的硬件资源性能的时候,提高计算机资源的性能对计算都是有利的。 §2.2 一般边界条件 有三种类型的边界条件。第一种边界条件的头两个是多数使用者有责任确定的边界或确保它们被正确的定义。材料边界条件对用户是非常明确的。 1、激励源 波端口(外部) 集中端口(内部) 2、表面近似 对称面 理想电或磁表面 辐射表面 背景或外部表面 3、材料特性 两种介质之间的边界 具有有限电导的导体 §2.3 背景如何影响结构 背景边界:所谓背景是指几何模型周围没有被任何物体占据的空间。任何和背景有关联的物体表面将被自动地定义为理想的电边界(Perfect E)并且命名为外部(outer)边界条件。你可以把你的几何结构想象为外面有一层很薄而且是理想导体的材料。 有耗边界:如果有必要,你可以改变暴露于背景材料的表面性质,使其性质与

Ansys12.0 Mechanical教程-5热分析

Workbench -Mechanical Introduction 第六章 热分析

概念 Training Manual ?本章练习稳态热分析的模拟,包括: A.几何模型 B B.组件-实体接触 C.热载荷 D.求解选项 E E.结果和后处理 F.作业6.1 本节描述的应用般都能在ANSYS DesignSpace Entra或更高版本中使用,除了?本节描述的应用一般都能在ANSYS DesignSpace Entra ANSYS Structural 提示:在S S热分析的培训中包含了包括热瞬态分析的高级分析 ?ANSYS

Training Manual 稳态热传导基础 ?对于一个稳态热分析的模拟,温度矩阵{T}通过下面的矩阵方程解得: ()[]{}(){} T Q T T K =?假设: –在稳态分析中不考虑瞬态影响[K]可以是个常量或是温度的函数–[K] 可以是一个常量或是温度的函数–{Q}可以是一个常量或是温度的函数

稳态热传导基础 Training Manual ?上述方程基于傅里叶定律: ?固体内部的热流(Fourier’s Law)是[K]的基础; ?热通量、热流率、以及对流在{Q}为边界条件; ?对流被处理成边界条件,虽然对流换热系数可能与温度相关 ?在模拟时,记住这些假设对热分析是很重要的。

A. 几何模型 Training Manual ?热分析里所有实体类都被约束: –体、面、线 ?线实体的截面和轴向在DesignModeler中定义 ?热分析里不可以使用点质量(Point Mass)的特性 ?壳体和线体假设: –壳体:没有厚度方向上的温度梯度 –线体:没有厚度变化,假设在截面上是一个常量温度 ?但在线实体的轴向仍有温度变化

机械设计基础(含工程力学)课程标准

- -- 机械设计基础(含工程力学)课程标准 课程代码:课程性质:必修课课程类型:B类课(一)课程目标 《工程力学》是机械设计与制造专业的一门重要的主干课程。在整个教学过程中应从高职教育培养目标和学生的实际情况出发,在教学容的深广度、教学法上都应与培养高技能人才目标接轨。通过本课程的学习,使学生达到以下目标: 1、深刻理解力学的基本概念和基本定律,熟练掌握解决工程力学问题的定理和公式。能将实际物体简化成准确的力学模型,应用力学基本概念和定理解决相关力学问题; 2、能对静力学问题进行分析和计算,对刚体、物系进行受力分析和平衡计算; 3、正确应用公式对受力不很复杂的构件进行强度、刚度和稳定性的计算; 4、通过应力状态分析建立强度理论体系。 5、步掌握材料的力学性能及材料的相关力学实验。掌握基本实验的操作及测试法 (二)课程容与要求 工程力学分为理论力学和材料力学部分。理论力学部分以静力学为主,包括静力学基础、力系的简化、力系的平衡。材料力学部分包括杆件的四种基本变形(轴向拉伸与压缩、剪切与挤压、扭转、弯曲)的力、应力和变形,应力状态与强度理论,组合变形杆的强度和压杆稳定。第一篇静力学静力学主要容有:力的概念,约束与约束反力,受力分析和受力图;力对点的矩,力对轴的矩,力偶与力偶系的简化,力的平移,力系的简化;平衡条件与平衡程,特殊力系的平衡,空间一般力系的平衡,物体系的平衡,平面静定桁架的力,考虑摩擦时的平衡。第二篇材料力学材料力学主要容有:材料的力学性能,拉伸与压缩时的力学性能,构件的强度、刚度和稳定性,强度条件、刚度条件,应力状态分析与四种强度理论。 课程要求:熟练掌握静力学的基本概念:四个概念、六个公理及推论、一个定理。能应用静力学的基本理论对刚体进行受力分析;明确平面任意力系的简化;熟练掌握平面力系的平衡程及其应用;掌握材料力学的基本概念;掌握四种变形式的力、应力、力图;学会四种载荷作用式下强度、刚度、稳定性计算;理解应力状态与强度理论。 (三)课程实施和项目设计 1、课程实施 高等职业技术教育培养的是应用性工程技术人才,结合模具专业及学生特点,对少 学时《工程力学》的教学采用讲授、练习、自学、集中答疑等多种法;在教学中要注意理论联系实际,讲解力学概念、原理和定理时,应从生活中的感性认识和生产实践中常见的实际力学问题出发,通过理想的抽象分析的实验观察,进行科学的逻辑推理,得出结论。要指导学生将已学的知识应用到专业理论的学习和生产实习中去,培养学生分析问题和解决问 . 优质专业.

边界条件

边界条件 边界条件有什么作用? ?边界条件可以施加到模型的节点、边缘或表面。 边缘或表面边界条件会将节点边界条件施加到边缘或表面上的每个节点。 ?当进行模型分析时,会为每个节点的每个自由度生成一个方程。如果将边界条件施加到某个节点,那么,因为该节点不会经历平动或转动,所以不会为该节点生成方程。 ?如果想构建悬臂梁模型,那么您会希望同时约束固定端的平动或和转动。 ?如果想构建简支梁模型,那么您会希望仅约束固定端点的平动。这种连接将允许该梁自由转动。 此连接也通称为平动约束连接。 ?每种单元类型都支持确定的自由度。如果您将边界条件施加到某个单元上的自由度,而该单元并不支持此自由度,那么该边界条件将被忽略。例如,桁架单元用于构建平动约束连接的模型,因此,无法抗拒转动。如果您将固定边界条件放置到桁架单元的一端,那么三个转动约束将被忽略。 施加边界条件 如果您选择了节点、边缘或表面,可以右键单击显示区并选择“添加” 侧开菜单。 选择“节点边界条件...”、“边缘边界条件...”或“表面边界条件...”命令。只能将边缘边界条件施加到由 CAD 实体模型生成的模型。 按“预定义”部分中的其中一个按钮,或者,激活“约束自由度”部分中的适当复选框。 “固定”按钮将激活所有六个复选框。 “自由”按钮将取消激活所有六个复选框。 “平动约束”按钮将激活“Tx”、“Ty”和“Tz”复选框。 “无转动”按钮将激活“Rx”、“Ry”和“Rz”复选框。 剩余六个按钮将施加对称或反对称边界条件。 刚性边界单元 刚性边界单元有什么作用? ?刚性边界单元可以施加到模型的节点、边缘或表面。 边缘或表面弹性边界单元会将节点弹性边界单元施加到边缘或表面上的每个节点。 ?刚性边界单元会将刚度施加到节点,从而抗拒沿全局方向或绕全局方向进行平动或转动。模型上实际添加了一个新节点。此节点上限制了指定的自由度。在此节点与施加节点刚性边界的模型节点之间,创建了一个新节点。此单元位于施加刚性边界单元的全局轴上。根据边界单元的类型(平动或转动),此单元的作用就像平动弹簧或扭转弹簧。刚度值指该弹簧的刚度。模型上节点的平动量或转动量将取决于该刚度值。刚度值高将允许节点作非常小的移动,或者不允许节点移动。刚度值低将允许节点作相当大的移动。 ?在相同的对话框中,您可以固定所有三个全局方向上的平动或转动。当然,在每个方向上,会将一个独立的节点刚性边界施加到模型。例如,如果您创建了刚性平动边界并选中了“全约束” 部分中的 X 和 Y 复选框,那么将创建两个节点刚性边界。一个在 X 向上起作用,另一个在 Y 向上起作用。 ?节点刚性边界和节点边界条件之间的不同在于,当弹簧刚度限制节点运动时,您可以查看当前节点刚性边界单元中现有的力或力矩。在“结果”环境中,使用结果:单元力和力矩侧开菜单。

时域、S域、Z域转换

自动控制中,基于时间考虑,控制系统包括时间连续和时间离散两种,对于连续时间控制系统,一般会考虑将其转换为s 域进行分析处理;对于离散时间控制系统,则一般考虑将其转换到z 域进行分析处理。在这几种空间域中,存在相互转换的关系。下面分别进行分析描述: 1 时域 时域是对控制系统最直观的描述,不管是连续还是离散控制系统,其结构都可以用时间来进行描述。 2 s 域 s 域又称为频域,其对控制系统的分析是纯数学分析,而时域则是对控制系统和控制过程的直观描述。一般将正弦波视为频域中唯一存在的波形(因为时域中的任何波形都可以用正弦波进行合成)注:任 何两个频率不同的正弦波都是正交的。如果将两个正弦波相乘并在整个时间轴上求积分,则积分值为零。这说明可以将不同的频率分量 相互分离开 。 3 z 域 z 域是对离散时间系统的描述,其来源于连续系统的拉氏变换,z 变换时对采样函数拉氏变换的变形。对连续时间系统进行采样,并对采样信号进行处理的空间域就称为z 域。 4 域间转换 4.1 时域到s 域 对于时域到s 域的转换可以跟踪积分、微分关系进行转换。如, 对于系统22()d i di f t A B C idt dt dt =++?,可根据积分、微分的对应,直接

将其转换为2()C F s As Bs s =++ 。对于系统的积分,一般都是考虑将积分转换为微分进行处理的。 结合拉普拉斯变换0()()st F s f t e dt ∞ -=?,可以对时域到S 域进行转换,另外,令s j ω=,则可以对S 域进行频域分析。 4.2 时域到z 域 对于时域到z 域的转换可以根据各次时间量的时间次序进行转换。如,对于系统()(1)(2)()(1)y t Ay t By t Cx t Dx t =---++-,则可以将 其转换为1 12 ()()()1Y z C Dz G z X z Az Bz ---+== -+。 结合z 域的含义,定义0 ()()n n E z e nT z ∞ -==∑,然后结合等比级数求 和的方法进行整合。 4.3 s 域与z 域 z 域可来自于时域,也可来自于s 域。 设连续函数()e t 是可拉氏变换的,且在0t 时,存在()0e t =,则拉氏变换式可以写为()()st E s e t e dt ∞ --∞=?。 对于采样信号()e t * ,存在0 ()()()n e t e nT t nT δ∞ * ==-∑。对此采样信号 进行拉氏变换,则可得:0()()()st n E s e nT t nT e dt δ∞ ∞ * --∞=??=-?? ?? ∑?。 结合()()()t nT f t dt f nT δ∞ -∞-=?,可以知道:0 ()()nsT n E s e nT e ∞ * -==∑ 其展开各相中均含有sT e ,令sT z e =,即1ln s z T =,则可得: 1 ln 0 ()()| ()n s z n T E z E s e nT z ∞ * -====∑。

ansys中的热分析复习过程

a n s y s中的热分析

【转】热-结构耦合分析 知识掌握篇 2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分 布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发 生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析, 然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如 热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳 态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析. 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的 分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即 先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知识,然后再学习耦合分析方法. 21.1.1 热分析基本知识

ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传递方式.此外,还可以分析相变,有内热源,接触热阻等问题. 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度 而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存 在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换 过程. 如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统 的热量:q流入+q生成-q流出=0,则系统处于热稳态.在稳态热分析中任一节点的温度不随时间变 化. 瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度,热流率, 热边界条件以及系统内能随时间都有明显变化. ANSYS热分析的边界条件或初始条件可分为七种:温度,热流率,热流密度, 对流,辐射,绝热,生热. 热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表21.1所示. 表21.1 热分析单元列表

《工程力学》课程标准

课程标准 专业层次:课程名称: 课程性质: 计划学时: 单位:机电汽车工程学院 安徽文达信息工程学院 二○一七年六月 工程力学 一、基本情况 8

二、课程概述 (一)课程性质地位 该课程是四年制本科专业基础课程。工程力学涵盖了原有理论力学和材料力学两门课程的主要经典内容。通过对《工程力学》的学习,学生可以掌握如何对处于静定平衡状态的物体进行静力分析和对构件进行强度、刚度和稳定性的分析。这门课以《高等数学》、《大学物理》为基础,也是进一步学习《机械原理》、《机械设计》等其它专业课程的基础。《工程力学》课程在机械设计专业人才培养计划中占有举足轻重的地位,是衔接基础课程与专业课程的纽带。 (二)课程基本理念 1、指导思想 以学院“人才培养方案”为依据,以培养“基础扎实、专业面宽、重应用、强素质”的应用型人才为出发点,遵循技术应用型本科生成才规律,树立专业指向、能力本位、个性发展理念,突出学生主体地位,运用所学的工程力学知识来发现、分析和处理实际问题。 2、基本原则 以机械设计专业就业岗位需求为目标,遵循认知规律,采用理论和实践相结合的教学方式,深入浅出,发挥学生主体意识,提高教学效果,在获得机械设计专业所需要的工程力学知识的同时,增强能力、提高素质。 (三)课程设计思路 1、框架设计 以本课程的基本理念为指导,按照专业基础实用的原则进行课程设计,以工程力学的基本概念和基本公理为基础,对工程构件进行受力分析和强度校核,通过实验操作巩固理论知识。 2、内容安排 本课程共分三大模块:静力学;材料力学;运动学与动力学。第一模块分两大任务:静力学基本概念和力系。第二模块设一大任务,两条线索,一是载荷作用方式,二是外力-内力-内力图-应力-强度条件及应用。本模块设有3个实验,安排六个课时,通过实验引出相关内容。第三模块主要引导学生自学。 8

FLUENT进行流体动力学分析时,分析边界条件的种类及应用要点

FLUENT进行流体动力学分析时,分析边界条件的种类及应用要点。答:FLUENT 软件提供了十余种类型的进、出口边界条件,分别如下: (1) 速度入口(velocity-inlet):给出入口边界上的速度。 给定入口边界上的速度及其他相关标量值。该边界条件适用于不可压速流动问题,对可压缩问题不适合,否则该入口边界条件会使入口处的总温或总压有一定的波动。 (2) 压力入口(pressure-inlet):给出入口边界上的总压。 压力入口边界条件通常用于流体在入口处的压力为已知的情形,对计算可压和不可压问题都适合。压力进口边界条件通常用于进口流量或流动速度为未知的流动。压力入口条件还可以用于处理自由边界问题。 (3) 质量入口(mess-flow-inlet):给出入口边界上的质量流量。 质量入口边界条件主要用于可压缩流动;对于不可压缩流动,由于密度是常数,可以用速度入口条件。质量入口条件包括两种:质量流量和质量通量。质量流量是单位时间内通过进口总面积的质量。质量通量是单位时间单位面积内通过的质量。如果是二维轴对称问题,质量流量是单位时间内通过2π弧度的质量,而质量通量是通过单位时间内通过1 弧度的质量。 (4) 压力出口(pressure-outlet):给定流动出口边界上的静压。 对于有回流的出口,该边界条件比outflow 边界条件更容易收敛。给定出口边界 上的静压强(表压强)。该边界条件只能用于模拟亚音速流动。如果当地速度已经超过音速,该压力在计算过程中就不采用了。压力根据内部流动计算结果给定。其他量都是根据内部流动外推出边界条件。该边界条件可以处理出口有回流问题,合理的给定出口回流条件,有利于解决有回流出口问题的收敛困难问题。(5) 无穷远压力边界 (pressure-far-field):该边界条件用于可压缩流动。 如果知道来流的静压和马赫数,FLUENT 提供了无穷远压力边界条件来模拟该类问题。该边界条件适用于用理想气体定律计算密度的问题。为了满足无穷远压力边界条件,需要把边界放到我们关心区域足够远的地方。

复合材料成型工艺大全及说明

复合材料成型工艺大全及说明 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业 生产。 视所选用的树脂基体材料的不同,各方法适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。(2)制品成型比较简便一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅 需一套模具便能生产。 ◇ 层压及卷管成型工艺1、层压成型工艺层压 成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,

放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。2、卷管成型工艺卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品 成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。卷管成型按其上布方法的不同而可分为手工上布法和连续机械法两种。其基本过程是:首先清理各辊筒,然后将热辊加热到设定温度,调整好胶布张力。在压辊不施加压力的情况下,将引头布先在涂有脱模剂的管芯模上缠上约1圈,然后放下压辊,将引头布贴在热辊上,同时将胶布拉上,盖

机械设计基础(含工程力学)课程标准

机械设计基础(含工程力学)课程标准 课程代码:课程性质:必修课课程类型:B类课(一)课程目标 《工程力学》是机械设计与制造专业的一门重要的主干课程。在整个教学过程中应从高职教育培养目标和学生的实际情况出发,在教学内容的深广度、教学方法上都应与培养高技能人才目标接轨。通过本课程的学习,使学生达到以下目标: 1、深刻理解力学的基本概念和基本定律,熟练掌握解决工程力学问题的定理和公式。能将实际物体简化成准确的力学模型,应用力学基本概念和定理解决相关力学问题; 2、能对静力学问题进行分析和计算,对刚体、物系进行受力分析和平衡计算; 3、正确应用公式对受力不很复杂的构件进行强度、刚度和稳定性的计算; 4、通过应力状态分析建立强度理论体系。 5、步掌握材料的力学性能及材料的相关力学实验。掌握基本实验的操作及测试方法 (二)课程内容与要求 工程力学分为理论力学和材料力学部分。理论力学部分以静力学为主,包括静力学基础、力系的简化、力系的平衡。材料力学部分包括杆件的四种基本变形(轴向拉伸与压缩、剪切与挤压、扭转、弯曲)的内力、应力和变形,应力状态与强度理论,组合变形杆的强度和压杆稳定。第一篇静力学静力学主要内容有:力的概念,约束与约束反力,受力分析和受力图;力对点的矩,力对轴的矩,力偶与力偶系的简化,力的平移,力系的简化;平衡条件与平衡方程,特殊力系的平衡,空间一般力系的平衡,物体系的平衡,平面静定桁架的内力,考虑摩擦时的平衡。第二篇材料力学材料力学主要内容有:材料的力学性能,拉伸与压缩时的力学性能,构件的强度、刚度和稳定性,强度条件、刚度条件,应力状态分析与四种强度理论。 课程要求:熟练掌握静力学的基本概念:四个概念、六个公理及推论、一个定理。能应用静力学的基本理论对刚体进行受力分析;明确平面任意力系的简化;熟练掌握平面力系的平衡方程及其应用;掌握材料力学的基本概念;掌握四种变形方式的内力、应力、内力图;学会四种载荷作用方式下强度、刚度、稳定性计算;理解应力状态与强度理论。 (三)课程实施和项目设计 1、课程实施 高等职业技术教育培养的是应用性工程技术人才,结合模具专业及学生特点,对少 学时《工程力学》的教学采用讲授、练习、自学、集中答疑等多种方法;在教学中要注意理论联系实际,讲解力学概念、原理和定理时,应从生活中的感性认识和生产实践中常见的实际力学问题出发,通过理想的抽象分析的实验观察,进行科学的逻辑推理,得出结论。要指导学生将已学的知识应用到专业理论的学习和生产实习中去,培养学生分析问题和解决

热塑性复合材料成型工艺

热塑性复合材料成型工艺 热塑性复合材料是以玻璃纤维、碳纤维、芳纶纤维等增强各种热塑性树脂的总称,国外称FRTP (Fiber Rinforced Thermo Plastics)。由于热塑性树脂和增强材料种类不同,其生产工艺和制成的复合材料性能差别很大。 从生产工艺角度分析,塑性复合材料分为短纤维增强复合材料和连续纤维增强复合材料两大类:(1)短纤维增强复合材料①注射成型工艺;②挤出成型工艺;③离心成型工艺。(2)连续纤维增强及长纤维增强复合材料①预浸料模压成型;②片状模塑料冲压成型;③片状模塑料真空成型;④预浸纱缠绕成型;⑤拉挤成型。 热塑性复合材料的特殊性能如下: (1)密度小、强度高热塑性复合材料的密度为1.1~1.6g/cm3,仅为钢材的1/5~1/7,比热固性玻璃钢轻1/3~1/4。它能够以较小的单位质量获得更高的机械强度。一般来讲,不论是通用塑料还是工程塑料,用玻璃纤维增强后,都会获得较高的增强效果,提高强度应用档次。 (2)性能可设计性的自由度大热塑性复合材料的物理性能、化学性能、力学性能,都是通过合理选择原材料种类、配比、加工方法、纤维含量和铺层方式进行设计。由于热塑性复合材料的基体材料种类比热固性复合材料多很多,因此,其选材设计的自由度也就大得多。 (3)热性能一般塑料的使用温度为50~100℃,用玻璃纤维增强后,可提高到100℃以上。尼龙6的热变形温度为65℃,用30%玻纤增强后,热形温度可提高到190℃。聚醚醚酮树脂的耐热性达220℃,用30%玻纤增强后,使用温度可提高到310℃,这样高的耐热性,热固性复合材料是达不到的。热塑性复合材料的线膨胀系数比未增强的塑料低1/4~1/2,能够降低制品成型过程中的收缩率,提高制品尺寸精度。其导热系数为0.3~0.36W(㎡·K),与热固性复合材料相似。 (4)耐化学腐蚀性复合材料的耐化学腐蚀性,主要由基体材料的性能决定,热塑性树脂的种类很多,每种树脂都有自己的防腐特点,因此,可以根据复合材料的使用环境和介质条件,对基体树脂进行优选,一般都能满足使用要求。热塑性复合材料的耐水性优于热固性复合材料。 (5)电性能一般热塑性复合材料都具有良好的介电性能,不反射无线电电波,透过微波性能良好等。由于热塑性复合材料的吸水率比热固性玻璃钢小,故其电性能优于后者。在热塑性复合材料中加入导电材料后,可改善其导电性能,防止产生静电。 (6)废料能回收利用热塑性复合材料可重复加工成型,废品和边角余料能回收利用,不会造成环境污染。 由于热塑性复合材料有很多优于热固性玻璃钢的特殊性能,应用领域十分广泛,从国外的应用情况分析,热塑性复合材料主要用于车辆制造工业、机电工业、化工防腐及建筑工程等方面。 1、注射成型工艺 注射成型是热塑性复合材料的主要生产方法,历史悠久,应用最广。其优点是:成型周期短,能耗最小,产品精度高,一次可成型开关复杂及带有嵌件的制品,一模能生产几个制品,生产效率高。缺点是不能生产纤维增强复合材料制品和对模具质量要求较高。根据目前的技术发展水平,注射成型的最大产品为5kg,最小到1g,这种方法主要用来生产各种机械零件,建筑制品,家电壳

热分析边界条件的施加

热分析边界条件的施加 稳态热分析可以直接在实体模型或单元模型上施加5种载荷(边界条件)。 1)恒定温度(TEMP) 恒定温度作为自由度约束施加在温度已知的边界上。 命令:D。 GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Temperature。 2)热流率(HEAT) 热流率作为节点集中载荷,主要用于线单元模型中,(通常,在线单元模型上不能施加对流或热流密度载荷);如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS将仅考虑温度。 命令:F。 GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Heat Flow。 3)对流(CONV) 对流边界条件作为面载荷施加于实体的外表面,它仅可施加于实体单元和壳单元模型上,对于线模型,可以通过对流线单元LINK34施加对流载荷。 命令:SF。 GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Convection。 4)热流密度(HFLUX) 热流密度也是一种面载荷。如果通过单位面积的热流率已知,或能通过计算得到时,可以在模型相应的外表面施加热流密度载荷。输入的值为正时,代表热流流入单元。热流密度也仅适用于实体单元和壳单元。热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载荷进行计算。 命令:SF。 GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Heat Flux。

土木工程力学基础课程标准

一.课程性质与任务 土木工程力学是建筑工程施工专业的专业基础课程。其任务是:培养学生运用力学的基本原理,研究结构.构件在荷载等因素作用下的平衡规律与承载能力,分析.解决土木工程中简单的力学问题,为力学专业课程和继续深造提供必要的基础。 二.课程教学目标 知识目标: 1.理解静力学公理; 2.掌握平面一般力系的平衡条件 3.掌握轴向拉压杆和直粱内力计算方法及内力图规律 4.熟悉轴向拉压及直粱弯曲在工程中的应用 5.熟悉提高拉压杆稳定的措施 能力目标 1.能画出单个物体、简单物体系统的受力图,并利用平衡方程求解约束力; 2.能运用平衡方程进行单个构节的受力分析及平衡问题的计算; 3.能对简单结构或构节进行承载能力的计算 4.能计算轴向拉压杆及梁的强度 5.能运用基本的力学原理、方法分析和解决土木工程中简单的力学问题。 情感目标: 1.具备良好的职业道德,养成吃苦耐劳、严谨求实的工作作风; 2.树立安全生产、节能环保和产品质量等职业意识。 三.参考学时 108学时。 四、课程学分 6学分。 五.课程内容和要求 土木工程力学基础课程内容和要求见表7。

注;1.表中未标注(*)的内容是个专业学生必修的基础性内容和应该达到的基本要求; 2.表中标注(*)的内容和选学模块为较高要求及适应不同专业、地域、学校差异的选修内容。

六、教学建议 (一)教学方法 1.教学中应以学生为主体,建议充分利用生活实例、多媒体等教学手段,引导学生对生活及工程实例进行观察和思考,是学生通过小组实验、讨论、训练的实践活动,掌握力学基础知识和基本技能。 2.教学应贴近工程实际,通过工程案例分析,提高学生的安全意识、责任意识并提高分析问题、解决问题能力。 (二)评价方法 1.考核与评价应重点考核学生运用所学知识分析和解决土木工程简单结构、基本构建受力问题的能力,并关注良好的职业到底以及安全、环保、合作、创新等职业意识养成等。 2.考核与评价的主题应多元化,坚持教师评建与学生互评、自评相结合,过程性评价与结果性评价相结合,定量考核与定性描述相结合。 3.可采用笔试、答辩、口试、实践性总结等相结合的方式进行综合评价。 (三)教学条件 1.开展本课教学需要在教室、多媒体教室、实验室中进行,让学生在中学,学中学。 2.专业教师要求为双师型,具备扎实的专业理论知识与教学能力。 (四)教材编写 1.应体现职业教育的特点,并适应不同教学模式的需求。 2.在教学标准规定的基本教学内容与要求的基础上,可根据施工类和非施工类等专业的不同侧重,编写想赢的多学时教材和少学时教材,便于灵活使用。 3.教材呈现形式上应图文并茂,符合中等职业学校学生的阅读心理与阅读习惯。名词术语、文字、符号、数字、公式、计算单位等运用要准确、规范、统一,符合我国相关标准与规范。(五)数字化教学资源开发 应重视现代教育技术在教学中的应用,综合运用多媒体课件、动画、电子试题库等教学资源,创建适应个性化学习需求、强化实践技能训练的教学条件。

航空发动机主轴承热分析边界条件处理方法

航空发动机主轴承热分析边界条件处理方法 苏 壮,李国权 (中航工业沈阳发动机设计研究所航空发动机动力传输航空科技重点实验室,沈阳110015) 航空发动机 Aeroengine 摘要:为了提高航空发动机主推力球轴承热分析的计算精度,对轴承的摩擦发热和对流换热边界条件进行了分类及研究。应用ANSYS 有限元分析软件,采用将摩擦热按体积生热率处理和将摩擦热按热流密度处理的2种不同方式,对边界条件进行了加载,分别对试验器状态的发动机主轴承进行了热分析计算,并与试验测量结果进行了对比。计算结果表明:采用表面效应单元加载热流密度的方式得到的轴承温度分布更理想,内部热点温度更集中,热点温度比按体积生热率加载的高。2种边界条件处理方法均已应用到航空发动机润滑系统热分析中,提高了航空发动机润滑系统热分析的准确性。 关键词:主轴承;热分析;边界条件;摩擦发热;对流换热;航空发动机中图分类号:V233.4 文献标识码:A doi :10.13477/https://www.wendangku.net/doc/0f17612053.html,ki.aeroengine.2015.03.014 Boundary Condition Processing Method of Aeroengine Main Bearing Thermoanalysis SU Zhuang ,LI Guo-quan (Key Laboratory of Power Transmission Technology for Aeroengine ,AVIC Shenyang Engine Design and Research Institute ,Shenyang 110015,China ) Abstract:In order to improve the thermoanalysis calculation accuracy of the aeroengine main thrust ball bearing,the friction heat and convection heat transfer boundary condition of the aeroengine main bearing were classified and researched.By using ANSYS,two different methods were applied in managing the frictional heat with volumetric heat generation rate and with the heat flux ,those two boundary conditions were loaded onto the main bearing.The results of calculation indicate that the bearing tem-perature distribution which obtained by loading heat flux on the surface effect element is better,the internal hot spots of temperature is more concentrate,and the temperature of internal hot spots is higher than that with loading heat generation on volume.Two methods were applied in the thermoanalysis of the aeroengine lubrication system,and the thermoanalysis accuracy of the aeroengine lubrication system was increased. Key words:main bearing ;thermoanalysis ;boundary condition ;frictional heat ;convection heat transfer ;aeroengine 收稿日期:2014-04-06基金项目:航空动力基础研究项目资助 作者简介:苏壮(1975),男,高级工程师,主要从事航空发动机润滑系统设计工作;E-mail :happysm427@https://www.wendangku.net/doc/0f17612053.html, 。引用格式: 第41卷第3期Vol.41No.3Jun.2015 0引言 滑油系统是航空发动机的重要组成部分[1],而热分析是航空发动机滑油系统设计的基础[2]。通过滑油系统热分析计算,可以初步确定发动机滑油系统在整个飞行包线内滑油的温度水平、主轴承的工作温度及轴承腔温度场,并最终确定系统循环量、系统冷却方案及轴承腔的冷却隔热措施[3]。 对航空发动机主轴承的热分析是滑油系统热分析中的重要环节,轴承腔内由轴承旋转产生的摩擦热以及密封装置的摩擦热是主要的生热热源[4], 航空发动机主轴承是滑油系统进行冷却和润滑的关键部件,由于主轴承自身的发热量较高,其 换热边界条件的准确确定和加载决定了主轴承热分析的精度。准确计算主轴承的工作温度对提高滑油系统热分析精度具有重要的理论意义和工程价值。 本文对航空发动机主轴承的边界条件进行了分类及研究。 1航空发动机主轴承热分析概述 航空发动机主轴承热分析主要包括以下几个方面: (1)轴承内部生热的计算。轴承内部的生热主要由摩擦热引起,需要计算由摩擦力矩引起的摩擦热的大小。

工程力学课程标准

工程力学》课程标准 一、.课程定位 《工程力学》是研究物体机械运动规律以及构件强度、刚度和稳定性等计算原理的科学。本课程既具有基础性,即为后续课程的学习提供必要的力学知识与分析计算能力;又具有很强的工程应用性,即它为协调工程的安全性和经济性矛盾提供了科学的解决方法。因此,《工程力学》是 机械制造与自动化、机电一体化技术、模具设计与制造专业、数控技术等专业的重要技术基础课。 二、学习目标通过任务引领型的项目活动,使学生具备静定结构受力分析能力和内力图的绘制能力;力系平衡条件的应用能力;构件的强度、刚度、稳定性计算能力;基本的力学实验操作能力;工程运用与实际问题的解决能力。同时培养诚实、守信、善于沟通和合作的品质,为发展职业能力奠定良好的基础。 1. 专业能力 ①绘图与书写能力; ②把物体抽象为力学模型的能力; ③静定结构受力分析(外力与内力)能力; ④力系平衡条件的运用能力; ⑤工程构件(梁、柱)的强度、刚度、稳定性计算能力; ⑥基本的力学实验操作能力; ⑦工程项目中实际问题的分析与解决的能力。 2. 方法能力 ①查取资料获取信息的能力; ②能够自主学习新知识、新技术、新规范、新标准,具备可持续发展的能力; ③独立制定计划并完成任务,并对完成的成果进行展示、分析、评价和总结的能力; ④融会贯通应用知识的能力,逻辑思维与创新思维能力; ⑤归纳、推理与小结能力。 3.社会能力 ①人际交往能力; ②具有在复杂环境中做事、与人竞争协作的能力; ③具有严肃认真的工作和一丝不苟的敬业精神; ④工程意识、质量意识与社会责任意识。 三、学习情境设计 1. 设计思路 力学既是基础学科又是技术学科,横跨理工,与各行业的结合非常密切。传统力学内容经典,体系严密,但对于不擅长逻辑思维的高职学生,要让其在有限的课时内学到最有应用价值的过程性力学知识,课程团队在课程体系及教学内容改革方面的主要思路是:突出主线,精选内容。遵循力学的基本研究方法,以刚体受力分析、平衡条件及应用、构件强度、刚度、稳定性、力和运动分析为主线精选、组织与序化学习内容。抓住共性,触类旁通(启发思维)。研究静力学问题的基本方法都是平衡方程;研究变形固体的基本方法都是依据变形几何关系、物理关系和静力学关系,建立应力计算公式与强度条件,解决“三类工程”工程控制设计的所有破坏判据都是作用力

ANSYS热分析-表面效应单元

ANSYS热分析指南(第五章) 第五章表面效应单元 5.1简介 表面效应单元类似一层皮肤,覆盖在实体单元的表面。它利用实体表面的节点形成单元。因此,表面效应单元不增加节点数量(孤立节点除外),只增加单元数量。 ANSYS 5.7中热分析专用表面效应单元为SURF151(2-D)以及SRUF152(3-D)。有关单元的详细描述请参阅《ANSYS Element Reference》。 5.2表面效应单元在热分析中的应用 利用表面效应单元可更加灵活地定义表面热载荷: 当热流密度和热对流边界条件同时施加于同一表面时,必须将其中一个施加于实体单元表面,另一个施加在表面效应单元。建议将热对流边界施加于表面效应单元。 可将热对流边界条件中的流体温度施加于孤立节点上,将对流系数施加于表面单元,这样,可更灵活地控制对流载荷。 当对流系数随温度变化时,表面效应单元可提供设置计算对流系数的选项。 表面效应单元还可以用于模拟点与面的辐射传热。 5.3表面效应单元的有关热分析设置选项 SURF151是单元可用于多种载荷和表面效应的应用。可以覆盖在任何二维热实体单元的表面(除轴对称谐波单元PLANE75和PLANE78外)。该单元可用于二维热分析,多种载荷和表面效应可以同时存在。SURF151单元有2到4个节点,如考虑对流传热和辐射的影响需要定义一个外部节点。传热量和热对流量以表面载荷的形式施加在单元上。详细单元说明请参见《ANSYS Theory Reference》。 SURF152是三维热表面效应单元,可用于多种载荷和表面效应的应用。它可以覆盖在任何三维热单元的表面,该单元可用于三维热分析。该单元中多种载荷和表面效应可以同时存在。详细单元说明请参见《ANSYS Theory Reference》。 选定单元: 命令:ET

相关文档
相关文档 最新文档