文档库 最新最全的文档下载
当前位置:文档库 › 通孔回流工艺解析经典版

通孔回流工艺解析经典版

通孔回流工艺解析经典版
通孔回流工艺解析经典版

通孔回流焊接的作用

一.什么叫通孔回流焊接技

在传统的电子组装工艺中,对于安装有过孔插装元件采用波峰焊接技术。但波峰焊接有许多不足之处:不适合高密度、细间距元件焊接;桥接、漏焊较多;需喷涂助焊剂;

PCB板受到较大热冲击翘曲变形。因此波峰焊接在许多方面不能适应高精密度电子组装技术的发展。为了适应这种高精密度表面组装技术的发展,解决以上焊接难点的措施是采用通孔回流焊接技(THRThrough-holeReflow),又称为穿孔回流焊PIHR(Pin-in-HoleReflow)。该技术原理是在PCB板完成贴片后,使用一种安装有许多针管的特殊钢网模板,调整模板位置使针管与插装元件的过孔焊盘对齐,使用刮刀将模板上的锡膏漏印到焊盘上,然后安装插装元件,最后插装元件与贴片元件同时通过回流焊完成焊接。从中可以看出穿孔回流焊相对于传统工艺的优越性:首先是减少了工序,省去了波峰焊这道工序,节省了人工费用,在效率上也得到了提高;其次回流焊相对于波峰焊,产生桥接的可能性要小的多,这样就提高了一次通过率。穿孔回流焊相对传统工艺在生产效率、先进性上都有很大优势。通孔回流焊接技术起源于日本SONY公司,20世纪90年代初已开始应用,但它主要应用于SONY自己的产品上,如电视调谐器及CDWalkman。

通孔回流焊有时也称作分类元件回流焊,正在逐渐兴起。它可以去除波峰焊环节,而成为PCB混装技术中的一个工艺环节。通孔回流焊最大的好处就是可以在发挥表面贴装制造工艺的优点的同时使用通孔插件来得到较好的机械联接强度。对于较大尺寸的PCB板的平整度不能够使所有表面贴装元器件的引脚都能和焊盘接触,同时,就算引脚和焊盘都能接触上,它所提供的机械强度也往往是不够大的,很容易在产品的使用中脱开而成为故障点。尽管通孔回流焊可发取得偿还好处,但是在实际应用中通孔回流焊仍有几个缺点,锡膏量大,这样会增加因助焊剂的挥了冷却而产生对机器污染的程度,需要一个有效的助焊剂残留清除装置。通孔回流焊另外一点是许多连接器并没有设计成可以承受通孔回流焊的温度,早期通孔回流焊基于直接红外加热的回流焊炉子已不能适用,这种回流焊炉子缺少有效的热传递效率来处理一般表面贴装元件与具有复杂几何外观的通孔连接器同在一块PCB上的能力。只有大容量的具有高的热传递的强制对流通孔回流焊炉子,才有可能实现通孔回流,并且也得到实践证明,剩下的问题就是如何保证通孔中的锡膏与元件脚有一个适当的回流焊温度曲线。随着工艺与元件的改进,通孔回流焊也会越来越多被应用。影响回流焊工艺的因素很多,也很复杂,需要工艺人员在生产中不断研究探讨,将从多个方面来进行探讨。

二.通孔回流焊接工艺的特点

1. 通孔回流焊与波峰焊相比的优点

(1)通孔回流焊焊接质量好,不良比率PPM(百万分率的缺陷率)可低于20。

(2)虚焊、连锡等缺陷少,返修率极低。

(3)PCB布局的设计无须像波峰焊工艺那样特别考虑。

(4)工艺流程简单,设备操作简单。

(5)通孔回流焊设备占地面积少,因其印刷机及回流炉都较小,故只需较小的面积。

(6)无锡渣问题。

(7)机器为全封闭式,干净,生产车间里无异味。

(8)通孔回流焊设备管理及保养简单。

(9)印刷工艺中采用了印刷模板,各焊接点及印刷的焊膏量可根据需要调节。

(1O)在回流时,采用特别模板,各焊接点的温度可根据需要调节。

2. 通孔回流焊与波峰焊相比的缺点:

(1)此工艺由于采用了焊膏,焊料的价格成本相对波峰焊的锡条较高。

(2)须订制特别的专用模板,价格较贵。而且每个产品需各自的一套印刷模板及回流焊模板。

(3)通孔回流焊炉可能会损坏不耐高温的元件。在选择元件时,特别注意塑胶元件,如电位器等可能由于高温而损坏。

3 回流焊温度曲线

温度曲线的建立是指SMA通过回流焊炉时,SMA上某一点的温度随时间变化的曲线。温度曲线提供了一种直观的方法,来分析某个元件在整个回流焊过程中的温度变化情况。这对于获得最佳的可焊性,避免由于超温而对元件造成损坏,以及保证焊接质量都非常有用。温度曲线采用炉温测试仪来测试,目前市面上有很多种炉温测试仪供使用者选择。

4 回流焊预热区

该区域的目的是把室温的PCB尽快加热,以达到第二个特定目标,但升温速率要控制在适当范围以内,如果过快,会产生热冲击,电路板和元件都可能受损;过慢,则溶剂挥发不充分,影响焊接质量。由于回流焊加热速度较快,在回流焊温区的后段SMA内的温差较大。为防止热冲击对元件的损伤,一般规定回流焊最大升温速度为4℃/s。然而,通常上升速率设定为1-3℃/s。典型的升温速率为2℃/s。将线路板由常温加热到100~140℃,目的是线路板及焊膏预热,避免线路板及焊膏在回流区受到热冲击。如果板上有不耐高温的元件,则可以将此温区的温度降低,以免损坏元件。

5 回流焊保温段

保温段是指回流焊温度从120℃-150℃升至焊膏熔点的区域。其主要目的是使SMA内各元件的温度趋于稳定,尽量减少温差。在这个区域里给予足够的时间使较大元件的温度赶上较小元件,并保证焊膏中的助焊剂得到充分挥发。到回流焊保温段结束,焊盘、焊料球及元件引脚上的氧化物被除去,整个电路板的温度达到平衡。应注意的是SMA上所有元件在这一段结束时应具有相同的温度,否则进入到回流段将会因为各部分温度不均产生各种不良焊接现象。

6 回流焊回流区(主加热区)

在回流焊这一区域里加热器的温度设置得最高,使组件的温度快速上升至峰值温度。在回流段其焊接峰值温度视所用焊膏的不同而不同,一般推荐为焊膏的熔点温度加上20-40℃。对于熔点为183℃的63Sn/37Pb焊膏和熔点为179℃的Sn62/Pb36/Ag2焊膏,峰值温度一般为210-230℃,再流时间不要过长,以防对SMA造成不良影响。理想的温度曲线是超过焊锡熔点的“尖端区”覆盖的面积最小。温度上升到焊膏熔点,且保持一定的时间,使焊膏完全熔化,回流焊最高温度在200~230℃。在178℃以上的时问为30~40s。

7 回流焊冷却区

回流焊这段中焊膏内的铅锡粉末已经熔化并充分润湿被连接表面,应该用尽可能快的速度来进行冷却,这样将有助于得到明亮的焊点并有好的外形和低的接触角度。缓慢冷却会导致电路板的更多分解而进入锡中,从而产生灰暗毛糙的焊点。在极端的情形下,它能引起沾锡不良和减弱焊点结合力。回流焊冷却段降温速率一般为3-10℃/s,冷却至75℃即可。借助回流焊冷却风扇,降低焊膏温度,形成焊点,并将线路板冷却至常温。

三。生产过程中易产生不良现象

1.桥联

回流焊焊接加热过程中也会产生焊料塌边,这个情况出现在预热和主加热两种场合,当预热温度在几十至一百度范围内,作为焊料中成分之一的溶剂即会降低粘度而流出,如果其流出

的趋势是十分强烈的,会同时将焊料颗粒挤出焊区外的含金颗粒,在熔融时如不能返回到焊区内,也会形成滞留的焊料球。除上面的因素外,SMD元件端电极是否平整良好,电路线路板布线设计与焊区间距是否规范,阻焊剂涂敷方法的选择和其涂敷精度等都会是造成桥联的原因。

2.立碑元件浮高(曼哈顿现象)

片式元件在遭受回流焊急速加热情况下发生的翘立,这是因为急热使元件两端存在温差,电极端一边的焊料完全熔融后获得良好的湿润,而另一边的焊料未完全熔融而引起湿润不良,这样促进了元件的翘立。因此,回流焊加热时要从时间要素的角度考虑,使水平方向的加热形成均衡的温度分布,避免回流焊急热的产生。防止元件翘立的主要因素有以下几点:①选择粘接力强的焊料,焊料的印刷精度和元件的贴装精度也需提高;②元件的外部电极需要有良好的湿润性和湿润稳定性。推荐:温度40℃以下,湿度70%RH以下,进厂元件的使用期不可超过6个月;③采用小的焊区宽度尺寸,以减少焊料熔融时对元件端部产生的表面张力。另外可适当减小焊料的印刷厚度,如选用100μm;④焊接温度管理条件设定也是元件翘立的一个因素。通常的目标是加热要均匀,特别在元件两连接端的焊接圆角形成之前,均衡加热不可出现波动。

3.润湿不良

润湿不良是指回流焊焊接过程中焊料和电路基板的焊区(铜箔)或SMD的外部电极,经浸润后不生成相互间的反应层,而造成漏焊或少焊故障。其中原因大多是焊区表面受到污染或沾上阻焊剂,或是被接合物表面生成金属化合物层而引起的。譬如银的表面有硫化物、锡的表面有氧化物都会产生润湿不良。另外焊料中残留的铝、锌、镉等超过0.005%以上时,由于焊剂的吸湿作用使活化程度降低,也可发生润湿不良。因此在焊接基板表面和元件表面要做好防污措施。选择合适的焊料,并设定回流焊合理的焊接温度曲线。无铅焊接的五个步骤:1选择适当的材料和方法在无铅焊接工艺中,焊接材料的选择是最具挑战性的。因为对于无铅焊接工艺来说,无铅焊料、焊膏、助焊剂等材料的选择是最关键的,也是最困难的。在选择这些材料时还要考虑到焊接元件的类型、线路板的类型,以及它们的表面涂敷状况。选择的这些材料应该是在自己的研究中证明了的,或是权威机构或文献推荐的,或是已有使用的经验。把这些材料列成表以备在工艺试验中进行试验,以对它们进行深入的研究,了解其对工艺的各方面的影响。对于焊接方法,要根据自己的实际情况进行选择,如元件类型:表面安装元件、通孔插装元件;线路板的情况;板上元件的多少及分布情况等。对于表面安装元件的焊接,需采用回流焊的方法;对于通孔回流焊插装元件,可根据情况选择波峰焊、浸焊或喷焊法来进行焊接。波峰焊更适合于整块板(大型)上通孔插装元件的焊接;浸焊更适合于整块板(小型)上或板上局部区域通孔插装元件的回流焊焊接;局喷焊剂更适合于板上个别元件或少量通孔插装元件的回流焊焊接。另外,还要注意的是,无铅回流焊焊接的整个过程比含铅焊料的要长,而且所需的焊接温度要高,这是由于无铅焊料的熔点比含铅焊料的高,而它的浸润性又要差一些的缘故。在焊接方法选择好后,其焊接工艺的类型就确定了。这时就要根据焊接工艺要求选择设备及相关的工艺控制和工艺检查仪器,或进行升级。焊接设备及相关仪器的选择跟焊接材料的选择一样,也是相当关键的。2确定工艺路线和工艺条件在第一步完成后,就可以对所选的焊接材料进行焊接工艺试验。通过试验确定工艺路线和工艺条件。在试验中,需要对列表选出的焊接材料进行充分的试验,以了解其特性及对工艺的影响。这一步的目的是开发出无铅焊接的样品。3开发健全焊接工艺这一步是第二步的继续。它是对第二步在工艺试验中收集到的试验数据进行分析,进而改进材料、设备或改变工艺,以便获得在实验室条件下的健全工艺。在这一步还要弄清无铅合金焊接工艺可能产生的沾染知道如何预防、测定各种焊接特性的工序能力(CPK)值,以及与原有的锡/铅工艺进行比较。通过这些研究,就可开发出焊接工艺的检查和测试程序,同时也可找出

一些工艺失控的处理方法。 4. 还需要对焊接样品进行可靠性试验,以鉴定产品的质量是否达到要求。如果达不到要求,需找出原因并进行解决,直到达到要求为止。一旦焊接产品的可靠性达到要求,无铅焊接工艺的开发就获得成功,这个工艺就为规模生产做好了准准备就绪后的操作一切准备就绪,现在就可以从样品生产转变到工业化生产。在这时,仍需要对工艺进行以维持工艺处于受控状态。 5 控制和改进工艺无铅焊接工艺是一个动态变化的舞台。工厂必须警惕可能出现的各种问题以避免出现工艺失控,同时也还需要不断地改进工艺,以使产品的质量和合格晶率不断得到提高。对于任何无铅焊接工艺来说,改进焊接材料,以及更新设备都可改进产品的焊接性能。

总结言论

通孔回流焊在很多方面可以替代波峰焊来实现对插装元件的焊接,特别是在处理焊接面上分布有高密度贴片元件(或有线间距SMD)的插件焊点的焊接,这时传统的波峰焊接已无能为力,另外通孔回流焊能极大地提高焊接质量,这足以弥补其设备昂贵的不足。通孔回流焊的出现,对于丰富焊接手段、提高线路板组装密度(可在焊接面分布高密度贴片元件)、提升焊接质量、降低工艺流程,都大有帮助。可以预见,通孔回流焊将在未来的电子组装中发挥日益重要的作用

通孔回流工艺

穿孔回流焊是一项国际电子组装应用中新兴的技术。当在PCB的同一面上既有贴装元件,又有少量插座等插装元件时,一般我们会采取先贴片过回流炉,然后再手工插装过波峰焊的方式。但是,如果采取穿孔回流焊技术,则只需在贴片完成后,进回流炉前,将插件元件插装好,一起过回流炉就可以了。 通过这项比较,就可以看出穿孔回流焊相对于传统工艺的优越性。首先是减少了工序,省去了波峰焊这道工序,在费用上自然可以节省不少。同时也减少了所需工作人员,在效率上也得到了提高。其次是回流焊相对于波峰焊,生产桥接的可能性要小得多,这样就提高了一次通过率。穿孔回流焊技术相对传统工艺在经济性、先进性上都有很大的优势。所以,穿孔回流焊技术是电子组装中的一项革新,必然会得到广泛的应用。 但如果要应用穿孔回流焊技术,也需要对器件、PCB设计、网板设计等方面提出一些不同于传统工艺的要求。 a)元件: 穿孔元件要求能承受回流炉的回流温度的标准,最小为230度,65秒。这一过程包括在孔的上面涂覆焊膏(将在回流焊过程中进入孔中)。为使这一过程可行,元件体应距板面0.5毫米,所选元件的引脚长度应和板厚相当,有一个正方形或U形截面,(较之长方形为好)。 b)计算孔尺寸 完成孔的尺寸应在直径上比引脚的最大测量尺寸大0.255毫米(0.010英寸),通常用引脚的截面对角,而不包括保持特征。钻孔的尺寸比之完成孔再大0.15毫米(0.006英寸),这是电镀补偿,这样算得的孔就是可接受的最小尺寸。 c)计算丝网:(焊膏量) 第一部分计算是找出焊接所需的焊膏量,孔的体积减去引脚的体积再加上焊角的体积。(需要什么样的焊接圆角)。所需焊接体积乘以2就是所需焊膏量,因为焊膏中金属含量为50%体积(以ALPHA 的UP78焊膏为例)。丝印过程中将焊膏通过网孔印在PCB上,由于压力一般能将焊膏压进孔中0.8毫米(当刮刀与网板成45度角时)。我们计算进入孔中焊膏的体积,从所需焊膏量中减去它就得到在网孔中留下的焊膏的体积。这一体积除以网板的厚度就可以求出网孔所需的面积了。 d)网板设计: 网板的位置将取决于以下几个因素: 1、网孔的一边到孔中心的最小距离要求等于钻孔半径。 2、网孔总是比焊盘要大,所以焊膏将涂在阻焊层上,回流焊后确认不会有焊膏残留在阻焊盘上,网孔的边要求笔直,因为当回流焊过程焊膏进入孔中,将不会有焊膏在表面进行回流焊。 3、器件底面的下模形状有设计限制,下底面和丝印的焊膏之间需要有0。2毫米的空间。(在设计中必须包含) 4、在插座上,许多网孔提供笔直和窄的丝印,所以元件定位和在穿孔插座旁的测试点要留下一定的空间给焊膏层。 5、一般元件比如晶振,在元件下有足够的空间满足丝印需要的面积,这意味着将没有必要将焊膏涂覆在元件的外部。 e)元件管脚的准备: 管脚有一个正确的长度非常重要,当它们进入这一过程之前它们必须被预先剪切以达到比板厚多1.5毫米的条件。所有的引脚尺寸和网孔尺寸的变动偏差都将会被焊接圆角的量所包含,所以一些变动会体现在焊接圆角的高度变动上。 回流炉的温度曲线要求设置成:在4.5分钟内平滑提升到165+20度,从165~220+5度只经过一个温区,在220+5度保持50秒。 f)焊接: 由于实际原因,当穿孔回流焊时总是有焊膏的变动,所以设计有一个焊接圆角,可以解决一系列变

回流焊工艺常用中英文术语

回流焊工艺常用中英文术语 1. Solder Paste Technology(焊膏工艺) Solder Powder ( 锡粉) 休息再来接着说。 Solder Paste Rheology(锡膏流变学) Solder Paste Composition & Manufacturing(锡膏成分和制造) 2. Fundamentals of Solders and Soldering(焊料及焊接基础知识) Soldering Theory(焊接理论) Microstructure and Soldering(显微结构及焊接) Effect of Elemental Constituents on Wetting(焊料成分对润湿的影响) Effect of Impurities on Soldering(杂质对焊接的影响) 3. SMT Problems Occurred Prior to Reflow(回流前SMT问题) Flux Separation(助焊剂分离) Paste Hardening(焊膏硬化) Poor Stencil Life(网板寿命问题) Poor Print Thickness(印刷厚度不理想) Poor Paste Release From Squeegee(锡膏脱离刮刀问题) Smear(印锡模糊) Insufficiency(印锡不足) Needle Clogging(针孔堵塞) Slump(塌落) Low Tack(低粘性) Short Tack Time (粘性时间短) 4. SMT Problems Occurred During Reflow(回流过程中的SMT问题) Cold Joints(冷焊) Nonwetting(不润湿) Dewetting(反润湿) Leaching(浸析) Interllics(金属互化物) Tombstoning(立碑) Skewing(歪斜) Wicking(焊料上吸) Bridging(桥连) Voiding(空洞) Opening(开路) Solder Balling(锡球) Solder Beading(锡珠) Spattering(飞溅)

通孔回流工艺解析经典版

通孔回流焊接的作用 一.什么叫通孔回流焊接技 在传统的电子组装工艺中,对于安装有过孔插装元件采用波峰焊接技术。但波峰焊接有许多不足之处:不适合高密度、细间距元件焊接;桥接、漏焊较多;需喷涂助焊剂; PCB板受到较大热冲击翘曲变形。因此波峰焊接在许多方面不能适应高精密度电子组装技术的发展。为了适应这种高精密度表面组装技术的发展,解决以上焊接难点的措施是采用通孔回流焊接技(THRThrough-holeReflow),又称为穿孔回流焊PIHR(Pin-in-HoleReflow)。该技术原理是在PCB板完成贴片后,使用一种安装有许多针管的特殊钢网模板,调整模板位置使针管与插装元件的过孔焊盘对齐,使用刮刀将模板上的锡膏漏印到焊盘上,然后安装插装元件,最后插装元件与贴片元件同时通过回流焊完成焊接。从中可以看出穿孔回流焊相对于传统工艺的优越性:首先是减少了工序,省去了波峰焊这道工序,节省了人工费用,在效率上也得到了提高;其次回流焊相对于波峰焊,产生桥接的可能性要小的多,这样就提高了一次通过率。穿孔回流焊相对传统工艺在生产效率、先进性上都有很大优势。通孔回流焊接技术起源于日本SONY公司,20世纪90年代初已开始应用,但它主要应用于SONY自己的产品上,如电视调谐器及CDWalkman。 通孔回流焊有时也称作分类元件回流焊,正在逐渐兴起。它可以去除波峰焊环节,而成为PCB混装技术中的一个工艺环节。通孔回流焊最大的好处就是可以在发挥表面贴装制造工艺的优点的同时使用通孔插件来得到较好的机械联接强度。对于较大尺寸的PCB板的平整度不能够使所有表面贴装元器件的引脚都能和焊盘接触,同时,就算引脚和焊盘都能接触上,它所提供的机械强度也往往是不够大的,很容易在产品的使用中脱开而成为故障点。尽管通孔回流焊可发取得偿还好处,但是在实际应用中通孔回流焊仍有几个缺点,锡膏量大,这样会增加因助焊剂的挥了冷却而产生对机器污染的程度,需要一个有效的助焊剂残留清除装置。通孔回流焊另外一点是许多连接器并没有设计成可以承受通孔回流焊的温度,早期通孔回流焊基于直接红外加热的回流焊炉子已不能适用,这种回流焊炉子缺少有效的热传递效率来处理一般表面贴装元件与具有复杂几何外观的通孔连接器同在一块PCB上的能力。只有大容量的具有高的热传递的强制对流通孔回流焊炉子,才有可能实现通孔回流,并且也得到实践证明,剩下的问题就是如何保证通孔中的锡膏与元件脚有一个适当的回流焊温度曲线。随着工艺与元件的改进,通孔回流焊也会越来越多被应用。影响回流焊工艺的因素很多,也很复杂,需要工艺人员在生产中不断研究探讨,将从多个方面来进行探讨。 二.通孔回流焊接工艺的特点 1. 通孔回流焊与波峰焊相比的优点 (1)通孔回流焊焊接质量好,不良比率PPM(百万分率的缺陷率)可低于20。 (2)虚焊、连锡等缺陷少,返修率极低。 (3)PCB布局的设计无须像波峰焊工艺那样特别考虑。 (4)工艺流程简单,设备操作简单。 (5)通孔回流焊设备占地面积少,因其印刷机及回流炉都较小,故只需较小的面积。 (6)无锡渣问题。 (7)机器为全封闭式,干净,生产车间里无异味。 (8)通孔回流焊设备管理及保养简单。 (9)印刷工艺中采用了印刷模板,各焊接点及印刷的焊膏量可根据需要调节。

Pb-Free焊接技术革新----回流焊及通孔回流技术

Pb-Free焊接技术革新----回流焊及通孔回流技术 招生对象 --------------------------------- 电子制造企业:生产工程师、制程工程师、工艺工程师、产品工程师、设备工程师、品质工程师、NPI工程师 【主办单位】中国电子标准协会 【咨询热线】0 7 5 5 – 2 6 5 0 6 7 5 7 1 3 7 9 8 4 7 2 9 3 6 李生 【报名邮箱】martin#https://www.wendangku.net/doc/0e8597649.html, (请将#换成@) 课程内容 --------------------------------- 前言: " 无铅回流焊技术历经多年发展及工艺革新,宽泛成熟工艺窗口(PWI),针对于普通电子产品的成功焊接,大家一般能驾轻就熟。不过,对于QFN、CPS、POP、PiH、01005等特殊元器件焊接后的机械性能、电气性能;仍有许多技术难点、焊接工艺仍需再度优化工艺窗口及制程改善。 通孔回流焊接THR(Through-hole Reflow)目前大多数PCBA通孔元件占比较少约5%~10%,通常采用波峰焊接、选择性波峰焊接、自动焊接机器人、手工焊以及压接等方法,

组装费用远远高于该比例,而且组装质量也不如回流焊接,因此通孔元件回流焊接日渐流行,不仅有利于提高生产效率及产品质量,同时带来工艺技术水平的提高和进步。不过有关通孔回流焊接PCB的DFM、网版开孔设计、载具工装、回流检测等技术,较多的实践层面问题,仍需多做工艺技术的交流与探讨、学习。 " 参加对象: " 电子制造企业:生产工程师、制程工程师、工艺工程师、产品工程师、设备工程师、品质工程师、NPI工程师 军工单位、研究院所:工艺研究员、品质工程师、设计工程师、设备工程师、品质工程师;" 【温馨提示】:本公司竭诚为企业提供灵活定制化的内部培训和顾问服务,培训内容可根据您的需要灵活设计,企业内部培训人数不受限制,培训时间由企业灵活制定。顾问服务由业界顶尖顾问服务团队组成,由专人全程跟进,签约型绩效考核顾问服务效果,迅速全面提升企业工艺技术水平、产品质量及可靠性、成本节约!热诚欢迎您的垂询! 课程大纲: 第一讲: 1、焊锡原理基本概念理解 2、Reflow设备工作原理 3、Reflow的性能评估解析 4、Reflow温度曲线设定依据 5、Reflow Profile详解 6、焊锡熔化原理详解 7、焊锡不良之短路解析 8、焊锡不良之空焊解析 第二讲:

回流焊接工艺

回流焊接工艺 回流焊接是表面贴装技术(SMT)特有的重要工艺,焊接工 艺质量的优劣不仅影响正常生产,也影响最终的质量和可靠性。在使用表面贴装元件的印刷电路板(PCB)装配中,要得到优质的 焊点,一条优化的回流温度曲线是最重要的因素之一。温度曲线是施加于电路装配上的温度对时间的函数,当在笛卡尔平面作图时,回流过程中在任何给定的时间上,代表 PCB 上一个特定点上的温度形成一条曲线。几个参数影响曲线的形状,其中最关键的是传送带速度和每个温区的温度设定。链速决定基板暴露在每个温区所设定的温度下的持续时间,增加持续时间可以允许更多时间使电路装配接近该温区的温度设定。每个温区所花的持续时间总和决定总共的处理时间。每个区的温度设定影响 PCB 的温度上升速度。增加温区的设定温度允许基板更快地达到给定温度。因此,必须作出一个较好的图形来决定 PCB 的温度曲线,理想的温度曲线由基本的四个区组成,前面三个区加热、最后一个区冷却。回流炉的温区越多,越能使温度曲线的轮廓达到更准确和接近设定。大多数锡膏都能用四个基本温区成功回流。在回流焊接过程中,锡膏需经过溶剂挥发;焊剂清除焊件表面的氧化物;锡膏的熔融、再流动以及锡膏的冷却、凝固。以下就对温度曲线图及四个区进行介绍: 1

Peak: 熔点 220℃以 上 210~220℃ 180℃150℃ 时间 S 250S 200S 150S 100S 50S 预热区:也叫斜坡区。目的:使 PCB 和元器件预热,达到平衡,同时除去焊膏中的水份、溶剂,以防焊膏发生塌落和焊料飞溅。要保 证升温比较缓慢,溶剂挥发。较温和,对元器件的热冲击尽可能小, 在这个区,尽量将升温速度控制在 2~5℃/S,较理想的升温速度为 1~3 ℃/S,时间控制在 60~90S 之间。升温过快会造成对元器件的 伤害,如会引起多层陶瓷电容器开裂。同时还会造成焊料飞溅,使 在整个PCB的非焊接区域形成焊料球以及焊料不足的焊点。而温度上 升太慢,锡膏会感温过度,没有足够的时间使 PCB 达到活性温度。锡 炉的预热区一般占整个加热通道长度的 25~33%。 保温区:也称活性区、有时叫做干燥或浸润区。目的:保证在达到回流温度之前焊料能完全干燥,同时还起着焊剂活化的作用,清除 元器件、焊盘、焊粉中的金属氧化物。在这个阶段助焊剂开始挥发,

关于回流焊工艺发展的讨论

关于回流焊工艺发展的讨论 2003-6-18 9:00:31 文章作者:本站新闻管理员阅读818次 双击鼠标自动滚屏,单击停止最近几年,SMT生产技术已发生了巨大的变化,其中:生产标准的改变,新型焊膏的利用、不同基材的出现,以及元器件本身材料和设计的革新都使得热处理工艺不断发展。新型元器件的设计动力是来自于产品小型化的不断驱使。这些新型元器件封装包括:BGA(球栅阵列)、COB(裸芯片)、CSP(微型封装)、MCM(多芯片模块),以及flip chip(倒装片)等。产品小型化回流焊使得元器件越做越小,并使管脚数增加,使间距变小。另外为减少成本,免清洗和低残留焊膏使用的更加广泛,与之相应的是氮气的使用也随之增加。市场对手持式电子产品的不断需求始终是一个强大的驱动力,它使得封装工艺必须适应这些产品的技术要求。因此更小、更密、更轻的组装技术,以及更短的产品周期、更多、更密的I/O引线,更强的可操控性----都把回流焊技术提到一个新的层次上来讨论。同时也对热处理工艺的控制手段和设备提出了新的要求。 考虑到这些压力,我们提出了一个简单的设想图,其中的一些方案可以回答回流焊工艺今后会遇到的挑战。 氮气惰性保护 使用惰性气体,一般采用氮气,这种方法在回流焊工艺中已被采用了相当长的一段时间,但它的价格还是一个问题。因为惰性气体可以减少焊接过程中的氧化,因此,这种工艺可以使用活性较低的焊膏材料。这一点对于低残留物焊膏和免清洗尤为重要。另外,对于多次焊接工艺也相当关键。比如:在双面板的焊接中,氮气保护对于带有OSPs的板子在多次回流工艺中有很大的优势,因为在N2的保护下,板上的铜质焊盘与线路的可焊性得到了很好的保护。使用氮气的另一个好处是增加表面张力,它使得制造商在选择器件时有更大的余地(尤其是超细间距器件),并且增加焊点表面光洁度,使薄型材料不易褪色。真正最大的好处是降低了成本。氮气保护的费用取决于各种各样的因素,包括氮气在机器中使用的位置,氮气的利用率等。当然,我们通常感觉氮气消耗是一种工艺过程中额外的费用,因此总是想方设法减少氮气的消耗。目前焊膏的化学成份也在不断的改进提高,以便将来的工艺中不再使用氮气保护;或者至少在较高的O2浓度值下(比如:1000ppm对比目前为50ppm)取得良好的焊接效果,以便减少氮气的用量。对于是否使用氮气的保护,我们必须综合考虑许多问题,包括:产量要求的质量等级,以及每一对应的氮气消耗费用。使用氮气是有费用的问题,但是如果将它对提高产量与质量所带来的好处计算进来,那么它的费用是相对微不足道的。 如果焊接炉不是强制回流的那一种,并且气流是分层状态,那么氮气的消耗是比较容易控制的。但是,目前大多数炉的工作方式都是大容量循环强制对流加热,炉体内的气流是在不停的流动,这给氮气的控制与消耗提出了一个新的难题。一般,我们采取这几种方法降低氮气用量。首先,必须减少炉体进口的尺寸,尤其是垂直方向上的开口尺寸,使用遮挡板、卷帘幕,或者利用一些其它的东西来堵住进出口的孔隙。由遮挡板、卷帘幕向下形成的隔离区可以阻挡氮气的外泄,并且使外部的空气无法进入炉体内部,也有些回流炉是采用自动的

通孔回流焊接的工艺技术

通孔回流焊接的工艺技术如图2,可实现在单一步骤中同时对通孔元件和表面贴装元件(SMC/SMD)进行回流焊。相对传统工艺,在经济性、先进性上都有很大的优势。所以,通孔回流工艺是电子组装中的一项革新,必然会得到广泛的应用。 二通孔回流焊接工艺与传统工艺相比具有以下优势: 1、首先是减少了工序,省去了波峰焊这道工序,多种操作被简化成一种综合的工艺过程; 2、需要的设备、材料和人员较少; 3、可降低生产成本和缩短生产周期; 4、可降低因波峰焊而造成的高缺陷率,达到回流焊的高直通率。; 5、可省去了一个或一个以上的热处理步骤,从而改善PCB可焊性和电子元件的可靠性,等等。 尽管用通孔回焊可得到良好的工艺效果,但还是存在一些工艺问题。 1、在通孔回焊过程中锡膏的用量比较大,由于助焊剂挥发物质的沉积会增加对机器的污染,因而回流炉具有有效的助焊剂管理系统是很重要的; 2、对THT元件质量要求高,要求THT元件能经受再流焊炉的热冲击,例如线圈、连接器、屏蔽等。有铅焊接时要求元件体耐温235℃,无铅要求260℃以上。许多THT元件尤其是连接器无法承受回流焊温度;电位器、铝电解电容、国产的连接器、国产塑封器件等不适合回流焊工艺。 3、由于要同时兼顾到THT元件和SND元件,使工艺难度增加。 本文重点是确定对通孔回流工艺质量有明显影响的各种因素,然后将这些因素划分为材料、设计或与工艺相关的因素,揭示在实施通孔回流工艺之前必须清楚了解的关键问题。 1. 通孔回流焊焊点形态要求 2. 获得理想焊点的锡膏体积计算 3. 锡膏沉积方法 4. 设计和材料问题 5. 贴装问题 6. 回流温度曲线的设定 下面将逐项予以详细描述。

thr通孔回流焊技术要求(1)

通孔回流焊技术要求 近年来,表面贴装技术(SMT)迅速发展起来,在电子行业具有举足轻重的位置。除了全自动化生产规模效应外,SMT还有以下的技术优势:元件可在PCB的两面进行贴装,以实现高密度组装;即使是最小尺寸的元件也能实现精密贴装,因此可以生产出高质量的PCB组件。 然而,在一些情况下,这些优势随着在PCB上元件贴着力的减少而削弱。让我们观察图1的例子。SMT元件的特点是设计紧凑,并易于贴装,与通孔的连接器在尺寸和组装形式上有明显的区别。 图1 PCB上组装有SMT元件(左)和一个大理通孔安装的连接器(右) 用于工业领域现场接线的连接器通常是大功率元件。可满足传输高电压、大电流的需要。因此设计时必须考虑到足够的电气间隙与爬电距离,这些因素最终影响到元件的尺寸。 此外,操作便利性、连接器的机械强度也是很重要的因素。连接器通常是PCB主板与“外界部件”通信的“接口”,故有时可能会遇到相当大的外力。通孔技术组装的元件在可靠性方面要比相应的SMT元件高很多。无论是强烈的拉拽、挤压或热冲击,它都能承受,而不易脱离PCB。 从成本考虑,大部分PCB上SMT元件约占80%,生产成本仅占60%;通孔元件约占20%,生产成本却占40%,如图2所示。可见,通孔元件生产成本相对较高。而对许多制造公司来说,今后面临的挑战之一便是开发采用纯SMT工艺的印刷线路板。

图2 带有通孔无件和SMT元件的PCB 根据生产成本以及对PCB的影响,SMT+波峰焊和SMT+压接技术(press in)等现有的工艺还不完全令人满意,因为在现有的SMT工序需要进行二次加工,不能一次性完成组装。 这就对采用通孔技术的元件提出了下列要求:通孔元件与贴片元件应该使用同样的时间、设备和方法来完成组装。 THR如何与SMT进行整合 根据上述要求发展起来的技术,称之为通孔回流焊技术(Through-hole Reflow,THR),又叫“引脚浸锡膏(pin in paste,PIP)”工序,如图3所示。 图3 通孔回流焊技术的工序

回流焊接技术

焊接(Soldering) 2003-12-21Phil Zarrow 点击: 1947 焊接(Soldering) 回流焊接表面贴装元件现在有二十年之久了。虽然基本理论没有改变,但在元件包装和材料方面已经有进步,再加上新一代的、“对流为主(convection-dominant)”的、极大改善热传导效率的回流炉。 大规模的回流焊接,特别是在对流为主的(强制对流forced convection),以及激光和凝结惰性的(condensation-inert)(即汽相Vapor phase)焊接中,在可见的未来将仍然是大多数表面贴装连接工艺的首选方法。尽管如此,新的装配工艺和那些要求整个基板均匀加热、温度变化很小、高的温度传导效率的新应用技术,在促进对流为主的回流焊接的进化。无数的因素,包括增加的装配复杂性、更新的互连材料和环境考虑,结合在一起对工艺和设备提出了额外的要求。更快更经济地制造产品,这个持之以恒不断增长的要求驱动这一切的前进。 回流焊接温度曲线 作温度曲线(profiling)是确定在回流整个周期内印刷电路板(PCB)装配必须经受的时间/温度关系的过程。它决定于锡膏的特性,如合金、锡球尺寸、金属含量和锡膏的化学成分。装配的量、表面几何形状的复杂性和基板导热性、以及炉给出足够热能的能力,所有都影响发热器的设定和炉传送带的速度。炉的热传播效率,和操作员的经验一起,也影响反复试验所得到的温度曲线。 锡膏制造商提供基本的时间/温度关系资料。它应用于特定的配方,通常可在产品的数据表中找到。可是,元件和材料将决定装配所能忍受的最高温度。 涉及的第一个温度是完全液化温度(full liquidus temperature)或最低回流温度(T1)。这是一个理想的温度水平,在这点,熔化的焊锡可流过将要熔湿来形成焊接点的金属表面。它决定于锡膏内特定的合金成分,但也可能受锡球尺寸和其它配方因素的影响,可能在数据表中指出一个范围。对Sn63/Pb37,该范围平均为200 ~ 225°C。对特定锡膏给定的最小值成为每个连接点必须获得焊接的最低温度。这个温度通常比焊锡的熔点高出大约15 ~ 20°C。(只要达到焊锡熔点是一个常见的错误假设。) 回流规格的第二个元素是最脆弱元件(MVC, most vulnerable component)的温度(T2)。正如其名所示,MVC就是装配上最低温度“痛苦”忍耐度的元件。从这点看,应该建立一个低过5°C的“缓冲器”,让其变成MVC。它可能是连接器、双排包装(DIP, dual in-line package)的开关、发光二极管(LED, light emitting diode)、或甚至是基板材料或锡膏。MVC 是随应用不同而不同,可能要求元件工程人员在研究中的帮助。 在建立回流周期峰值温度范围后,也要决定贯穿装配的最大允许温度变化率(T2-T1)。是否能够保持在范围内,取决于诸如表面几何形状的量与复杂性、装配基板的化学成分、和炉的热传导效率等因素。理想地,峰值温度尽可能靠近(但不低于)T1可望得到最小的温度变化率。这帮助减少液态居留时间以及整个对高温漂移的暴露量。 传统地,作回流曲线就是使液态居留时间最小和把时间/温度范围与锡膏制造商所制

回流焊工艺参数管理规范(20171116160159)

回流焊工艺调试管理规程拟制日期 审核日期 批准日期

修订记录

目录 1 目的 (4) 2 适用范围 (4) 3 定义----------------------------------------------------------------------------------------------------------------------------------------------4 4 职责---------------------------------------------------------------------------------------------------------------------------------------4 5 内容 (4) 5.1 回流炉回流曲线,红胶固化曲线工艺窗口定义 ------------------------------------------------------------------------------------4 5.2回流炉程序命名规则 (6) 5.3回流炉程序制作及优化 (6) 5.4回流炉程序的使用 (7) 5.5 回流炉温度的测试-----------------------------------------------------------------------------------------------------------------------8 5.6回流曲线的保存 (8) 6 注意事项 (8) 7 参考文档 (9) 8 补充说明 (9) 附回流炉标准程序参数设置表: (9)

标准的SMT回流炉焊接工艺规范

标准的S M T回流炉焊接 工艺规范 Final approval draft on November 22, 2020

S M T回流焊接工艺规范编号:版次:发布:实施:页次: 编制:审核:批准: 1范围 本规范规定了回流焊接工艺的基本内容和要求,确定了回流焊接过程中的质量控制程序,使回流焊接过程中影响质量的各个因素得到有效控制。 本标准适用于SMT生产线的回流焊接生产过程。 2设备、工具和材料 设备 使用XXXX系列全热风回流焊炉。 工具 KIC 温度曲线测试仪、热电偶。 材料 高温胶带、高温链条润滑油、焊膏的技术特性表。 3 技术要求 传送宽度 对于厚度在以上,长度和宽度在150~300mm的PCB,一般采用链条传送方式;对于厚度小于,尺寸较小,不便于使用链条传送或采用拼板方式的PCB,为防止变形,可采用网带传送方式。 采用链条传送方式时,设置PCB的长、宽尺寸,设备自动调整宽度后,检查链条的实际宽度与PCB的宽度是否匹配,二者应有1~2mm的间隙。 温度曲线设置 影响温度曲线的参数主要有两个:链条速度和各温区温度设置。设定温度曲线需要根据所使用焊膏的技术要求,综合考虑链条速度和各温区温度。链条速度应根据整条生产线的生产节拍来确定,温度曲线通常分为四个区:预热区、保温区、焊接区、冷却区。升温速率应小于3℃/S,峰值温度通常应在210℃~230℃,在183℃以上的回流时间应为60(± 15)S,冷却速率应在3℃/S~4℃/S,一般,较快的冷却速率可得到较细的颗粒结构和较高强度与较亮的焊接点。故超过每秒4℃会造成温度冲击。

温度曲线设置时,可先根据经验资料进行设置,再用一块样板或与待焊PCB相近的一块PCB实测,测温度曲线时,KIC的热电偶放置应选择PCB中间、PCB边缘、大器件边缘、耐热要求严格的器件附近选取测试点,热电偶可用高温胶带固定在测试点上,温度曲线采样完成后,利用KIC的分析功能,主要检查峰值温度、升温速率、回流时间、温差,然后根据焊膏的技术要求调整回流焊炉的设置,下面以典型的Sn63Pb37锡铅锡膏为例,回流曲线性能规范要求如下图: 预热区(100—150℃)时间: 60—120Sec;升温速率: <℃/Sec; 保温区(150—183℃)时间: 30—90Sec;升温速率: <℃/Sec; 回流区(>183 ℃)时间: 40—80Sec;峰值温度: 210-235℃; 冷却区————降温速率: 1℃/Sec≤Slope≤4℃/Sec。 4 操作要求 设备的操作要求 严格按照设备操作规程进行操作,防止因操作不当造成设备损坏或产品不合格。 送板应保持一定的间隔,如有出错提示需及时处理,防止将PCB加热时间过长而损 坏。 链条应定期用高温润滑油进行润滑。 5 检验要求

回流焊接工艺参数设置与调制规范

回流焊接工艺参数设置与调制规范

1. 初始参数设定流程图 1.1、测温板制作 依照《SMT PROFILE 标准参数测量规范》制作测温板制作。 1.2、温度设定 a 、 以锡膏厂商提供的资料制定《焊锡膏(贴片胶)对应炉温要求》参数表, 依 此表设定温度,(见附表一) b 、以产品特性、PCB 材质与厚度、组件分布密度及吸热量设定温度, c 、考虑客户是否有特殊要求 最佳的有铅锡膏回焊曲线温度: (peak temp) 215℃±5℃ 开 制作测温板 设定参数 确定最高/低峰值温度 温度测试 PCB 裸板或PCBA 板 结束 是否有热敏器件 调试参数并测试 NG

0

1.)最高温度145℃. 2.)125℃~145℃时间 T:105~210S. 3.)用同一机种基板上体积最大(即吸热最严重)的组件引脚或CHIP焊盘 作为炉温测试点. 最佳的无铅锡膏回焊曲线温度 250 250 60 少于3℃ 1.)升温阶段:升温速率应低于3℃/Sec。 2.)最高温度不得低于230℃,最高温度不得高于250℃。 3.)预热段温度:30℃至150℃的时间: 60-90Sec; 4.)恒温段温度:150℃至217℃的时间:60 —120Sec; 目标:90_100sec 5.)回流段温度:大于217℃以上的时间:60 —90Sec;目标:70sec 峰值 温度: 230-245℃。 6).冷却速率3℃/Sec左右。

PCB电路板回流焊接工艺的经典PCB温度曲线

PCB电路板回流焊接工艺的经典PCB温度 曲线

回流焊接工艺的经典PCB温度曲线 本文介绍对于回流焊接工艺的经典的PCB温度曲线作图方法,分析了两种最常见的回流焊接温度曲线类型:保温型和帐篷型...。 经典印刷电路板(PCB)的温度曲线(profile)作图,涉及将PCB装配上的热电偶连接到数据记录曲线仪上,并把整个装配从回流焊接炉中通过。作温度曲线有两个主要的目的:1)为给定的PCB装配确定正确的工艺设定,2)检验工艺的连续性,以保证可重复的结果。通过观察PCB在回流焊接炉中经过的实际温度(温度曲线),可以检验和/或纠正炉的设定,以达到最终产品的最佳品质。 经典的PCB温度曲线将保证最终PCB装配的最佳的、持续的质量,实际上降低PCB的报废率,提高PCB的生产率和合格率,并且改善整体的获利能力。 回流工艺 在回流工艺过程中,在炉子内的加热将装配带到适当的焊接温度,而不损伤产品。为了检验回流焊接工艺过程,人们使用一个作温度曲线的设备来确定工艺设定。温度曲线是每个传感器在经过加热过程时的时间与温度的可视数据集合。通过观

察这条曲线,你可以视觉上准确地看出多少能量施加在产品上,能量施加哪里。温度曲线允许操作员作适当的改变,以优化回流工艺过程。 一个典型的温度曲线包含几个不同的阶段-初试的升温(ramp)、保温(soak)、向回流形成峰值温度(spiketoreflow)、回流(reflow)和产品的冷却(cooling)。作为一般原则,所希望的温度坡度是在2~4°C范围内,以防止由于加热或冷却太快对板和/或元件所造成的损害。 在产品的加热期间,许多因素可能影响装配的品质。最初的升温是当产品进入炉子时的一个快速的温度上升。目的是要将锡膏带到开始焊锡激化所希望的保温温度。最理想的保温温度是刚好在锡膏材料的熔点之下-对于共晶焊锡为183°C,保温时间在30~90秒之间。保温区有两个用途:1)将板、元件和材料带到一个均匀的温度,接近锡膏的熔点,允许较容易地转变到回流区,2)激化装配上的助焊剂。在保温温度,激化的助焊剂开始清除焊盘与引脚的氧化物的过程,留下焊锡可以附着的清洁表面。向回流形成峰值温度是另一个转变,在此期间,装配的温度上升到焊锡熔点之上,锡膏变成液态。 一旦锡膏在熔点之上,装配进入回流区,通常叫做液态以上时间 (TAL,timeaboveliquidous)。回流区时炉子内的关键阶段,因为装配上的温度梯

回流焊接工艺要求

回流焊接工艺要求 大功率LED是一种节能环保的绿色照明器件,在日趋发展的当今社会中,人们越来越注重生活环境的保护,绿色环保,节能减排,逐渐变为商家的竞争发展的目的和商业利益的源头。LED较传统白炽灯泡省电超过80%,相较一般路灯也有省电30%~50%的实证效果,在海外,已有许多案例显示LED户外照明方案在2~3年内即可回收投资成本。 但是在关于大功率LED光源的使用主要存在两个难题:第一,大功率LED的焊接制作方案。第二,大功率LED的散热解决方案。在大功率LED的散热问题许多灯饰制作都有其设计方案主要采取空气对流进行散热。问题主要集中在大功率LED的焊接方法。关于焊接现在主要采用三种方法进行焊接A.手工焊接B.恒温板加热焊接C.回流焊接在实际应用中手工焊接和恒温板焊接使用所有大功率LED的封装,虽然焊接效率很低,人力制作成本较高,但是焊接的大功率LED的工艺比较容易掌握,而且在后期的使用中问题点很少被大多数灯饰生产制作而采用。回流焊接虽然效率高,制作快但是工艺制作要求高,技术难度大,而且本很多生产厂家否定。 回流焊接,什么是回流焊接? 回流焊是英文Reflow Soldring的直译,是通过重新熔化预先分配到印制板焊盘上的膏装软钎焊料,实现表面组装元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。 回流焊又称“再流焊”或“再流焊机”(Reflow Machine),它是通过提供一种加热环境,使焊锡膏受热融化从而让表面贴装元器件和PCB焊盘通过焊锡膏合金可靠地结合在一起的设备。 回流焊根据技术的发展分为:气相回流焊、红外回流焊、远红外回流焊、红外加热风回流焊和全热风回流焊。另外根据焊接特殊的需要,含有充氮的回流焊炉。目前比较流行和实用的大多是远红外回流焊、红外加热风回流焊和全热风回流焊。 根据形状可以分为台式回流焊炉和立式回流焊炉,简要介绍这两种。 1、台式回流焊炉 台式设备适合中小批量的PCB组装生产,性能稳定、价格经济(大约在4-8万人民币之间),国内私营企业及部分国营单位用的较多。 2、立式回流焊炉 立式备型号较多,适合各种不同需求用户的PCB组装生产。设备高中低档都有,性能也相差较多,价格也高低不等(大约在8-80万人民币之间)。国内研究所、外企、知名企业用的较多。 回流焊与波峰焊是对应的,都是将元器件焊接到PCB板材上,回流是对表面帖装器件的,而对插接件使用波峰焊。回流焊的最简单的流程是丝印焊膏--贴片--回流焊,其核心是

回流焊接工艺规范

Q/ZDJG 青岛智动精工电子有限公司企业标准 Q/ZDJG G0204.3.34-2015 回流焊接工艺规范 青岛智动精工电子有限公司发布

Q/ZDJG G0204.3.34-2015 前言 本标准由青岛智动精工电子有限公司质量部提出。 本标准由青岛智动精工电子有限公司质量部起草。 本标准由青岛智动精工电子有限公司质量部负责解释。 本标准的修改状态为1/A。 本标准主要起草人:徐龙会 审核:日期:年月日 批准:日期:年月日

Q/ZDJG G0204.3.34-2015 回流焊接工艺规范 1 主题内容与适用范围 本工艺守则规定了生产中回流焊炉温测试、曲线确认等的工艺要求。适用于公司SMT车间回流焊生产工艺的管理。 2 规范性引用文件 无 3术语和定义 3.1回流温度曲线 回流温度曲线是指PCB基板在经过回流炉过程中板上指定位置的温度随时间的变化曲线,使焊锡膏受热融化从而让表面贴装元器件和PCB焊盘通过焊锡膏合金可靠地结合在一起。 3.2 固化温度曲线 固化温度曲线是指PCB基板在经过回流炉过程中板上指定位置的温度随时间的变化曲线,使贴片红胶受热固化从而让表面贴装元器件和PCB通过粘接可靠地结合在一起。 4职能部门与职责分工 质量部负责回流焊工艺规范的制定、监督和检查。 制造部负责按要求进行确认、操作。 5 管理内容和要求 5.1 管理流程图

5.2 炉温生成与管理要求 5.2.1 根据锡膏的技术规格书、推荐的炉温曲线要求和合金的生成原理初步设计出总体的制程界限,然后根据生产板件的板材、镀层特性、尺寸和布局的复杂程度设计出制程界限,如下表: 5.2.2 根据回流炉类型、特点和制程界限测定每种炉温类型在每条线体的《回流炉参数设定表》。 5.2.3 新品试制时,根据元器件资料(是否有耐热要求等)和PCB布局判断该产品是否符合现有的炉温类型,若没有,则需综合考虑PCB、元器件特殊要求、锡膏需求的制程界限、生产效率等方面生成新的炉温类型。 5.2.4 新生成的炉温类型或因焊接异常需要调整设置的炉温类型应经相关负责人和主管审核和批准,更新至《回流炉参数设定表》。 5.3 炉温测试板制作与管理要求 5.3.1制作测温板时尽量选取与生产基板相同或相似的报废基板。 5.3.2 在导入新品时,若产品有特殊要求、特殊元件和特殊板材,需要生产新的炉温类型,则必须制作相对应的特殊测温板或经客户同意使用通用的炉温测试板。 5.3.3主板复杂面的测温板应至少有5个测温点,主板简单面、副板和红胶板的测温板应至少有4个测温点,并均匀的分布在PCB板上。选择测温点时,外协产品测温点应包括:大型的BGA、QFP、电解电容、电感等元件,通信产品应包括BGA、QFP、连接器、UIM卡、TLLASH卡等元件。 5.3.4 测温点可使用高温胶、高温胶带或高温锡丝进行固定,测温固定点应尽量小,固定时引线暴露部分应尽量短,以免影响测温效果。 5.3.5 测温板制作完毕后应进行编号,如A类产品编号为RPT-A等,并标明启用日期。 5.3.6 测温板启用前必须经产品工艺确认所做测温板是否合格,判定合格后方可使用。 5.3.7 测温板每次使用后必须在《测温板使用记录表》对应测温板后依次打“√”以示使用次数,单个测试板的最多使用次数为50次。

回流焊工艺

回流焊工艺 (一)摘要:由于电子产品PCB板不断小型化的需要,出现了片状元件,传统的焊接方法已不能适应需要。首先在混合集成电路板组装中采用了回流焊工艺,组装焊接的元件多数为片状电容、片状电感,贴装型晶体管及二极管等。随着SMT整个技术发展日趋完善,多种贴片元件(SMC)和贴装器件(SMD)的出现,作为贴装技术一部分的回流焊工艺技术及设备也得到相应的发展,其应用日趋广泛,几乎在所有电子产品领域都已得到应用,而回流焊技术,围绕着设备的改进也经历以下发展阶段。 (二)技术产生背景:由于电子产品PCB板不断小型化的需要,出现了片状元件,传统的焊接方法已不能适应需要。起先,只在混合集成电路板组装中采用了回流焊工艺,组装焊接的元件多数为片状电容、片状电感,贴装型晶体管及二极管等。随着SMT整个技术发展日趋完善,多种贴片元件(SMC)和贴装器件(SMD)的出现,作为贴装技术一部分的回流焊工艺技术及设备也得到相应的发展,其应用日趋广泛,几乎在所有电子产品领域都已得到应用。 (三)发展阶段:根据产品的热传递效率和焊接的可靠性的不断提升,回流焊大致可分为五个发展阶段 第一代:热板传导回流焊设备:热传递效率最慢,5-30 W/m2K(不同材质的加热效率不一样),有阴影效应. 第二代:红外热辐射回流焊设备:热传递效率慢,5-30W/m2K(不同材质的红外辐射效率不一样),有阴影效应,元器件的颜色对吸热量有大的影响。 第三代:热风回流焊设备:热传递效率比较高,10-50 W/m2K,无阴影效应,颜色对吸热量没有影响。 第四代:气相回流焊接系统:热传递效率高,200-300 W/m2K,无阴影效应,焊接过程需要上下运动,冷却效果差。 第五代真空蒸汽冷凝焊接(真空汽相焊)系统:密闭空间的无空洞焊接,热传递效率最高,300 W-500W/m2K。焊接过程保持静止无震动。冷却效果优秀,颜色对吸热量没有影响 (四)回流焊的工作原理:再流焊又称回流焊。它主要用于贴片元器件的焊接上。再流焊技术是将焊料加工成一定颗粒的,并伴以适当的液态粘合剂,使之成为具有一定流动性的糊状焊膏,用它把将贴片元器件粘在印制电路板上,

通孔插装元器件焊孔设计工艺规范(8-22)

通孔插装元器件焊孔、焊盘设计工艺规范 1.0目的:规范元器件焊孔、焊盘设计,满足可制造性要求。 2.0适用范围:通孔插装元器件的焊孔、焊盘设计? 3.0内容 3.1定义 3.1.1引脚直径:若无特殊说明,指圆形引脚的直径,或者指方形(含扁形) 引脚截面的对角线长度,用d表示,如图3.1.1(a)、图3.1.1(b) 所示。 3.1.2方形(或扁形)引脚截面尺寸:用w表示引脚宽度,用t表示引脚厚 度,如图3.1.1(b)所示。当方形引脚的宽厚比w/t大于2时称为扁 形引脚。 3.1.3焊孔直径:圆形焊孔直径,用d1表示,如图3.1.1(c)所示。 3.1.4焊盘直径:圆形焊盘直径,用D表示,如图3.1.1(c)所示。 3.1.5椭圆(或方形)焊盘长度:用L表示,如图3.1.1(d)所示。 3.1.6椭圆(或方形)焊盘宽度:用W表示,如图3.1.1(d)所示。 (a) 圆形引脚元器件 (b) 方形(或扁形)引脚元器件 元件 (c) 圆形焊孔及焊盘(d) 圆形焊孔及椭圆(或方形)焊盘

3.2 焊孔 3.2.1 一般情况下,焊孔直径d1按表3.2.1选取: 表3.2.1 注1:无标准骨架的电感、变压器、多股线等误差较大的非标准元件, 取上限。单 面板取下限。 注2:在仅有有限的几个插装元件,多数元件为贴装元件的情况下, 有可能使用到 通孔回流焊工艺,比如模块针脚的焊接。 3.2.2 脚距精度较高,且定位要求也较高的元器件,如输入、输出插座等,焊孔直径等于引脚直径加上0.15~0.2mm 。 3.2.3 方形引脚焊孔: 3.2.3.1 w >2.5mm 时,设计为方焊孔(圆角R 为0.3~0.35mm, 防止圆角影响插装),方焊孔尺寸如图3.2.3.1所示。 3.2.3.2 w <2 mm 时 ,设计为圆孔,焊孔直径d1=d+0.15~0.25mm, d 为引脚截面 对角线长。 3.2.4 扁形引脚焊孔: 3.2. 4.1 w <1.8mm 时,设计成圆孔,焊孔直径d1=d+0.15~0.25mm, d 为引脚截 面对角线长。 3.2. 4.2 w >1.8mm 时,根据t 值大小设计为长方孔或长圆孔,如图3.2.4所 示。t >1.5mm 时,焊孔设计为长方孔(圆角R 为0.3~0.35mm,防止圆角影响插装),长方孔焊孔宽度T=t+0.3mm,焊孔长度L=w+0.4~0.5mm ;t <1.5mm 时,焊孔设计为长圆孔, 长圆孔焊孔宽度T=t+0.3mm,且T ≥0.7mm,长圆孔焊盘长度。

相关文档