文档库 最新最全的文档下载
当前位置:文档库 › 开关电源并联供电系统

开关电源并联供电系统

开关电源并联供电系统
开关电源并联供电系统

2011年A题开关电源并联供电系统

摘要

本系统以dsPIC33FJ64GS606为核心,采用双Buck电路实现降压并联为负载供电,两个模块输出电流比例在特定点能自动切换,同时也能手动指定量模块输出电流比例,输出电压范围稳定在8V,单个模块输出2A电流。实测电压,实测电流,实测效率。该系统主要由最小单片机系统,辅助电源模块,主Buck回路,电压电流采集放大电路组成。

关键词:dsPIC33FJ64GS606;数字闭环;DC/DC并联;Buck电路。

ABSTRACT

The system dsPIC33FJ64GS606 core, dual-Buck buck circuit in parallel to the load, the output current ratio of two modules can be automatically switched at a certain point, but also can manually specify the amount of module output current ratio, output voltage stable at 8V , a single module output current of 2A. Measured voltage, measured current, the measured efficiency. The system consists of the smallest single-chip systems, auxiliary power module, the main Buck circuit, amplification circuit voltage and current acquisition

Keywords: dsPIC33FJ64GS606; Switching Power Supply; Boost Circuit.

一、方案论证与比较

1.1 DC/DC主回路拓扑的方案选择

降压变换有非隔离型和隔离型两种:

方案一:采用隔离型降压拓扑方案,可供选择的有反激变换,正激变换等。隔离型的优点在于输出灵活,可实现多路输出,输入和输出间由高频变压器进行功率传送和电气隔离。缺点在于整个拓扑中的高频变压器是一个难点,个人很难绕制出高质量的高频变压器,高频变压器的绕制不当将影响整个系统的工作,调试的时候相对于非隔离拓扑难度较大。

方案二:采用非隔离型降Buck降压电路。非隔离型Buck通过PWM控制开关管通断,从而控制储能元件来传递能量,因而整个电路损耗很小效率可以做得很高。非隔离型降压电路调试简单,易于对整个电路的控制。非隔离型降压电路缺点在于输入输出间没有直接的电气隔离,稳定性和安全性相对于隔离型要差一些。

方案论证:方案一虽然稳定性和安全性更好,但是由于高频变压器的制作难度较大,调试所需时间也相对较长,由于本题没有要求多路输出等特别要求,所以采用非隔离型Buck降压电路可以显著提高效率,便于在短时间内调试成功,故选择方案二。

1.2 控制方法的方案选择

方案一:采用传统的模拟电路方法,通过在每一个Buck模块的输出采集反馈电压,反馈电压送入TL494等传统的PWM控制芯片进行占空比调整,同时在输出采集每个模块的电流和总电流,通过判断电流是否按一定比例分配在进行相关补偿,以实现电压外环,电流内环的双环控制,达到稳压和电流分配的目的。

方案二:借助于dsPIC强大的运算能力,将所有的闭环控制操作放在MCU 中,通过MCU对采集的电压进行PI算法进行稳压,同时对采集的电流进行判断,通过MCU内部计算和调节,强制电流按指定比例分配,从而达到系统要求。

方案论证:方案二相对于方案一不仅硬件电路简单,而且全部的控制过程均可在软件中认为去设置,在实现同样的双环控制的功能下,方案二的仅需要多次试验来整定出合理的PI参数即可。而且全数字实现闭环控制,抗干扰的能力也比用传统模拟电路搭起来的效果好。综合上述本次设计中选用全数字闭环控制方式。

1.3 电流采集的方案选

方案一:采用普通运放构成差分电路采集采样电阻两端的压差并进行放大后送单片机的AD进行采样。

方案二:采用专门的仪表差放AD620采集采样电阻两端电压并放大后送单片机AD进行采样,AD620为专门的仪表差放,他在内部封装了普通3运放构成的差分放大电路。

方案论证:AD620相对于普通的运放构成的差分电路,在输入信号很小时依然能保持很高的准确度和线性度,能对微小的压差进行放大,外部仅需一直增益设置电阻取设定放大倍数即可。采用正负电源供电后误差可进一步减小。配合康铜丝进行电流采样放大能达到很大的精度和很低的损耗。综合上述本次设计中采用方案二进行电流的采集。

二、详细软硬件分析

2.1 主回路器件选择及参数计算:

整体系统框图如图1

图1 整体系统框图

系统主回路由2路Buck回路构成,如图2:

图2:双路Buck主电路

Buck主回路采取CCM模式,对于开关频率的选择,综合考虑了开关损耗,输出纹波等因素后本次设计中选取25KHz。

占空比计算:

(Vi-Vo)*Ton/L=Vo*Toff/L

D=Vo/Vi

本次设计输入24V,输出8V,因此

D= Vo/ Vi=8/24=33.3%

电感量计算:

dIL= (Vi-Vo)*Ton/L

dIL=0.2IL=0.2Ion

L=5(Vi-Vo)Vo*T/(Vi*Io)

IL_avg = Io

IL_peak=1.1Io

IL_rms=ILavg*(1+0.22/12)0.5

L电感量的选取原则使电感纹波电流为电感电流的20%

dIL—电感纹波电流峰峰值

IL_avg—电感电流平均值

IL_peak—电感峰值电流

L_rms—电感电流有效值

由以上公式,计算出电感量后适量选取,本设计最终用铁硅铝磁芯绕制电感,电感量选取700uh。

肖特基二极管选择:

Id_peak=1.1Io

Vrd=Vi

Id_peak—续流二极管峰值电流

Vrd—续流二级管反向耐压(Ton期间)

由以上公式选取耐压24V以上,平均整流电流3.5A以上的管子即可,考虑到留下一定余量,本次设计中选用MBR20100,器平均整流电流20A,反向耐压100V 符合题目要求。

开关管

Isw_peak=1.1Io

Vsw_peak =Vi

Isw_peak—开关管峰值电流

Vsw_peak—开关管耐压(Toff期间)

由以上公式选取耐压24V以上,可流过电流3.5A以上的管子即可,考虑到留下一定余量,本次设计中选用IRF540,最大漏极电流电流23A,最大漏源耐压100V,导通电阻77毫欧,符合题目要求。

输出电容的选择

Icin_rms = [(Io-Iin)2D+Iin2(1-D)]0.5

Ico_rms=dIL/120.5

电容选取:耐压、纹波电流、电容量

Icin_rms—输入电容的纹波电流有效值

Ico_rms—是输出电容的纹波电流有效值

由于题目没有对纹波有特别要求,综合考虑后输出电容选用2200μf/50V的电解电容即可。

2.2 采样电阻选取和差分放大倍数计算:

对3路电流采集的差分放大电路如图3。

图3:电流采集差分放大电路

采样电阻主要用于产生一定的压降,以便单片机采集后换算出电流的大小,在精度合理的范围内,采样电阻越小越好,这样可以降低在采样电阻上的损耗。普通的电阻在流过大电流后温度变高,电阻值会发生变化,导致测量结果产生非线性的误差,所以本次设计选用康铜丝作为采样电阻,由于有差分电路可以对采集的压差进行合理放大,所以选取0.05欧的康铜丝即可。

由于单片机AD最大能采集3.3V的电压。对于单路Buck假设最小输出0.25A,最大输出3A计算,康铜丝采用0.05欧规格。则康铜丝上的最小和最大压降分别为12.5mV和150mV,放大20倍后为250mV和3V,在AD采样范围内且信号放大后可以有效减小AD采集误差,故单路Buck电流采集部分的差放放大倍数为20。由AD620增益电阻计算公式

增益电阻=49.4/(放大倍数-1)

得阻值为2.6K,实际选取2.7K。

对于总电流的采样,假设最小为0.5A最大位5A,由以上过程和公式反推,得放大倍数为10,增益电阻为5.4K,实际选取5.1K。

2.3 MOS管驱动电路选择于计算

本次设计中MOS管驱动电路采用专门的MOS驱动芯片IR2110,IR2110内部带两路输出,其中高端位悬浮自举方式工作。考虑到Buck电路MOS管在回路高端,不可采用IR2110的低端输出进行驱动,必须采用IR2110的高端进行驱动以和系统的地线隔离。自举电容用0.1μf和10μf电容并联。具体电路如图4。

图4:MOS驱动电路(高端驱动)

2.4辅助电源设计与计算:

整个系统中单片机需要3.3V,液晶需要5V,AD620需要正负15V,IR2110功率边需要15V总共4种电源。本次设计中直接从输入24V取电压经7815稳压15V 输出后在给7805提供输入,稳出5V电压后再给AMS1117-3.3输入稳出3.3V电压。同时7805的输出接MC34063进行极性反转输出-17V后输入给7915稳出-15V 电压。由以上步骤即可满足整个系统的电源需求。具体电路见图5和图6。

图5:辅助电源

图6:辅助电源(负压产生)

2.6 电流比例手动设置电路

采用MCU8个数字端口外接拨码开关,通过端口返回的BCD码设置倍数值.

2.7 数字显示电路

本次设计中加入液晶LCD显示,显示模块采用ST7920控制器的12894

液晶模块,实时显示两路DC/DC模块电流,总电流,输出电压,输出功率,系统是否正常等属性。

2.8软件设计:

软件采用双数字闭环的控制方法,以电流控制为内环,电压控制为外环,内环以I1为基准,I2通过PID增量法逼近直到和k*I1(k为放大比例)误差为0

为止,外环在内环的基础上进行电压反馈调节控制周期为内环的一定倍数,由此构成PID双闭环控制。参数整定采用工程整定方式。整体软件流程图如图7,PWM 中断服务程序流程图如图8

图7 整体软件流程图

图8 PWM中断函数流程图

三、系统调试及指标测试

调试过程共分三部分:硬件调试,软件调试,软硬件联调。调试使用的仪器主要有UT56标准型数字万用表,SP-F05型DDS 函数信号发生器,安泰信APS3005S-3D 电源,TPS1012B-C 数字存储示波器。

调试采用模块化调试方法,开环分别调试两路Buck 电路实现降压,然后硬件接入软件的PWM 和数字PI 调节,实现软硬件联调,最终实现系统功能。

3.1测试仪器

UT-50标准数字万用表,安泰信数显直流稳压源

4.2 指标测试

4.2.1额定功率下系统稳压性能:

表1 额定功率下系统稳压电源

符合题目要求的正负0.4的要求。

4.2.2系统效率测试:

表2 系统效率测试 测试条件为输出电压8V ,输出电流为4A

输入电压(V ) 输入电流(I ) 输出电压(V ) 输出电流(I )

效率

24.000 1.797 8.050 4.02 75%

24.02 1.764 8.050 4.00 76%

24.01 1.793 8.051 4.01 75%

4.2.3电流1:1分配(输出电流等于1A ):

表3 电流1:1分配测试

输出总电流(I ) 1.018 0.998

1.020 第一路输出电流

(I ) 0.502 0.493

0.508 第二路输出电流

(I ) 0.513 0.484

0.496 相对误差 1.2% 1.7%

2.2% 4.2.4电流1:2分配(输出电流等于1.5A ):

表4 电流1:2分配测试

输出总电流(I ) 1.506 1.495

1.503

第一路输出电流

(I ) 0.508 0.490

0.510 第二路输出电流

(I ) 0.987 1.002

0.984 相对误差 1.6% 2.1%

1.9%

输入电

压(V) 24.013 24.032 23.986 24.007

输出电

压(V) 8.050 8.052 8.050 8.051

输出电

流(A) 4.00 3.98 4.02 4.00

4.2.5电流任意比例分配(输出电流1.5~3.5A):

表5 电流任意比例分配测试

输出总电流(I) 1.506(1:3)3(2:1) 3.5(3:2)

第一路输出电流

(I)0.380 1.992 1.389

第二路输出电流

(I) 1.117 1.000 2.061

相对误差 1.8% 1.8% 2%

4.2.6 电流1:1分配测试(输出电流等于4A)

表6电流1:1分配测试

输出总电流(I) 4.03 3.98 4.01

第一路输出电流

(I) 1.998 2.010 1.994

第二路输出电流

(I) 2.003 1.989 2.004

相对误差 1.1% 1.9% 1.6%

4.2.7 过流保护测试

表7 过流保护测试

4.03 4.27 4.41 4.68

输出电流

(I)

是否保护否否否是

由以上看出各项结果都符合系统指标,产生误差的原因包括:测量仪器的固有误差,数字闭环维持系统在动态平衡,所以不可能能完全1:1均流或者任意比例分配电流。

五、结论

经过四天三夜的辛勤努力,实现了题目的大部分要求要求,在电流分配误差控制方面有时候还不是能很稳定控制在2%不过即使波动也不会超过3.5%。由于时间方面比较紧,所以布板的时候一些抗干扰措施还有待加强,整个系统如果在辅助电源方面用效率更高的电源管理芯片则整个系统的效率还有很大的提高空间。系统中全部闭环处理均采用数字化,事实证明数字闭环的抗干扰能力的确很出众,基本不受外界影响。

六、参考文献

1.电力电子技术第五版---王兆安,刘进军

2.开关电源设计第三版—Abraham I.Pressman

3.全国大学生电子设计竞赛获奖作品选编(2007)--全国大学生电子设计竞赛主委会

七、附件

整个系统原理图:

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

开关电源模块并联供电系统设计报告

开关电源模块并联供电系统(A题) 摘要: 本系统给出了以分立元件构成的DC/DC变换模块为核心的开关电源,并制作一个由两个额定输出功率均为16W的8VDC/DC模块构成的并联供电系统。系统采用 STC89C52单片机进行监控,并用高精度的德州仪器芯片TLC5615IP和TLC2543CN进行数模、模数转换,实现电流的实时测量、人机交互、电流比例设定、输出电流显示、过流保护及自动恢复功能。经测试,系统较好地完成了基本部分和发挥部分的要求,工作稳定,用户界友好。 关键词:分立元件;DC/DC变换模块;开关电源;并联;德州仪器芯片

1 方案比较与论证 1.1 DC/DC变换电路的选择 方案一:由LM2576开关型降压稳压器构成 LM2576系列的稳压器是单片集成电路,能提供降压开关稳压器(buck)的各种功能,能驱动3A的负载,有优异的线性和负载调整能力,使用该器件构成的DC/DC变换电路的设计思想如下: 图1.1(a) 由LM2576构成的DC/DC变换电路 该稳压器内部含有频率补偿器和一个固定频率振荡器,将外部元件的数目减到最少,使用简单,但由于集成电路工艺制造的元器件,各元器件参数的据对精度不是很高,而且受温度的影响也比较大,因此我们放弃这种方案。 方案二: 由分立元件构成 本电路是自己设计的,由施密特触发器74HC14、运算放大器LM324、三极管、二极管、电阻、电容以及电感等器件组成的核心电路,提供了自由调整的余地,另外为了不致过载、过流、过热等损坏元件,需要加以复杂的保护电路。下图为DC/DC 主回路的拓扑结构: 图1.1(b) 由分立元件构成构成的DC/DC变换电路 由于由分立元件构成的DC/DC变换电路,电路选择得好,参数选择恰当,元件性能就很优良,设计和调试的好,则性能也很优良。因此本系统选择方案二。 1.2 控制方法及实现方案

开关电源系统的故障分析与维护

南京中富达电子通信技术有限公司 逾& 多甫窘nan i i n£r zhanp-f uda ft I fttit rnn norraniin i mat ft hv I fttt ft r tftnhno I nfrv I tj,开关电源系统的故障分析与维护 直流开关电源是通信系统的心脏,电源运行质量直接关系到通信网络在线设备的工作质量;保障电源稳定、可靠、安全、优质的情况下运行,确保各项供电指标符合通信设备的供电要求,才能保证通信 设备稳定工作、通信畅通无阻。电源维护人员是保证电源稳定工作的重要技术力量,深入探讨直流开关电源系统故障分析方法与维护措施,有利于电源维护技术人员在维护检查过程中正确的操作和处理故障,及时保障电源设备正常的工作。 一、直流开关电源系统维护要点 1. 重视现场巡检 定期巡视检测通信电源设备,注意机房环境温度和设备运行状况,利用电源监控系统,实时监控电源设备的各种运行参数,发现问题及时处理。巡视检测时必须检查电源工作状态:模块配置是否合理,充电限流值是否正确,有无告警,系统交流电压、电流,直流浮充电压、负载电流、蓄电池充电电流,风扇运行状况,防雷器件状况,开关电源监控模块的各项运行参数是否正确,温度补偿是否正常启用。开关电源模块均流是否小于5%等。蓄电池保险、蓄电池连接条温升,蓄电池是否有爬酸、漏液、鼓肚等现象。机房环境温度是否合符维护要求等。 2. 应用远程监控

逾& 多曲" nan i i ntr yhnnjrf uda fi I ftdtrnn norraniin i mat ft hv I fttt ft r tftnhno I nirv I tj, 利用监控系统对电源设备能够实现远程监控,通过远程监控系统了解故障现象,通过远程能处理的故障可以通过远程监控解决,不能处理的故障,必须马上到现场处理。同时利用电源监控系统检测电源的各种信号是否正常,数据是否存在偏差。 3. 及时处理故障 处理电源设备故障时,应首先初步判断造成电源故障原因和故障部位,然后采取相应的方法和措施对电源故障进行处理。对严重故障 必须请示主管领导。 4. 寻求技术支持 对不能马上处理的电源故障,必须电话咨询相关厂家技术人员, 若电话指导仍然解决不了问题,应立即采用现有备件临时恢复电源设备供电,同时做好故障记录,并通知相关厂家技术人员带配件来维修。 5. 确保安全 在处理故障的过程中应特别注意以下方面的问题以确保安全: (1) 处理故障过程中大部份时间是带电操作的,因此一定要注意不能引起直流输出、交流输入的短路,各种维护工具必做好绝缘处理,确保人身安全和电源设备供电的安全。

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

最新a-开关电源模块并联供电系统(a题汇总

A-开关电源模块并联供电系统(A题)

2011年全国大学生电子设计竞赛试题 参赛注意事项 (1)2011 年 8 月 31 日 8:00 竞赛正式开始。本科组参赛队只能在【本科组】题目中任选一题; 高职高专组参赛队在【高职高专组】题目中任选一题,也可以选择【本科组】题目。(2)参赛队认真填写《登记表》内容,填写好的《登记表》交赛场巡视员暂时保存。 (3)参赛者必须是有正式学籍的全日制在校本、专科学生,应出示能够证明参赛者学生身份的有效证件(如学生证)随时备查。 (4)每队严格限制 3 人,开赛后不得中途更换队员。 (5)参赛队必须在学校指定的竞赛场地内进行独立设计和制作,不得以任何方式与他人交流,包括教师在内的非参赛队员必须迴避,对违纪参赛队取消评审资格。 (6)2011 年 9 月 3 日 20:00 竞赛结束,上交设计报告、制作实物及《登记表》,由专人封存。 开关电源模块并联供电系统(A题) 【本科组】 一、任务 设计并制作一个由两个额定输出功率均为 16W的 8V DC/DC模块构成的并联供电系统(见图 1)。 + I IN DC/DC 模块 1 I1 I O + U IN=24V 负载 电阻U O=8.0V - DC/DC 模块 2 I2 - 图 1两个 DC/DC模块并联供电系统主电路示意图 二、要求 1.基本要求 (1)调整负载电阻至额定输出功率工作状态,供电系统的直流输出电压U O=8.0±0.4V。 (2)额定输出功率工作状态下,供电系统的效率不低于 60% 。 (3)调整负载电阻,保持输出电压 U O=8.0±0.4V,使两个模块输出电流之和 I O =1.0A 且按I1:I2=1:1 模式自动分配电流,每个模块的输出电流的相对误差绝对值不大于 5%。 (4)调整负载电阻,保持输出电压 U O=8.0±0.4V,使两个模块输出电流之

开关电源并联供电系统(很全版本)

课程设计Ⅱ 题目开关电源模块并联供电系统学生姓名学号 所在院(系)物电学院 专业班级电信081班 指导教师刘东 完成地点陕西理工学院 2011年 11月28日

开关电源模块并联供电系统 康恺 (陕西理工学院物电学院电子信息科学与技术专业08级1班,陕西汉中 723001) 指导老师:刘东 【摘要】:开关电源模块供电系统由并联稳压电源和检测控制系统组成。稳压电源使用电压调节器LM2596实现降压,监测控制电路采用AT89C51单片机作为控制核心,采集两路电流信号,通过算法分配误差值,修正每一路的电流大小,并显示电流的相对误差。系统的负载电流超过设定值时,启动保护电路切断电源并延时一定时间后自动恢复供电。经测试,供电系统能够较好的实现两路电流分配,效率可以达到70%以上,每路电流的相对误差3%左右。 【关键词】:LM2596;开关电源;并联均流 Switching Power Supply Module Parallel Power Supply System kangkai (Grade08,Class1,Majiothe physics electronic information science ,Dept, Shannxi University of the Technology,Hanzhong,723001,Shannxi) Instructor: Liu don Abstract: Switching power supply module power supply system was composed of Shunt regulated power supply and control system testing. Power supply used LM2596 regulator to achieve step-down voltage. Monitoring and control circuit based on AT89C51 microcontroller collected two current signals, the error value was assigned by the algorithm, the amendment of the current size of each road, and displays the current relative error. System load current exceeds the set value, the start delay protection circuit cut off power and restore power automatically after a certain time. Tested, the power supply system can achieve a better distribution of two current efficiency can reach 70% or more, each current relative error 3%. Key words: LM2596; switch power; power supply in parallel

电脑开关电源电路大全及PC开关电源标准详解

PC开关电源标准详解 计算机电源是根据计算机相应的电源标准设计和生产的,在计算机高速发展的这十多年间,计算机电源标准也跟着在不断地发生变化,以适应计算机高速发展的要求,计算机电源主要采用了以下几个标准: PC/XT标准: 是由IBM最先推出个人PC/XT计算机时制定的标准; AT标准: 也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供大约190W的电力供应; ATX标准: 是由Intel公司于1995年提出的工业标准,从最初的ATX1.0开始,ATX标准又经过了多次的变化和完善,目前国内市场上流行的是ATX2.03和ATX12V这两个标准,其中ATX12V又可分为ATX12V1.2、ATX12V1.3、ATX12V2.0等多个版本。 ATX与AT标准比较: 1、ATX标准取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能; 2、ATX电源首次引进了+3.3V的电压输出端,与主板的连接接口上也有了明显的改进。 ATX12V与ATX2.03标准比较: 1、ATX2.03是1999年以前PII、PIII时代的电源产品,没有P4 4PIN接口; 2、ATX12V加强了+12VDC端的电流输出能力,对+12V的电流输出、涌浪电流峰值、滤波电容的容量、保护等做出了新的规定; 3、ATX12V增加的4芯电源连接器为P4处理器供电,供电电压为+12V; 4、ATX12V加强了+5VSB的电流输出能力,改善主板对即插即用和电源唤醒功能的支持。 ATX12V标准之间的比较: ATX 12V是支持P4的ATX标准,是目前的主流标准,该标准又分为如下几个版本: ATX12V_1.0:2000年2月颁布,P4 时代电源的最早版本,增加P4 4PIN接口; ATX12V_1.1:2000年8月颁布, 在前一版本的基础上,加强了+3.3V电流输出能力,以适应AGP显卡功率增长的需求 ATX12V_1.2:2002年1月颁布,在前版的基础上,取消-5V输出,同时对Power on 时间作出新的规定; ATX12V_1.3:2003年4月颁布,在前版的基础上,提高了电源效率,增加了对SATA的支持,增加了+12V的输出能力。

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

最新开关稳压电源并联供电系统

开关稳压电源并联供 电系统

开关电源模块并联供电系统(A题)设计报告 摘要:此开关电源模块并联供电系统采用MC34063为主控制器,构成输出电压可调的DC-DC变换器。由MC34063构成DC-DC模块, 由MC34063与外部功率开关构成它激式单管降压型DC-DC变换器 应用电路。经过滤分流控制电路额定输出电压值。

一、方案设计与论证 方案1:主模块采用自激型推挽式直流变换器,调整初、次级线圈绕组,从而得到要求输出电压值。 方案2:由MC34063构成DC-DC模块,由MC34063与外部功率开关构成它激式单管降压型DC-DC变换器应用电路。 论证:理想状态方案1 在低输出电压情况下转换效率较低,而且电路易产生不平衡。 选用方案2可以通过两个外部电阻组成分压器来调节,输出电压由2%精度。MC34063内部的输出级含有一个中功率的开关管,所 以不需要外加功率管就能直接构成中功率的DC-DC变换器。大大简 化电路的设计。

选定:方案2 二、电路设计 1. DC-DC单元电路设计 如图,R6为采样电阻,参考电压为1.25V。要使输出电压为8V,只需满足1.25/(8-1.25)=R6/R5. 2.过流、和分设计

在输出端回路上串联一个0.1欧姆的电阻,用放大器采集其对地电压,单电流等于1.5A时,采样电阻上的电压为0. 0.15V,放大到放大到74573的高电平后输出高电平,控制模块2分流电路上的开关管,从而起到分流作用。当0.1欧姆上电阻上的电流为4.5A时。压降为0.45V,放大为高电平后接到反相器7404上使其输出低电平,后控制快关管关闭,当电流低于405A时,反相器输出高电平,电路自动恢复工作状态,从而起到过载保护作。 三、测试方法与测试结果 对模块一和模块二进行电压测试,两模块输出点压为8.0+-0.1, 四、讨论 通过使用MC34063,充分了解其性能及特性,利用其构成的主控制电路可很好地完成任务的基本要求。在电路设计、制作过程中也产生诸

开关电源并联供电

题目: 开关电源模块并联供电系统

目录 摘要: (1) 一、系统方案 1.DC/DC模块主电路 (2) 2.开关管驱动电路 (2) 3.辅助电源电路 (2) 4.系统总体方案 (3) 二、理论分析与计算 (3) 1.DC/DC变换器稳压方法 (3) 2.电流、电压检测 (5) 3.均流方法 (6) 4.过流保护 (6) 三、硬件电路与软件设计 (6) 1.硬件电路设计 (6) 2.软件设计 (7) 四、测试条件与结果 (9) 1.测试仪器设备 (9) 2.基本要求测试数据 (9) 3.发挥部分测试数据 (10) 4、结果分析 (11) 五、参考文献 (11)

开关电源模块并联供电系统 摘要:本设计以Atmage16L-8PU单片机为控制器,由DC/DC模块电路、开关管驱动电路、辅助电源电路、电流采样电路、单片机电路、键盘电路和显示电路组成。其中,DC/DC 模块采用BUCK电路实现,开关管驱动电路采用IR2110芯片完成,辅助电源由单片开关电源芯片LM2576产生,并增加后置线性稳压环节。单片机实现闭环控制功能,稳定输出电压,并实现两路电源自动或按指定比例分流。测试结果表明,系统各项指标均达到题目要求。 Abstract:In the design, MCU Atmage16L-8PU is used as a controller. The system is composed of DC/DC modules, switch drive circuits, auxiliary power suppliers, current and voltage detection circuits, MCU system, display and keyboard control circuits. DC/DC module is based on BUCK circuit. Switch MOSFET is drived by IR2110 chips. Auxiliary power suppliers are generated by the switch mode power supply chip LM2576 with a linear post regulator. Closed-loop control is realized by MCU, so the output voltage is stabled and the currents of the two DC/DC modules are decided automatically or by the specified proportion. Test results show that the system has definitely met the design demand.

开关电源的系统设计深度解读

开关电源的系统设计深度解读 开关电源的系统设计深度解读 时间:2013-03-05 214次阅读【网友评论0条我要评论】收藏 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关。

开关电源电路分析

开关电源电路分析 开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。因为开关三极管总是工作在“开” 和“关” 的状态,所以叫开关电源。开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,电路复杂不易维修等。 开关电源一般包括四要素:整流滤波、起动电路、正反馈电路和稳压电路。 开关式稳压电源具有转换效率高、耗电省、稳压范围宽、体积小和重量轻等特点。为此,在彩色电视机电路中得到广泛应用。电视机的开关电源有多种形式,但串联式脉冲宽度调制型开关稳压电源应用较为广泛。 下面以此种电路为例来分析。 一、工作原理及主要参数 1.电路组成及工作原理 串联型开关稳压电源的基本形式如图1所示。图中,V为开关管,VD为续流二极管,L为储能电感线圈,CL为滤波电容,RL为负载电阻。 图1 串联型开关电源原理图 其稳态工作过程可作如下分析:

设开关管V 在T1期间导通,T2期间截止,周期性地变化,则其工作周期为T=T1+T2,见图4―57(a)。由于负载RL 端电压为Uo,所以负载功率为Po=U2o/RL,负载电流为Io=Uo/RL 。 2. 主要参数及其计算 (1)占空比δ的确定。当开关电源达到稳态工作时,电路处于平衡状态。开关管V 导通期间的电流增量ΔiL1和截止期间的电流减小量ΔiL2应相等,即有: 1()()i o o o i i o U U T U T L L U U TU U T --= = = δδδ (2)平均电流IL 及L 的确定。由于负载与电感L 是串联的,因此电感中的平均电流即为负载电流Io,故有 o I I = 当Ui 和Uo 确定后,由式(4―28)和式(4―30)δ、Io 也随之确定。 L 的最小 值以Lmin 表示,则 (3)滤波电容CL 的确定。L 中的电流iL 是包含有三角波的脉动电流,因此应在负载RL 两端并联CL,以滤除纹波。 一般选取RLCL >> T 即可满足要求。因一般彩电开关电源中选取T=64μs,负载端滤波电容一般选200μF 左右即可。

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

开关电源系统设计方案毕业论文

开关电源系统设计方案毕业论文 目录 摘要.......................................... 错误!未定义书签。Abstract.......................................... 错误!未定义书签。 1 绪言 1.1课题背景 (2) 1.2选题的国外研究现状及水平、研究目标及意义 (2) 1.3 本课题主要的研究容 (3) 2 系统设计方案与论证 2.1课题研究的基本要求 (4) 2.2方案论证 (4) 2.2.1 DC/DC电路模块方案 (4) 2.2.2 MOSEFT驱动电路方案 (7) 2.2.3 单片机选择方案 (7) 2.2.4检测采样方案 (8) 2.2.5系统框图 (8) 3 硬件电路设计 3.1变压整流滤波电路 (9) 3.2辅助电源的设计 (11) 3.3 Buck电路参数选择原理和计算 (12) 3.3.1参数选择原理 (12) 3.3.2 电感值的计算 (15) 3.3.3 滤波电容的计算 (15) 3.3.4开关管的选择和开关管保护电路设计 (16) 3.4驱动电路的设计 (18)

3.5采样电路设计 (19) 3.6保护电路的设计 (20) 4 软件部分设计 4.1 AVR128简介 (21) 4.2 PWM波的产生 (22) 4.3 AD采样 (26) 5系统调试及结果分析 6 总结与展望 6.1 总结 (30) 6.2 展望 (30) 致谢 (31) 参考文献 (32) 附录 (34)

1 绪言 开关电源具有效率高、体积小、重量轻等特点,应用越来越广泛,从70年代开始,并用轻量高频变压器替代笨重的工频变压器。高效的开关电源飞速发展,逐步替代传统的的线性电源,开关电源不需要较大的散热器,开关电源自20世纪90年代问世以来,便显示出强大的生命力,并以其优良特性倍受人们的青睐。近年来,开关电源在通信、工业自动化、航空、仪表仪器等领域的应用越来越广泛。随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、模块化的方向发展,高效率的开关电源已经得到越来越广泛的应用。随着高频开关电源技术和应用电子技术的高速发展,直流高频开关电源依靠它的高精度、低纹波及高效率等优越性能,正在逐步取代传统的线性电源。同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使其负载的使用寿命大大增加。评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过流、短路等保护电路。同时,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视[15]。 许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合出许多毛刺尖峰,甚至出现畸变。大量的谐波分量倒流入电网,造成对电网的谐波“污染”,一方面电流流过线路阻抗造成谐波电压降,反过来使电网电压也发生畸变;另一方面,会造成电路故障,使用设备损坏。因为它没有采用有源功率因数校正,功率因数较低,只达到 0.9,如果采用有效的功率因数校正,功率因数可以达到0.99以上。开关电源输入端产生功率因数下降问题,利用有源功率因数校正电路,成本只增加5%,成功解决了这个问题。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种校正功率因数的方法[1]。 目前市场上出售的开关电源中采用双极性晶体管制成的100kHz、用MOSFET 管制成的500kHz 电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。对1MHz以上的高频,要采用谐振电路,这样既可减少开关损耗,同时也可控制浪涌的发生。现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻): 电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用 SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。

VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端 (Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用 Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、 CISPR 22(EN55022) Class B 两种,FCC测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz, Conduction 可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ 1/4W)。 LF1(Common Choke): EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI 特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温升可能较高。 BD1(整流二极管): 将AC电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V的整流二极管,因为是全波整流所以耐压只要600V即可。 C1(滤波电容): 由C1的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V~132V (Vc1 电压最高约190V),可使用耐压200V的电容;若AC Input 范围在90V~264V(或180V~264V),因Vc1电压最高约380V,所以必须使用耐压400V的电容。 D2(辅助电源二极管): 整流二极管,一般常用FR105(1A/600V)或BYT42M(1A/1000V),两者主要差异: 耐压不同(在此处使用差异无所谓) VF不同(FR105=1.2V,BYT42M=1.4V) R10(辅助电源电阻): 主要用于调整PWM IC的VCC电压,以目前使用的3843而言,设计时VCC必须大于8.4V(Min. Load时),但为考虑输出短路的情况,VCC电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大)。 C7(滤波电容): 辅助电源的滤波电容,提供PWM IC较稳定的直流电压,一般使用100uf/25V电容。

开关电源模块并联供电系统设计

选修课设计 (论文) 题目开关电源模块并联供电系统设计专业电子信息工程 班级 111 112班 姓名邓逸博孙浙飞汪超 指导教师王章权 所在学院信息学院 完成时间:2014年5月

开关电源模块并联供电系统设计 电子信息工程专业邓逸博孙浙飞汪超 摘要:本设计设计制作的是开关电源模块并联供电系统,能够广泛应用在小功率及各种电子设备领域,能够输出8V定压,功率可达到16W,并根据要求对两路电流进行按比例分配。本系统由DC/DC模块,均流、分流模块,保护电路组成。DC/DC模块以IRF9530芯片为开关,配以BUCK的外围电路实现24V-8V的降压与稳压。采用LM328比较电路实现电流和电压的检测,控制由DC/DC模块构成的并联供电系统均流与分流工作模式,通过比较器电路实现过流保护。同时进行LCD1602液晶同步显示、独立键盘输入控制。输入的值经过单片机处理程序来控制输出电压,且输出电压和电流可实时显示。 关键词:DC/DC模块,BUCK,电流分流

目录 一、绪论 (1) 二、设计的目标与基本要求 (1) (一)、设计目标 (1) (二)、基本要求 (2) 三、系统设计 (2) (一)、系统框图 (2) (二)、硬件设计与方案选择 (3) 1、单片机选择 (3) 2、主电路选择 (3) 3、驱动电路图 (4) 4、辅助电源 (5) 5、电流、电压采样 (6) 6、显示、按键 (7) (三)、软件设计 (7) 1、主程序 (7) 2、按键程序 (8) 3、液晶程序 (9) 4、采样程序 (10) 5、中断、PID流程图 (11) 四、调试过程 (12) (一)、遇到的问题及解决办法 (12) (二)、数据分析 (13) 五、体会与展望 (14) 参考文献 (15) 附录 (15) 附录1.整体电路图 (15) 附录2.程序代码 (15)

相关文档
相关文档 最新文档