文档库 最新最全的文档下载
当前位置:文档库 › 城镇住宅供热计量技术指南

城镇住宅供热计量技术指南

城镇住宅供热计量技术指南
城镇住宅供热计量技术指南

城镇住宅供热计量技术指南

中华人民共和国建设部

二〇〇四年一月十六日

前言

本技术指南是根据建设部的要求,由中国建筑科学研究院为主编单位,会同有关单位共同编制而成。

本技术指南在编制过程中,编制组展开了专题研究,进行了比较广泛、深入的调查,总结了多年来的实践经验和教训,广泛征求了国内有关单位和行业专家的意见,对主要内容和指标进行了探讨和论证,对稿件进行了反复修改和充实,最后会同参编单位和有关部门定稿。

各单位和个人如发现有疑难问题或有意见和建议,请随时函告:中国建筑科学研究院空气调节研究所标准规范室(地址:北京北三环东路30号;邮编:100013)。

本规程主编单位、参编单位和主要起草人名单如下:

主编单位:中国建筑科学研究院

参编单位:北京市建筑设计研究院、

天津市建筑设计研究院、

清华大学建筑学院、

天津市人民政府供热办公室、

费特拉能源服务股份公司

主要起草人:徐伟、邹瑜、万水娥、伍小亭、狄洪发、高顺庆、黄维、辛坦

目录

第一章总则 (1)

第二章既有住宅室内采暖系统热计量改造和室温控制 (3)

第三章新建集中采暖住宅分户热计量室内系统设计 (6)

第四章集中采暖住宅热力入口、室外管网、热源 (9)

第五章热计量装置与热量计算 (12)

附录A: 其它住宅采暖方式 (14)

附录B:术语 (18)

附录C: 设计图示 (21)

附录D: 塑料管材的温度使用条件分级和通用壁厚表 (29)

附录E: 几种塑料管材的性能和许用设计环应力及最小壁厚选择 (30)

附录F: 塑料管材水力计算表及修正系数 (34)

城镇住宅供热计量技术指南

第一章总则

1.1 为贯彻执行建设部、国家发展和改革委员会、财政部等八部委《关于城镇供热体制改革试点工作的指导意见》和建设部《民用建筑节能管理规定》,落实民用建筑节能设计标准,推进城镇供热事业的健康发展,提高室内热环境质量,减少大气污染,推动城镇建设的可持续发展,促进和发展供热采暖系统热计量技术,制定本技术指南。

1.2 本技术指南的目的是指导各地区供热采暖热计量系统的实施,推行集中供热住宅采暖热计量技术,合理选择供热采暖方式。

1.3 本指南适用于新建住宅供热采暖系统的分户热计量设计、既有住宅供热采暖系统的热计量改造。公共建筑供热采暖系统设计和改造可参考本指南。

1.4 本指南中的供热采暖热计量系统是指由集中供热及分散锅炉房供热的热水供热采暖热计量系统。其它住宅采暖方式是指电采暖、燃气采暖、热泵采暖以及太阳能采暖等方式。本指南重点说明与供热计量有关的技术及其它采暖方式的技术特点和适用范围,对于供热采暖系统的常规通用做法,本指南中不再赘述。

1.5 在应用本指南时,应执行现行国家标准《采暖通风及空气调节设计规范》、《住宅设计规范》、行业标准《民用建筑节能设计标准》(采暖居住建筑部分),以及其它现行有关标准、规范或规定。还应遵循国家有关方针政策,积极采用先进技术,不断使供热计量系统和其它采暖方式更加完善、可靠、经济合理。

1.6 对新建住宅和既有住宅,各地应在本技术指南的指导下,因地制宜,根据不同的地理气候条件、经济和技术水平、工作基础等实际情况制定热计量的技术实施规程或细则,坚持分阶段、分目标、综合配套、逐步实施。

1.7 对新建住宅和既有住宅,其室内采暖系统和计量方式的选择应同时具有室温调节和热量计量的基本功能。

1.8 对新建住宅和既有住宅,热计量的实施应注重计量收益大于投入、住户和供热公司双受益的原则,应在保证系统调节和计量基本功能的前提下,尽量节省投资。

1.9 新建住宅应严格按照《民用建筑节能设计标准》(采暖居住建筑部分)和《夏热冬冷地区居住建筑节能设计标准》设计,确保单位建筑面积能耗符合标准要求。

1.10 为提高室内热舒适水平,降低供热采暖系统的能耗,推进供热计量系统改造顺利实施,既有采暖住宅热计量改造要与建筑围护结构节能改造统筹规划、统一设计、尽可能同步实施。改造时应执行《既有采暖居住建筑节能改造技术规程》、不损害原有建筑的结构、不影响安全使用,并与旧房维修统一考虑。

1.11 新建住宅集中采暖热计量系统的设计应在提高能源利用效率、降低能耗水平和改善大气环境质量的基础上,注重室内热舒适度的提高;既有住宅热计量的改造应保证改造后供热采暖系统的水力、热力平衡和室内热环境的改善。

1.12 凡有条件实施集中供热的住宅,应优先采用集中供热采暖方式;在产业技术政策的指导下,各地可根据能源结构、供热规划和实际工程情况,选择利用其它新能源、新技术的新型供热采暖方式。同时在确定供热采暖方式时,应对所选方案进行技术经济比较。

1.13 对热水集中采暖的新建住宅和既有住宅,热计量应将热源、供热管网和室内采暖系统一并考虑。室内采暖系统的设计应与建筑、结构、电气等专业协调配合,尤其应考虑建筑平面设计、管道布置和层高的要求。

第二章既有住宅室内采暖系统热计量改造和室温控制

2.1 室内采暖系统改造应以温控和热计量为手段、实现建筑节能为目的。改造应采用合理可行、投资经济、简单易行的技术方案。特别注意应根据既有室内采暖系统现状选择改造后的室内采暖系统形式,改造应尽量减少对居民生活的干扰。

2.2 改造后的室内采暖系统既要满足室温可调和热量计量的要求,又要满足运行和管理控制的要求。

2.3 室内采暖系统改造应结合围护结构节能改造进行。对没有达到建筑节能标准的围护结构宜同时予以改造。

2.4 室内采暖系统改造可采用以下几种方式:

2.4.1 原系统为垂直单管顺流系统时,宜改造为在每组散热器的供回水管之间设跨越管的系统。每组散热器应设恒温阀或性能可靠的手动调节阀;

2.4.2 原系统为垂直双管系统时,宜维持原系统形式。每组散热器应设恒温阀或性能可靠的手动调节阀;

2.4.3 原系统为单双管系统时,宜改造为垂直双管系统,或改造为设跨越管的垂直单管系统,每组散热器应设恒温阀或性能可靠的手动调节阀;

2.4.4 当室内管道更新时,以上三种原有系统形式也可改造为设共用立管的分户独立系统。分户独立系统可采用水平双管式或水平跨越式等形式;公共立管设在户外;调节阀设在分户供水管的户外管道上。

2.4.5 原系统为低温地板辐射式采暖系统时,需在户内系统入口处增设调节阀和必要的温控装置;

注:现有住宅采暖系统图示参见附录B:图B-1

2.5 热计量方式应根据技术经济分析及改造后的室内采暖系统形式来确定,应遵循以下原则:

2.5.1 当改造后的室内采暖系统形式为设跨越管的垂直单管系统或垂直双管系统时,宜采用每组散热器安装热分配表,每个热力入口或若干个热力入口设一总热量表(管网规模较小时,也可只在热力站/锅炉房设总热量表)的热计量方式;

2.5.2 当改造后的室内采暖系统形式为共用立管的分户独立系统时,可采用上述热计量方式或采用户用热量表的热计量方式;

2.5.3 低温地板辐射采暖系统应采用户用热量表的热计量方式。

2.6 分户独立系统户内系统入口装置:采用户用热量表的热计量方式时,户内系统入口装置应由供水管调节阀、置于户用热量表前的水过滤器、户用热量表及回水管截止阀组成;采用热分配表计量方式时,户内系统入口装置应由供水管调节阀、供水管水过滤器及回水管截止阀组成。

2.7 室内采暖系统实施热计量改造和室温控制的要点:

2.7.1 散热器支路宜设恒温阀或性能可靠的手动调节阀,且应根据室内采暖系统形式选择恒温阀类型,垂直单管系统应采用低阻力恒温阀,垂直双管系统应采用高阻力恒温阀。垂直单管系统可采用两通型恒温阀,也可采用三通型恒温阀,垂直双管系统应采用两通型恒温阀。室内采暖系统为低温地板辐射采暖时,每一分支环路应设手动调节阀或温控装置。

2.7.2 垂直单管系统三通调节阀的主要作用在于调节散热器进流系数,避免“短路”,同时便于管理。当散热器进流系数通过管径匹配可以保证≥30%时,可不设三通调节阀,采用两通调节阀也可。

2.7.3 当设三通调节阀时,垂直单管系统的跨越管管径宜与立管同管径;不设三通调节阀时,特别是当散热器为串片等高阻力类型时,跨越管管径宜较相应立管管径小一档。

2.7.4 恒温阀感温元件类型应与散热器安装情况相适应。恒温阀应具备防冻设定功能。恒温阀选型时,应按通过恒温阀的水量和压差确定规格。不设散热器罩时,恒温阀感温元件应采用内置型,设散热器罩时,恒温阀感温元件应采用外置型。

2.7.5 进行系统改造设计时应进行必要的热力复核计算,其主要内容为验算系统改造后原有散热器的散热量是否满足要求,改造为垂直单管系统时还应验算散热器进流系数,以确定合理的跨越管管径。

2.7.6 应对改造后的系统进行水力计算,给出准确的室内系统总阻力值,为整个管网系统水力平衡分析提供依据,而整个管网系统水力平衡是改造后的系统能否成功运行的主要因素,特别是当新旧系统并存时。

2.7.7 原系统改造为共用立管的分户独立系统时,共用立管宜下供下回形式,立管比摩阻宜为30~60Pa/m。

2.8 既有散热器只要能够正常工作,就应保留;散热器需要更换时,应按新建方式考虑,散热器选型原则参见本指南第

3.16条。

2.9 散热器罩影响热量散出和温度调节,系统改造时宜将原有的散热器罩拆除。因为:

2.9.1 原有垂直单管顺流系统改造为设跨越管的垂直单管系统后,上部散热器特别是第一、二组散热器的平均温度有所下降。

2.9.2 单双管系统改造为设跨越管的垂直单管系统后,散热器水流量减小。

2.9.3 散热器罩影响感温元件内置式的恒温阀和热分配表的正常工作。当散热器罩不能拆除时,应采用感温元件外置式的恒温阀。

2.9.4 计算表明散热器罩拆除后,所增加的散热量足以补偿由于系统变化对散热器散热量的不利影响。

2.10 既有住宅室内采暖系统热计量改造和分户室温控制涉及的管材的选用和安装宜参照下列原则进行:

2.10.1 改造后的系统形式为设跨越管的垂直单管系统或垂直双管系统时,管材宜采用热镀锌钢管,丝扣连接,明装敷设。

2.10.2 改造后的系统形式为共用立管的分户独立系统时,除户内系统外的所有管道宜采用热镀锌钢管,丝扣连接,明装敷设;当水温高于85℃时,户内系统宜采用热镀锌钢管,当水温不高于85℃时,户内系统也可采用XPAP管(交联铝塑复合管)。

2.10.3 采用XPAP管时,应重视连接管件的质量,其连接管件应由管材供应商配套提供,管件密封方式应可靠合理,密封圈个数不应少于两个,密封圈材质应为硅橡胶,管件材质应符合有关技术标准的要求。

2.10.4 目前其它类型的塑料管材不宜在改造工程中采用,因为在改造工程中,户内系统管道只能明装敷设,要求管材具备良好的阻氧特性,而目前可用于采暖系统的塑料管材中XPAP管阻氧特性较好,另外XPAP管线膨胀系数小于其它塑料管材,投入使用后不易变形失稳。

2.11 既有住宅室内采暖系统实施供热计量改造后,应对相应的既有室外管网系统重新进行水力平衡计算和水压图分析,以保证建筑物热力入口处具有足够的资用压差。

2.12 实施供热计量改造的系统应对原系统涉及的管道、阀门和散热器等进行检查、清洗和必要的更换,并应清除腐蚀生成物,恒温阀和热量表安装前应保证系统内无焊渣、锈皮及沙粒等杂物。改造后的系统水质应达到《低压锅炉水质标准》的要求。

2.13 改造系统若采用共用立管的分户独立系统,应按新建系统要求设计。

第三章新建集中采暖住宅分户热计量室内系统设计

3.1 新建住宅热水集中采暖,应设置分户热计量和室温控制装置。采用热量表分户计量时,应采用共用立管的分户独立系统形式;采用其它计量方式,系统形式不受此限制。

3.2 住宅楼内的公共用房和公用空间,应设置单独采暖系统和热量计量装置。

3.3 热水集中采暖分户热计量系统的热负荷,应按《采暖通风与空气调节设计规范》(修订版)第3.2节的有关规定进行计算。实施分户热计量的住宅建筑,其卧室、起居室(厅)和卫生间等主要居住空间的室内计算温度,应按相应的设计标准提高2℃。户间楼板和隔墙的热阻值,宜通过综合技术经济比较确定。在确定户内采暖设备容量时,应考虑户间因室温差异而的热传递。但所附加的热量不应统计在集中采暖系统的总热负荷中。户间传热负荷可参考如下计算方法:

3.3.1 应计算通过户间楼板和隔墙的传热量;

3.3.2 与邻户的温差,宜取5~6℃;

3.3.3 以户内各房间传热量取适当比例的总和,作为户间总传热负荷。该比例应根据住宅入住率情况、建筑围护结构状况及其具体采暖方式等综合考虑。建议对中间层房间取30%-50%,对顶层、底层和端部房间取50-80%;

3.3.4 按上述计算得出的户间传热量,不宜大于按《采暖通风与空气调节设计规范》第3.2节的有关规定计算出的设计采暖负荷的50%。

注:多样化采暖方式的采暖负荷计算也可参照本计算方法。

3.4 共用立管的分户独立系统的户内采暖系统形式可采用水平双管系统、水平单管跨越式、低温地板辐射系统、放射式双管系统等,不宜采用单管顺流式系统。

3.5 共用立管的水平分环系统所供的层数根据系统水力平衡、散热器承压能力以及塑料管材的寿命等因素确定,超过已确定的层数时应进行竖向压力分区。一般不宜超过16层。

3.6 热水集中采暖分户热计量系统的共用立管,宜设于管道井内。管道井宜邻楼梯间或户外公共空间。建筑物内系统的共用立管应遵循下列设置原则:

3.6.1 应避免采用上分式系统,宜采用下分式系统;

3.6.2 一对共用立管所负担的户内系统数不宜过多。除每层设置热媒集配装置连接各户的系统外,一对共用立管每层连接的户数不宜大于三户。

3.6.3 宜设于具备在分户门外共用空间进行检修条件的管道井内。

3.6.4 供、回水立管在管道井中的位置应保证与之相连的各分户系统入口装置安装在管道井内,并具备查验及检修条件。

3.7 应根据散热器的承压能力、管材及管件的特性、提高工作压力的成本等因素确定建筑物内采暖系统最低点工作压力,并可参考下列数据:

3.7.1 当户内系统管道材质为金属时,不宜大于0.8MPa;

3.7.2 当户内系统管道采用塑料管材时,不宜大于0.6MPa;

3.8 户内采暖系统采用散热器采暖时,根据住宅采暖形式及建筑平面布局、住宅装修标准、施工技术条件,可选择以下管道布置方式:

3.8.1 采用下分式双管系统,管道暗敷在本层地面下沟槽或垫层内及镶嵌在踢脚板内布置,局部过门处暗敷在过门沟槽内。

3.8.2 采用上分式双管系统,管道沿本层天花板下布置。

3.8.3 采用下分式单管跨越式系统,管道暗敷在本层地面下沟槽或垫层内及镶嵌在踢脚板内布置,局部过门处暗敷在过门沟槽内。

3.8.4 采用放射式(章鱼式)系统,管道暗敷在本层地面垫层内。

3.8.5 在条件许可时,户内系统管道宜暗埋布置。当采用塑料管材进行地面暗埋时,宜采用放射状的暗埋敷设。

注:各种户内系统形式,可参见附录B:图B-2~B-5。

3.9 采用低温热水地板辐射采暖时,其系统设计应符合《采暖通风与空气调节设计规范》中有关的要求。

3.10 供回水干管、共用立管,宜采用热镀锌钢管螺纹连接。户内采暖管道的明装配管,宜采用热镀锌钢管螺纹连接或塑料管材;暗装管道宜采用塑料管材或有色金属管材。

3.11 目前可用于户内采暖系统的塑料管材如下:交联铝塑复合管(XPAP)、交联聚乙烯管(PEX)、聚丁烯管(PB)和无规共聚聚丙烯管(PP-R)。所选用的塑料管材应满足设计水温的要求,并参照《铝塑复合压力管(搭接焊)》、《铝塑复合管用卡套式铜制管接头》、《承接式管接头》、《建筑给水交联聚乙烯(PEX)管材》、《冷热水用聚丙烯管道系统》等有关标准执行。

注:塑料管材的性能和许用设计环应力及最小壁厚选择详见附录D。

3.12 塑料管材的安装,应在有关技术规程及管材供应商提供的安装说明指导下进行,并应注意以下问题:

3.12.1 应注意塑料管材与金属管材在刚度、热伸长等方面的差异,其支、吊架间距一般较小;

3.12.2 塑料管材的线性膨胀系数比金属管材大十多倍,安装时应充分注意热膨胀问题;

3.12.3 塑料管材安装时,宜尽量利用其可弯曲性减少接头数量,弯曲时应严格执行最小弯曲半径的要求;

3.12.4 目前的工程实践表明,铜质管道连接件与塑料管材相连接并用于采暖系统时,常有渗漏现象发生,因此所选用的铜质管道连接件应有合理、可靠的密封方式;

3.12.5 塑料管材安装及运行试验的要求不同于金属管材,应严格按有关执行。

3.13 户内采暖系统所采用的塑料管材的类型应根据散热器材质、系统工作温度和压力、水质(含氧量)、材料供应条件、施工技术条件等因素确定,并应保证在高于ISO/10508使用条件分级(详见附录C)5级的工作温度下,暗埋敷设管材的寿命不低于50年。

3.14 采用钢制散热器时,若采用塑料管材宜采用铝塑复合管或带有阻氧层的其它塑料管材。

3.15 户内管道暗埋敷设时应注意下述问题:

3.15.1 对于PP-R管和PB管除分支管连接件外,垫层内不宜设其它管件,且埋入垫层的管件应与管道同材质,热熔连接,对于不能热熔连接的PEX管、铝塑复合管垫层内不应设有任何管件和接头。

3.15.2 暗埋敷设在垫层内的管道宜采用适当的绝热措施,以防止地面开裂。可采用在管道沟槽填充水泥珍珠等绝热材料或外加塑料套管等办法。

3.15.3 暗埋敷设管道应避免随意性,宜敷设在垫层预留沟槽内,用卡子妥善固定在地面上,并处理好管道胀缩。

3.16 散热器不宜设散热器罩,所采用的散热器应满足美观要求。散热器的选择应与所采用的户内热计量方式适应,可参考以下原则:

3.16.1 宜选用非铸铁类散热器,必须采用铸铁散热器时,应选用树脂砂芯铸造工艺,并应对内壁清砂工艺提出严格要求;

3.16.2 钢制散热器、铝合金散热器应有可靠的内防腐处理;

3.16.3 强制对流式散热器不适合热分配表的安装和计量。

3.17 分户独立系统户内系统入口装置参见本指南第2.5条。

3.18 室温控制参见本指南第2.7条。

3.19 室内采暖系统应进行严格的水力平衡计算,共用立管的自然循环附加压力应进入水力平衡计算,其值可取设计供、回水温度下附加压力值的1/2~2/3。并联于共用立管上的各分户采暖系统宜采用相同的采暖形式。

3.20 户内系统包括调节阀和户用热量表在内的计算压力损失,宜控制在15∽30kPa范围内。

3.21 各种阀门、热量表、恒温阀的水力损失值,应根据实际设计流量在产品样本上查取,不应直接套用额定流量下的水力损失数据。塑料管材的水力损失数据,应采用塑料管材供应商提供的数据,当无数据时,可采用《建筑给排水设计手册》中的塑料管材的水力损失数据,并加以温度和壁厚修正。

注:塑料管材的水力计算表及修正系数参见附录E。

第四章集中采暖住宅热力入口、室外管网、热源

——室外管网与热力入口

4.1 室外管网应在充分了解热源系统和各室内采暖系统特性的基础上进行设计,以确保总体系统的水力平衡和有效调节控制。

4.1.1 新建系统的室外管网所服务的室内采暖系统形式宜一致;

4.1.2 既有采暖系统与新建外管网连接时,宜采用间接连结方式;若直接连接时应对新、旧系统的水力工况进行平衡校核。当热力入口资用压差不能满足既有采暖系统时,应采取提高管网循环泵扬程或增设局部加压泵等补偿措施,以满足既有室内系统资用压差的需要。

4.2 供热计量的改造工程应根据室外一、二次管网的分布特点,对于一次管网以热力站为单元、对于二次管网以分支干管为单元进行统一规划,按规划单元进行实施,应避免在一个分支干管上同时存在新旧两个系统而导致管网的水力失调。

4.3 室外管网应进行严格的水力平衡计算,必要时各分支环路应设静态平衡装置。

4.4 供热管网进行水力计算时,为了考虑系统的水力平衡和水力稳定性,并联支路的阻力应在总阻力中占有较大份额。二次管网最不利环路比摩阻宜为60~80Pa/m,二次管网最不利环路最不利点的资用压差宜为40~50kPa。

4.5 新建系统在满足室内各环路水力平衡和供热计量的前提下,应尽量减少建筑物的采暖管道热力入口的数量。

4.6 集中热水采暖分户计量系统热力入口,除常规做法外,还应符合下列要求:

4.6.1 在室外管网水力工况波动时,对建筑物内系统不致产生水力和热力失调。

4.6.2 应使所有控制阀门处于良好的水力工况下,并应将阀门水力噪声控制在可接受的范围内。

4.6.3 避免室外管网系统中杂质对建筑物内系统的污染。

4.6.4 方便运行调试,利于维护管理。

4.6.5 可根据需要设置热量计量装置。

4.6.6 热力入口的具体要求:

4.6.6.1 室内采暖为垂直单管跨越式系统,热力入口应设自力式流量控制阀;室内采暖为双管系统,热力入口应设自力式压差控制阀。自力式压差控制阀或流量控制阀两端压差不宜大于100kPa,不应小于8.0KPa,具体规格应由计算确定。

4.6.6.2 设置计量装置的热力入口,其流量计宜设在回水管上,进入流量计前的回水管上应设过滤器,滤网规格不宜小于60目。

4.6.6.3 热力入口供、回水管均应设过滤器。供水管应设两级过滤器,顺水流方向第一级为粗滤,滤网孔径不宜大于φ3.0㎜,第二级为精过滤,滤网规格宜为60目。

4.6.6.4 热力入口装置的热计量仪表及各种阀门应按产品样本说明书安装。

4.6.6.5 供、回水管应设置必要的压力表或压力表管口。

注:典型热力入口装置图示参见附录B:图B-6。

4.7 新建系统热力入口的设置位置,应符合下列要求:

4.7.1 无地下室的建筑,宜在室外管沟入口或楼梯间下部设置小室,室外管沟小室宜有防水和排水措施。小室净高应不低于1.4米,操作面净宽应不小于0.7米。

4.7.2 有地下室的建筑,宜设在地下室可锁闭的专用空间内,空间净高度应不低于2.0米,操作面净宽应不小于0.7米。

4.8 有条件的情况下,为利于热计量系统的供热调节,推荐采用每幢建筑热力入口设置小型独立组装式换热站的系统形式。

——热源及热力站

4.9 新建热源可为热电厂、区域锅炉房、地热站等。当采用燃气、燃油和电热锅炉房作为热源时,为了便于调节,每个锅炉房的供热面积不宜过大。

4.10 对既有室内采暖系统进行供热计量改造的同时必须对热源、室外管网、热力站进行相应的改造,以保证供热计量系统的正常运行,改造的具体内容包括:

4.10.1 对室外管网、热力站进行严格的清洗,增设或完善必要的过滤除污装置。

4.10.2 热源/热力站增设或完善必要的水处理装置(软化与除氧),保证系统水质满足现行国家标准《低压锅炉水质标准》的要求控制系统水质和系统补水水质,系统水溶解氧≤0.1mg/L。在非采暖季节应对二次管网及室内系统进行湿保养。

4.10.3 热源、室外管网、热力站增设或完善必要的调节手段,所采用的调节手段应与改造后的室内采暖系统形式相适应。

4.10.4 增设或完善分支环路和热力入口的调节手段,特别是当一个支状管网上的各分支干管所服务的室内采暖系统不能同时完成改造时,分支干管的水力调节手段尤为重要。

4.11 当热源为热水锅炉房时,其热力系统应同时满足锅炉本体循环水量基本恒定的要求和热源至换热器一次管网的变流量调节要求,为实现这一目的,可采用热源双级泵系统等方式。

4.11.1 热水锅炉房热力系统设计应能适应由于行为节能引起的较大幅度的负荷变化。

4.11.2 热水锅炉房应利用变频调节技术实现鼓、引风机、燃烧系统等的节能运行。

4.11.3 双级泵系统的二级循环水泵宜设置变频调速装置,一、二级泵供回水管之间应设置连通管。

4.11.4 单级泵系统的供回水管之间,应设置压差旁通阀。

注:两级泵系统图示参见附录B:图B-7。单级泵系统图示参见附录B:图B-8。

4.12 热水锅炉房宜采用根据室外温度主动调节锅炉出水温度,同时根据压力/压差变化被动调节一次网水量的供热调节方式。

4.13 热力站二次网调节方式应与其所服务的户内系统形式相适应:当户内系统形式均为或多为双管系统时,宜采用变流量调节方式,反之,宜采用定流量调节方式。热力站的基本调节方式宜为:由气候补偿器根据室外温度,通过调节一次水量控制二次侧供水温度,以压力/压差变化调节二次网流量。

注:热力站图示参见附录B:图B-9。

4.14 变频调速水泵的性能曲线宜为陡降型,以利于水泵调速节能。

4.15 变频调速定压点设置有以下两种方式:

4.1

5.1 控制热力站进出口压差恒定。该方式简便易行,但流量调节幅度相对较小,节能效果较小。

4.1

5.2 控制管网最不利环路压差恒定。该方式流量调节幅度相对较大,节能效果明显;但需要在末端热力入口设置压力传感器,随时检测比较、控制,投资相对较高。

4.16 既有系统改造后,应对原循环水泵进行校核计算,满足建筑热力入口所需资用压头。

4.17 热水锅炉房应设有耗用燃料的计量装置和输出热量的计量装置;热力站二次侧应设输出热量的计量装置。计量装置应得到有关监督部门的认可。

4.18 热力站的供热规模应根据技术经济分析确定,考虑到供热系统的可靠性及水力稳定性要求,供热规模不宜过大。建议新建热力站供热面积不宜大于5万平方米。

4.19 供热计量系统其水质应符合《低压锅炉水质标准》的要求。应确保供暖水系统的清洁,安装完毕后应进行严格的管道清洗。

第五章热计量装置与热量计算

5.1 热计量装置的设置

5.1.1 热源应设热量计量装置,以便于生产单位与供热单位的热费结算;

5.1.2 热力站应设热量计量装置,作为供热单位和房屋产权单位(物业公司)热费结算的工具;

5.1.3 建筑物热力入口宜设热量总表,作为房屋产权单位(物业公司)的住户结算式分摊热费的依据。

注:当住宅的类型、围护结构相同、分户热计量装置一致时,也可几栋住宅设一个热量总表,作为热费分摊的工具。

5.1.4 分户热计量装置可采用户用热量表、热分配表等;分户热计量方式的选择应考虑热计量成本的回收,并与室内采暖系统形式相适应。

5.1.4.1 垂直单管顺流系统和垂直双管系统应使用热分配表;

5.1.4.2 公共立管的分户独立系统形式可使用户用热量表或热分配表;

5.1.4.3 低温地板辐射式采暖系统应设户用热量表;

5.2 热量计量装置的选型

5.2.1 热水集中采暖分户热计量的热量表,应满足有关现行标准。热量表选型时应使其流量范围、设计压力、设计温度等与实际工况相适应。热量表的选型可参考以下原则:

5.2.1.1 应考虑以下因素:系统的压力损耗、介质温度、流量大小及波动范围;精度要求;安装空间的大小;流量传感器连接方式;应注意热表积算仪的环境温度要求;

5.2.1.2 在同一个热计量总表所服务的系统内,热计量方式应统一,热计量装置的种类和型号应统一;采用热分配表时,应使用同一厂家的热分配表;

5.2.1.3 采用蒸发式热分配表或单传感器电子式热分配表时,散热器平均热媒设计温度不应低于55O C;采用蒸发式热分配表时,不同的采暖季节应使用不同的蒸发液体颜色;

5.3 热量计量装置的安装和维护

5.3.1 热力入口及热力站热量总表的流量传感器宜装在回水管上,以延长其寿命、降低故障率、降低计量成本;机械式热量表的流量传感器前应设过滤器。

5.3.2 热量表和热分配表等热计量装置应严格按产品说明书的要求安装;

5.3.3 热量表要定期进行检查维护,内容为:

5.3.3.1 检查铅封是否完好;检查仪表工作是否正常;

5.3.3.2 检查有无水滴落在仪表上,或将仪表浸没;

5.3.3.3 检查所有的仪表电缆是否连接牢固可靠,是否因环境温度过高或其他原因导致电缆损坏或失效;

5.3.3.4 根据需要检查、清洗或更换过滤器;

5.3.3.5 检查环境温度是否在仪表使用范围内。

5.4 热量计算与热费分摊

5.4.1 热费应采取两部制计价法计算热费,其中一部分为基本热价,即按用户的采暖面积分摊热费,以利于供热设施固定成本的回收。另一部分为计量热价,即按户用热表的热量值或修正后的热分配表刻度值分摊热费。

5.4.2 对于建筑物围护结构造成的耗热量差异,宜在分摊热费时予以修正。

附录A: 其它住宅采暖方式

A.1 城镇供热在坚持以集中供热为主导的同时,可以根据当地的能源构成、环保要求以及经济发展状况,经过经济、社会及环境效益分析,从全局出发,合理的选择其它采暖方式。利用电、燃气等价格较高能源的采暖方式,一般仅适用于达到《民用建筑节能设计标准》(采暖居住建筑部分)的住宅。

——电采暖

A.2 符合下列条件之一、经技术经济比较合理时可以采用电采暖:

A.2.1 在环保有特殊要求的区域;

A.2.2 远离集中热源的独立建筑;

A.2.3 采用热泵的场合;

A.2.4 能利用低谷电蓄热的场所。

A.3 燃煤供暖改为电采暖时,应采用具有蓄热功能的区域电热锅炉集中供热,同时宜设置热网调节和分户热计量装置。

A.3.1 采用大型常压热水箱蓄热时,要考虑其占地大的因素。

A.3.2 采用大型高压热水或其它蓄热温度超过100℃的介质蓄热时,要考虑到在居民区的安全因素。

A.4 室内直接电加热采暖方式可选用踢脚板电暖器、低温电热膜辐射、低温加热电缆辐射和电热水炉等方式。电采暖设备应符合相关电器标准,满足房间用途、特点、经济和安全防火要求。电采暖设备的设计、施工及验收应执行有关标准、规范的规定。

A.5 考虑到电网电压的波动,在确定电采暖设备容量时,应在房间负荷的基础上附加20%的运行系数。

A.6 对流式(踢脚板等)电暖器采暖

A.6.1 选用的电暖器应外型美观、节省占地、安全可靠;

A.6.2 安装过程中应避免损坏电暖器内部构件,以防止设备损坏或人身伤害;

A.6.3 电暖器上不得覆盖其它物品。

A.7 低温辐射电热膜采暖

A.7.1 热负荷的计算时,低温辐射采暖比散热器对流采暖,其室内设计计算温度可降低1~2℃;

A.7.2 低温辐射电热膜采暖的天棚构造依次为:楼板、轻钢龙骨、绝热层、电热膜、石膏板及表面涂层。电热膜与室内各墙面及设施的最小距离应符合有关标准要求;

A.7.3 绝热材料采用50mm厚无贴面超细玻璃丝棉毡,严禁使用含金属的绝热材料或金属防潮层;严禁使用易燃、有毒的绝热材料;

A.7.4 石膏板和表面涂层总热阻不应超过0.114m2℃/W,总厚度不应超过15mm;

A.7.5 轻钢龙骨及其配件应符合有关标准要求。

A.7.6 不宜用于厨房和卫生间。

A.8 低温加热电缆辐射采暖

A.8.1 热负荷的计算与低温辐射电热膜采暖相同。

A.8.2 低温加热电缆辐射采暖形式可为分为单导线与双导线两种,其布线方式也有相应的区别。

A.8.3 地面结构一般为聚苯乙烯绝热层、复合铝箔反射层、固定丝网、电缆及覆盖层,总厚度宜为30-50mm。

A.9 户用电锅炉采暖

A.9.1 户用电锅炉有低矮式、直立式和壁挂式多种形式,在采暖同时还可以提供生活热水;

A.9.2 电锅炉功率较大时,需配备3相380V电源;

A.9.3 热水最高出水温度一般约80℃,需对采暖系统进行校核计算。

A.10 室内直接电加热采暖的温控与计量

A.10.1 每个采暖房间应至少设置一个温控器。

A.10.2 直接电采暖用电宜采用独立的配电回路,宜单独设置电度表。

——热泵采暖

A.11 在夏季需要空调、冬季需要采暖的地区,宜优先考虑选用热泵采暖方式,可以同时兼顾采暖供冷的两种功能。

A.12 地源热泵是指利用地下水、地表水或土壤等作为热源的热泵。利用地源热泵采暖时,室内采暖设备可以是空调末端装置,也可以是低温辐射地板。热泵用于冬季采暖时,应根据其实际工况下的供水温度,校核末端设备的供热能力。

A.12.1 应作好水源的可行性研究,调查欲利用水源的条件(水量、水温、水质),以确定具体的供水方案。

A.12.2 利用地下水或地表水作热泵热源时,应保证水质符合机组的使用要求。当水中含砂量较高时(含砂量>1/20万),可在水源水管路中设置旋流除砂器或沉淀除砂池,以避免机组和管路磨损和堵塞;当混浊度>20mg/L时应安装净水器加以过滤;水源CaO含量应<200mg/L,以避免水结垢;水矿化度(单位容积水中所含的各种离子、化合物的总量)<350mg/L时,可以不加板式换热器,当矿化度为350-500mg/L时应安装不锈钢板式换热器,当矿化度>500mg/L时应安装抗腐蚀性强的钛合金板式换热器;水的PH值应为6.5-8.5,否则应设有相应的水处理设备。

A.12.3 利用地下水作为热源的热泵,地下水要在封闭管路内运行,防止地下水源污染,并应回灌。无压自流式回灌适合于含水层渗透性好、井中有回灌水位和静上水位差;并应根据水文地质条件确定适当的采灌比。

A.12.4 为预防和处理回灌井的堵塞,应适当回扬。回扬次数和回扬持续时间根据含水层颗粒大小和渗透性而定。在岩溶裂隙含水层可以不回扬;在松散大颗粒含水层回扬1-2次/周,在中、细颗粒含水层回扬1-2次/天。

A.12.5 地表水水温随季节、纬度和海拔不同而变化,在长江以北冬季地表水可能结冰,热泵系统应采取必要的防冻措施。地下水水温在近地表处为变温带,再向下是恒温带,一般恒温带水温为10-22℃,可以作为热泵的热源,如在变温带取水,应要防止水结冰。

A.12.6 当热泵停止工作时要有可靠的防冻措施。

A.12.7 在建筑容积率较低的地区,可以使用利用土壤作为热源的热泵。

A.13 使用空气热泵供暖时,若为空气-水热泵,室内采暖设备应采用风机盘管。空气热泵的供暖效率随室外空气温度的下降而下降,一般应设置可以补充热量的辅助热源。

A.13.1 室外机应置于空气流通和利于维护之处。

A.13.2 北方严寒地区应考虑辅助热源,当环境温度低于-5~-10℃时,热泵停止工作,开启辅助热源供热。

A.13.3 湿度较大且温度在0℃左右时,空气热泵室外机组容易结霜,热泵效率降低,因此要处理好除霜。

——燃气采暖

A.14 在不便连接集中供热网、环保要求较高且燃气供应充足的地区,可以采用户用燃气炉、楼用燃气锅炉、区域燃气锅炉房和燃气-蒸汽联合循环等多种供暖方式,并应在方案阶段考虑检查当地气源种类和气质。人工煤气不宜采用。

A.15 采用户用燃气炉采暖,应注意以下问题:

A.15.1 户用燃气炉的热效率应符合现行有关标准中规定值。

A.15.2 设计中应解决好烟气排放所造成的局部微气候污染问题。

A.15.3 设备选型前应对户内系统进行水力热力计算,考虑间歇供暖,末端采暖设备(散热器)应留有一定的保险系数。管道施工安装应符合有关规范要求。

A.15.4 多层住宅楼采暖炉可以安装在厨房或封闭的阳台内,但要注意处理好通风;别墅可安装在设备间或地下室。设备安装应严格遵守产品说明书及有关标准、规范的规定。

A.15.5 室内长期无人居住时,应放出采暖系统中的水;短时期无人居住时,不要关闭采暖炉,以防系统冻结。

A.16 采用楼用燃气锅炉房采暖,应注意以下问题:

A.16.1 排烟设计要有利烟气的排放和扩散。

A.16.2 燃气炉宜安装在楼顶,如条件不具备时也可安装在楼底层或地下室内。建筑耐火等级应符合《建筑设计防火规范》不低于“二级”的规定。

A.16.3 楼用燃气锅炉房应采取泄压措施,并具有良好的通风措施。

A.17 使用燃气-蒸汽联合循环热电联产采暖,应有较稳定的热负荷,同时要处理好发电上网、电力调峰、蓄能等问题。

——其它采暖方式

A.18 高温地热水采暖时,要合理的梯级利用地下热水;90℃以下的低温地热水可直接用于采暖。地热采暖时应有调峰热源以扩大地热供热规模。地下热水一般含硫、氟、氯较高,必须处理好换热器、管道的防腐蚀,并应适当回灌。

A.19 太阳能采暖宜用在建筑容积率较低和太阳能资源丰富的地区,应把太阳能采暖系统、生活热水系统和建筑设计有机结合,并配备辅助热源作为太阳能采暖的补充和备用。

A.20 利用工业余热和垃圾焚烧热供热时,应有稳定可靠的资源。

常用热计量方式

1、常用热计量方式 根据《供热计量技术规程》(JCJ173-2009),供热计量方式分为两大类:热量直接计量方式和热量分摊计量即热量间接计量方式。 热量直接计量方式是采用户用热表直接结算的方法,对各独立核算用户计量热量。 热量分摊计量方式是在楼栋热力入口处(或热力站)安装热表计量总热量,再通过设置在住宅户的测量记录装置,确定每个独力核算用户的用热量占总热量的比例,进而计算出用户的分摊热量,实现分户热计量。它主要有散热器热分配法、流量温度法、通断时间面积法三种方式。 2、三种热计量方式的基本原理及技术特点 由于流量温度法系统较为复杂,在我公司未进行试验,我们仅对户用热量表法、热分配计法、通断时间面积法进行了对比分析。 2.1户用热量表法 户用热量表法的基本原理是:通过测量入户管道的流量、供回水温度,直接计算出用户的用热量的方法。这种方法是数据最

直观、方法最简便的热量计量方法。 具体做法:在楼道管道井,给每户加装热计量表,直接计量热量(见图1) 其主要优点有: (1)国外应用时间长、产品标准齐全; (2)数据直观、准确; (3)可监测每户流量、供回水温度,方便热力公司运行调节。 主要缺点及注意事项:需保证水质,确保表计计量准确。 2.2热分配计法 散热器热分配计法的基本原理:利用散热器热分配计所测量的每组散热器的散热比例关系,对建筑的总供热量进行分摊。 具体做法:在每个热力入口安装热计量总表,计量总热量。在每组散热器上安装一个散热器热分配计,通过读取热分配计的读数,得出各组散热器的散热量比例关系,对总热量表的读数进行分摊计算,得出每个住户的用热量(见图2)。 其主要优点有:不需对传统上供下回供热系统进行改造便可实施热计量,对供热系统影响较小,改造较为方便。

北京市民用建筑工程供热计量装置专项合同示范文本

北京市民用建筑工程供热计量装置专项合同示范文 本 In Order To Protect Their Legitimate Rights And Interests, The Cooperative Parties Reach A Consensus Through Consultation And Sign Into Documents, So As To Solve And Prevent Disputes And Achieve The Effect Of Common Interests 某某管理中心 XX年XX月

北京市民用建筑工程供热计量装置专项 合同示范文本 使用指引:此合同资料应用在协作多方为保障各自的合法权益,经过共同商量最终得出一致意见,特意签订成为文书材料,从而达到解决和预防纠纷实现共同利益的效果,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 合同编号:____________ 使用说明 1.本合同为示范文本,由北京市市政市容管理委员会、 北京市住房和城乡建设委员会与北京市工商行政管理局共 同制定,适用于本市行政区域内集中供热民用建筑的开发 建设单位与供热单位对供热计量装置的规划设计、选型、 购置、安装、施工、验收和运行管理。 2.开发建设单位和供热单位应当在新建民用建筑项目的 规划设计阶段签订本合同。 3.签订本合同前,双方均应当向对方出示与订立合同有 关的证明文件。

4.本合同条款中的横线处均可由双方自行协商约定具体内容。对于未实际发生或不作约定的,应当在横线处划×,以示删除。□后为待选内容,应当以划√方式选定。 5.双方可以根据实际情况约定本合同正本的份数,并在签订时认真核对,确保各份合同内容一致。 6.本合同中有关用语的含义: (1)供热计量:是指采用集中供热方式的热计量,包括热源、热力站供热量以及建筑物(热力入口)、用户用热量的计量。 (2)供热计量装置:是指热量表以及对热量表的计量值进行热分摊的、用以计量用户消费热量的仪表。 (3)热量结算点:是指供热方和用热方之间按照该处热量表计量的热量值直接进行贸易结算的位置。 7.本合同约定的供热计量方式,开发建设单位应当写入房屋销售合同,供热单位应当写入供热采暖合同。

建筑设备设计一般规定及说明《住宅设计规范 GB50096-2011》

《住宅设计规范GB50096-2011》 建筑设备设计一般规定及说明 8.1.1 住宅应设置室内给水排水系统。 8.1.2 严寒和寒冷地区的住宅应设置采暖设施。 8.1.3 住宅应设置照明供电系统。 8.1.4 住宅计量装置的设置应符合下列规定: 1 各类生活供水系统应设置分户水表; 2 设有集中采暖(集中空调)系统时,应设置分户热计量装置; 3 设有燃气系统时,应设置分户燃气表; 4 设有供电系统时,应设置分户电能表。 8.1.5 机电设备管线的设计应相对集中、布置紧凑、合理使用空间。 8.1.6 设备、仪表及管线较多的部位,应进行详细的综合设计,并应符合下列规定:1 采暖散热器、户配电箱、家居配线箱、电源插座、有线电视插座、信息网络和电话插座等,应与室内设施和家具综合布置; 2 计量仪表和管道的设置位置应有利于厨房灶具或卫生间卫生器具的合理布局和接管; 3 厨房、卫生间内排水横管下表面与楼面、地面净距应符合本规范第5.5.5条的规定;

4 水表、热量表、燃气表、电能表的设置应便于管理。 8.1.7 下列设施不应设置在住宅套内,应设置在共用空间内: 1 公共功能的管道,包括给水总立管、消防立管、雨水立管、采暖(空调)供回水总立管和配电和弱电干线(管)等,设置在开敞式阳台的雨水立管除外; 2 公共的管道阀门、电气设备和用于总体调节和检修的部件,户内排水立管检修口除外; 3 采暖管沟和电缆沟的检查孔。 8.1.8 水泵房、冷热源机房、变配电室等公共机电用房应采用低噪声设备,且应采取相应的减振、隔声、吸声、防止电磁干扰等措施。 【说明】 8.1.1~8.1.3 给水排水系统、严寒和寒冷地区的住宅采暖设施和照明供电系统,是有利于居住者身体健康的最基本居住生活设施,是现代居家生活的重要组成部分,因此规定应予设置。 8.1.4 按户分别设置计量仪表是节能节水的重要措施。设置的分户水表包括冷水表、中水表、集中热水供应时的热水表、集中直饮水供应时的水表等。 根据现行行业标准《供热计量技术规程》JGJ 173,对于集中采暖和集中空调的居住建筑,其水系统提供的热量既可以按楼栋设置热量表作为热量结算点,楼内住户按户进行热量分摊,每户需有相应的装置作为对整栋楼的耗热量进行户间分摊的依据;也可以在每户安装热量表作为热量结算点。无论是按户分摊还是每户安装热量表结算,均统称为分户热计量。

供热计量管理系统

一、热源系统管理 一套完整的供热系统由三大部分组成,即集中供热热源系统、换热站供热节能系统和JFK集中供暖分户计量系统。集中供热热源系统常规采用锅炉制备热媒。换热站供热节能系统是连接热源与热用户的重要环节,根据室外温度的变化,按照制定的二次网供、回水温度曲线,自动控制一次网供水的流量和供热量。JFK集中供暖分户计量系统是由管路系统与末端装置组成的热量分配系统,按负荷的大小合理地将热量分配到各个房间。 集中供热热源系统 系统概述 集中供热热源系统是城市集中供热系统的热能制备和供应中心。该热源系统将其他形式的能源(矿物燃料、核能、工业余热等)转换为热能,或直接采用地热等天然热源,通过蒸汽或热水等介质,沿着热网输送到用户。集中供热热源有以下几种形式:热电厂和区域锅炉房、工业余热、地热、核能。除上述热源形式外,还有电能和太阳能供热。 系统控制 集中供热热源控制系统通过热源热效率平衡计算,采用最优化的计算方法,将热源各环节热损失进行科学分析,针对各热效率的特点进行优化设计控制,主要对热源、各动力辅机和管网进行节能控制,调整热源供热系统各应用工况的运行模式,使系统在任何负荷情况下能达到最可靠的工况节能运行,保证热源的热效率最大化。在满足末端供热系统要求的前提下,整个系统达到最经济的运行状态,即系统的运行费用最低。同时提高系统的自动化水平和管理效率,并降低管理劳动强度。 热源系统控制主要包括:各设备的节能运行控制、各设备运行状态的监控,系统能耗的监测。

系统概述 换热站供热节能系统是连接热源系统和热用户的重要环节,在整个供热系统中起到举足轻重的作用,热水管网又分为一次网和二次网,一次网是连接于管网与换热站之间的管网。二次网是指连接于换热站与热用户之间的管网。换热站供热系统是指连接于一次网与二次网并装有与用户连接的相关设备、仪表和控制设备的系统。 系统原理 针对目前集中供热换热站控制的现状,开发的换热站自动控制系统,是在保证热用户供热温度的前提下,实现按需供热,达到安全、经济运行。 根据热用户的实际需求,建立“供热-室外温度”智能决策模型和先进控制策略,通过换热站一次侧、二次侧温度、压力及流量、室外温度、热用户温度、运行状态、故障状态等参数的监测,自动控制调节阀、电机、变频器等工作,实现以节能为核心的按需供热。系统可以脱离远程中央控制室监控调度管理系统独立运行,其运行参数可以通过远程中央调度室监控调度管理系统监视并实施协调控制。 热力站控制系统采用一种变流量控制模式,根据各系统的实际情况,设定一个供水压力值,此供水压力值可以满足二次管网的最不利点供暖水循环。通过控制变频泵的转速保持该供水压力值恒定在设定值。在此基础上,换热站PLC控制系统通过实时监测量二次网供回水温差来对系统压力值设定进行必要修正。 一个建筑物的供热质量的好坏与整个管网的运行调节紧密相连。为保证供热质量,除了要在供热温度上保证达到设计温度外,就要在任何时候用户都要有足够的资用压头,以保证每个高层住宅在任何时刻都能有供热的可能性。 热源处循环泵的总流量用变频控制,根据压力控制点的压力变化而控制变频泵的转速。假如用户调小流量导致干管总流量下降,而干管的阻力系数未变,因此干管上的压力损失降低而导致压力控制点的供水压力升高。该压力值的升高反馈给循环泵,使泵的转速降低,一直降到压力控制点的压力值到设定值为止,这样,就可以保证压力控制点的供水压力值不变。 换热站二次网供水温度控制。通过一次侧电动阀门的调节控制二次管网供水温度达到设定值。通过增加室外温度补偿器,使换热站二次网的供水温度设定值根据室外温度进行动态调整,以使供热量和需热量进行更好的匹配。 系统功能及特点 1智能变频,稳定供水压力,保证管网平衡: 2.实时显示现场测量值,修改设定值以及参数值;现场画面模拟,实时显示各工况运行参数; 3.定时记录室内、外温度,供、回水温度和计算温度自诊断与现场诊断功能; 4.系统遵循了人性化设计理念,可实现分段、分时、分温和分模式的管理功能; 5.换热站控制系统采用PID算法实现了自动恒温恒压的调节; 6.各种报表生成以及数据存储、查询等其他用户定制的功能; 7.根据气候条件,控制器通过室外温度传感器测量的室外温度,经监控中心的统一调度对供热量进行控制,节省能源,提高了供热质量; 8.实现自动控制,并具有远传通讯和联网功能,系统可通过GPRS/GMS进行远程控制;

供热计量远程抄表系统解决方案

供热计量远程抄表系统解决方案 1.系统介绍 供热计量远程抄表系统是一个对用户用热量、供水温度、回水温度等数据远程采集的系统。以热用户为采集目标,系统采用稳定可靠的无线数据传输技术,通过M-BUS或者RS-485通信单元和GPRS远程通信单元,将热量表的数据上送到热力企业管理中心,并结合相应的管理软件和计费软件,对系统数据进行分析、统计、发布;为收费及生产管理提供数据支撑。 系统具备: ●高可靠性、稳定性。 ●系统可长期、稳定、连续工作,无需现场维护。 ●实时性高、通讯量少。 ●模块化设计、应用灵活。 ●容错性高。 ●应用拓展性强。 2.系统网络结构 系统构成:系统按设备组成可分为主站服务器软件、数据采集器、热量表三个部分组成。

3.采集设备介绍 3.1.数据采集器 可连接M-Bus和RS485两种总线标准的热量表,实时数据采集、并将采集的数据上传到控制中心; 3.2.DTU模块 可以直接连接RS485总线标准的热量表实现数据上传。

3.3.数据采集箱 数据采集箱包括:箱体、数据采集器(或无线网络传输模块)、电源、开关等,安装在热量表附近,通过数据线连接到数据采集器上。 4.系统功能介绍 4.1.数据实时监控 通过采集器对热表数据进行远程采集,并对采集的数据在上位机软件中进行显示,可查看瞬时热量、累计热量、供水温度、回水温度等信息。

4.2.热量数据分析 通过对采集的热量数据的分析对比、测算,,可实现同一用户的不同时间段、用户与用户之间及各个时间段的供热效果情况的对比分析。 4.3.用户管理功能 可以实现热计量用户的添加、修改和删除操作功能。

供热计量技术应用

《计量技术》读书报告 供热计量技术应用Application of heat metering technology 学院:机械与汽车工程学院 专业:测控技术与仪器 班级: 14测控(升) 姓名:闫俊豪 学号: 1402314014 指导教师:郑冬 学年学期: 2014—2015学年

近十年,我国供热计量技术经过了较快发展,特别是近五年,供热计量收费面积直线上升,供热计量技术的可靠性也因此倍受行业关注。本文以供热计量技术为研究对象,对业界在计量产品研发、计量技术研究、产品检测、计量技术及其节能技术应用等方面取得的进展进行了较为深入的研究分析,总结了国内外在供热计量技术研究中所取得的主要成果。针对供热计量实际工程应用,剖析了当前存在的问题,同时展望了该领域的发展趋势。关键词:计量技术,计量产品检测,计量节能技术,热计量,应用 Abstract The heat metering technology has been developed rapidly in our country in recent ten years.The charging area of heat metering has risen greatly especially in the past five years,which made the reliability of heat metering technology attract much industry attention.The progress made by the industry in the metering product research and development,metering technology research,product inspection,metering technology and its energy saving technology application were deeply researched and analyzed,and main achievements made in heat metering technology research at home and abroad by taking heat metering technology as research object were summarized by this paper.The current existing problems were also analyzed and the development trend in this field was prospected in view of the application of actual engineering in heat metering. Keywords:heat metering,product inspection,energy efficiency technology,heat metering,application

热计量宣传手册

供热计量宣传手册 目录 一、什么是供热计量? 二、为什么实施供热计量? 三、实施供热计量小区应具备哪些条件? 四、供热计量有几种形式? 五、大同市如何实施供热计量? 六、供热计量怎样收费? 七、供热计量收费与按面积收费的区别? 八、供热计量收费对老百姓的好处是什么? 九、用户怎样降低热量消耗? 十、按计量收费一定会比按面积收费省钱吗? 十一、热用户对热量表的准确性发生疑问时怎么办? 十二、实施供热计量的热用户是否还以我市供热管理办法规定的温度为标准? 十三、供热计量给供热单位增加哪些工作? 十四、实施供热计量的用户有哪些义务? 十五、怎样使用温控阀调节室内温度? 十六、地板采暖怎样调节室内温度?

一、什么是供热计量? 供热计量是以集中供热或区域供热为前提的,以适应用户热舒适需求、增加用户节能意识、保障供热和用热双方利益为目的,通过一定的供热调控技术、计量手段和收费政策、实现按户计量和收费。简单的说,供热计量就是按用热的多少收取采暖费,就是“用多少热,交多少费”。 供热计量起源于欧洲。欧洲1926年就开始有了供热计量收费。由于欧洲当时市场经济的情况,有了集中供热后住户就说:“我用多少热,花多少钱,我要求计量。”1972年发生了世界性的能源危机,1974年德国开始实行强制供热计量收费,目的是为了节省能源寻找出路。欧盟在1994年以法律的形式,要求各成员国通过实施供热计量收费,降低能耗。 二、为什么实施供热计量? 1.节能环保,可持续发展。 节能和环保是21世纪的发展主题,走可持续发展之路是人类文明发展的一个新阶段。我国是能源消耗大国,目前就住宅建筑而言,每平方米耗热量要比同纬度相似气候条件的国家和地区高出1—2倍,而我国人均资源拥有量,仅为世界平均水平的二分之一。煤炭在我国能源结构中占60%以上,而世界平均水平只是25%。大量用煤会对空气造成严重污染,破坏城市大气质量。因此,在住宅取暖这一问题上,尽可能地节约用热、减少用煤量已成为当务之急。

北京市居住建筑供热计量管理办法

北京市居住建筑供热计量管理办法 (试行) 第一条为推进本市供热计量改革,提高社会节能意识,促进节能减排,建设绿色北京,依据《中华人民共和国节约能源法》、《民用建筑节能条例》、《北京市供热采暖管理办法》、《民用建筑供热计量管理办法》和《北京市推进供热计量改革综合工作方案》等规定,结合本市实际,制定本办法。 第二条本市行政区域内从事居住建筑开发、规划、设计、建设、施工、监理、供热节能与建筑节能改造的单位和居住建筑供热单位、热用户,应当遵守本办法。 第三条本市新建居住建筑和具备供热计量条件的既有居住建筑应当实行供热计量收费。 不具备供热计量条件的既有居住建筑,分步骤实施建筑节能及热计量改造并实行供热计量收费。 第四条新建居住建筑和实施建筑节能改造的居住建筑应当严格按照本市有关建筑设计规范、技术导则、标准等要求进行规划、设计、施工、验收,确保供热系统安装热计量装置和室内温控装置,具有实现供热量自动控制和能耗统计功能,具备分户供热计量收费的条件。 第五条新建居住建筑的计量装置设备购置、安装、检定等费用应当纳入房屋建造成本。 既有二步、三步节能居住建筑,实施热计量改造的设备购置、安装、检定等改造费用由财政和供热单位按照一定比例分担,改造费用的具体使用管理办法由市财政会同市市政市容委研究制定。 既有非节能居住建筑的供热计量改造纳入全市既有建筑节能改造项目管理,组织实施及资金筹措按照市住房城乡建设委的有关文件执行。 第六条在新建居住建筑规划设计阶段或者既有居住建筑节能改造方案制定阶段,开发建设单位或者建筑节能改造单位应当与在市政市容主管部门备案的供热单位签订《供热计量装置分项工程建设专项合同》,并在合同中按照《北京市供热计量应用技术导则》确定供热计量方式,明确以下内容: (一)建筑物热力入口、供热计量装置和室内温度调控装置的技术指标及质量标准; (二)开发建设单位或者建筑节能改造单位的建筑节能质量责任; (三)供热单位采购供热计量装置、温度调控装置的责任、费用、管理责任、违约责任等内容。 开发建设单位和供热单位应当将确定的供热计量方式及相关事项分别列入房屋销售合同和供热用热合同。

换热站课程设计说明书

供热课程设计说明书 题目: 院(部): 专业: 班级: 姓名: 学号: 指导教师: 完成日期:

目录 摘要 (3) 第一章绪论 (4) 第二章热负荷计算 (6) 原始资料 负荷计算 第三章供热系统方案的选择 (11) 系统热源型式及热媒的选择 供热管道的平面布置类型 供热管道的定线原则 管道的保温与防腐 第四章设备的选择 (13) 热交换器选型 水泵的选择和计算 除污器选择 设计小结 (19) 参考文献 (21) 摘要 本设计名为长春市曙光苑小区室外供热管网和换热站工程设计。 随着国家计量供热的逐步推行,供热行业面临着新的机遇和挑战。计量供热是供热行业从粗放型管理方式向精细型管理方式的一次深刻转变。计量供热的主目标是节能环保。计量供热的成功实行必须依托高精确的热网调控。而热网的高精确调控基础是热网的设计和建设。这对我们供热系统的设计人员和施工人员提出了新的更高的要求。能否设计出满足热网精确调控需求的供热系统是当前我们设计人员面临的一道重要难题。

供热工程是现代化城市重要的基础设施,也是城市公共事业的一项重要设计。各地区都努力从现有条件出发,积极调整能源结构,研究多元化的供热方式,实现供热事业的可持续发展,实现计量供热的节能目标。计量供热不仅能给城市提供稳定的可靠地高品位热源,改善人民生活环境。而且能节约能源,减少城市污染。有利于城市美化,有效地利用城市空间。城市供热管网的设计,首先要在总体规划的指导下,既要为今后的发展留有余地,又要实事求是的对热负荷进行调查和计算。在了解热负荷的性质、类别、用途等多方面现场的资料后,进行供热外网的设计。 本次设计以节能建筑的热指标为基础,以热网的精确调节为最终目标,尽量降低热网的各项指标,尽量应用精确调节的阀门和设备,为计量供热打好基础。 本设计以经济、环保、节能为原则,通过借鉴以前的设计方法和经验,采用了合理的技术措施,使设计的各个系统达到了很好的使用效果。 关键词:集中供热;供热管网;换热站;节能; 第一章绪论 一、我国城市供热的技术走向 1,我国城市集中供热的技术方向,主要采用热电联产的型式,这是我国当前的具体情况决定的。当然,集中供热的首要前提是节约能源,但是当前我国电力紧张的局面也是不能忽视的。在供热的同时,生产一定量的电力,也能缓解部分用电的需要。 2,落实热负荷,是集中供热一切要素之首。没有准确的热负荷,热电站的建设将似海滩上的建筑,不仅不能节约燃料,更无经济效益可谈。 3,目前,我国建设资金短缺,无论是建设热源还是管网,耗资都相当大。因此,改造老凝汽式电站为热电厂,既可大大降低投资,也可缩短工期,且运行效益可立竿见影。这是集中供热应优先考虑的热源。 4,尽可能在老厂扩建供热机组,降低生产与非生产设施投资,并且技术上有比较强的后盾,安全生产有比较可靠的保证。

中华人民共和国行业标准供热计量表

中华人民共和国行业标准 供热计量技术规程 JCJ 173—2009 条文说明 目次 1 总则 2 术语 3 基本规定 4 热源和热力站热计量 4.1 计量方法 4.2 调节和控制 5 楼栋热计量 5.1 计量方法 5.2 调节和控制 6 分户热计量 6.1 一般规定 6.2 散热器热分配计法 6.3 户用热量表法 7 室内供暖系统 7.1 系统配置 7.2 系统调控 1 总则 1.0.1 供热计量的目的在于推进城镇供热体制改革,在保证供热质量、改革收费制度的同时,实现节能降耗。室温调控等节能控制技术是热计量的重要前提条件,也是体现热计量节能效果的基本手段。《中华人民共和国节约能源法》第三十八条规定:国家采取措施,对实行集中供热的建筑分步骤实行供热分户计量、按照用热量收费的制度。新建建筑或者对既有建筑进行节能改造,应当按照规定安装用热计量装置、室内温度调控装置和供热系统调控装置。因此,本规程以实现分户热计量为出发点,在规定热计量方式、计量器具和施工要求的同时,也规定了相应的节能控制技术。 5 供热计量技术规程 1.0.2 本规程对于新建、改扩建的民用建筑,以及既有民用建筑的改造都适用。 1.0.3 本规程在紧紧围绕热计量和节能目标的前进下,留有较大技术空间和余地,没有强制规定热计量的方式、方法和器具,供各地根据自身具体情况自主选择。特别是分户热计量的若干方法都有各自的缺点,没有十全十美的方法,需要根据具体情况具体分析,选择比较适用的计量方法。 2 术语 2.0.4 热量计量装置包括用于热量结算的热量表,还有针对若干不同的用户热分摊方法所采用的仪器仪表。

2.0.5 热量测量装置包括符合《热量表》CJ 128产品标准的热量表,也包括其他的用户自身管理使用的不作结算用的测量热量的仪表。 2.0.6 分户热计量从计量结算的角度看,分为两种方法,一种是采用楼栋热量表进行楼栋计量再按户分摊;另一种是采用户用热量表按户计量直接结算。其中,按户分摊的方法又有若干种。本术语条文列出了当前应用的四种分摊方法,排名不分先后,其工作原理分别如下: 散热器热分配计法是通过安装在每组散热器上散热器热分配计(简称热分配计)进行用户热分摊的方式。 流量温度法是通过连续测量散热器或共用立管的分户独立系统的进出口温差,结合测算的每个立管或分户独立系统与热力人口的流量比例关系进行用户热分摊的方式。 通断时间面积法是通过温控装置控制安装在每户供暖系统入口支管上的电动通断阀门,根据阀门的接通时间与每户的建筑面积进行用户热分摊的方式。 户用热量表法是通过安装在每户的户用热量表进行用户热分摊的方式,采用户表作为分摊依据时,楼栋或者热力站需要确定一个热量结算点,由户表分摊总热量值。该方式与户用热量表直接计量结算的做法是不同的。采用户表直接结算的方式时,结算点确定在每户供暖系统上,设在楼栋或者热力站的热量表不可再作结算之用;如果公共区域有独立供暖系统,应要考虑这部分热量由谁承担的问题。2.0.7 室温调控包括两个调节控制功能,一是自动的室温恒温控制,二是人为主动的调节说定温度。 3 基本规定 3.0.1 本条是强制性条文。根据《中华人民共和国节约能源法》的规定,新建建筑和既有建筑的节能改造应当按照规定安装用热计量装置。目前很多项目只是预留了计量表的安装位置,没有真正具备热计量的条件,所以本条文强调必须安装热量计量仪表,以推动热计量工作的实现。 3.0.2 本条是强制性条文。供热企业和终端用户间的热量结算,应以热量表作为结算依据。用于结算的热量表应符合相关国家产品标准,且计量检定证书应在检定的有效期内。 3.0.3 《中华人民共和国计量法》等九条规定:县级以上人民政府计量行政部门对社会公用计量标准器具,部门和企业、事业单位使用的最高计量标准器具,以及用于贸易结算、安全防护、医疗卫生、环境监测方面的列入强制检定目录的工作计量器具,实行强制检定。未按照规定申请检定或者检定不合格的,不得使用。实行强制检定的工作计量器具的目录和管理方法,由国务院制定。其他计量标准器具和工作计量器具,使用单位应当自行定期检定或者送其他计量检定机构检定,县级以上人民政府计量行政部门应当进行监督检查。 依据《计量法》规定,用于热量结算点的热量表应该实行首检和周期性强制检定,不设置于热量结算点的热量表和热量分摊仪表如散热器热分配计应按照产品标准,具备合格证书和型式检验证书。 3.0.4 热计量和节能改造工作应采用技术和管理手段,不能一味为了供热节能、而牺牲了室内热舒适度,甚至造成室温不达标。当然,室内温度过高是不合理的,在改造中没有必要保持原来过高的室温。

热计量施工方案

目录 1 编制依据????????????????? 2 2 工程概况????????????????? 3 3 施工部署????????????????? 3 4、主要施工方法及措施???????????? 4 5 施工管理措施??????????????? 11 6 质量保证措施??????????????? 18 7 施工安全措施??????????????? 20 8 施工消防措施??????????????? 22 9 夜间施工措施??????????????? 22 10 成品保护措施???????????????23

一.编制依据 1、图纸文件类 (1) 北京筑都方圆建筑设计研究院有限公司设计图纸 (2)工程招标文件、施工预算、现场情况 (3)建工集团质量体系文件 (4)国家及北京市有关规定 2、国家有关规范规定及图集 (1)《建筑给排水及采暖工程施工质量验收规范》GB50242-2002 (2)《北京市既有非节能居住建筑供热计量及节能改造项目管理办法》 (3)华北地区《91SB系列标准通用图集》 (4)《暖卫通风空调技术手册》 (5)《供热计量技术规程》(JGJ173-2009 ) (6)《流量温度法热分配装置技术条件》(JG/T 332-2011 ) 3、编制原则 3.1安全第一的原则 施工方案的编制中始终按照技术可靠、措施得力、“安全第一、预防为主”的原则确定施工方案。本工程是多层砖混结构住宅人群密集的小区,必须把安全措施落实到位、确保万无一失的前提下组织施工。 3.2优质高效的原则 加强领导,强化管理,优质高效。根据我们在施工组织设计中明

北京市居住建筑供热计量管理办法 和 基础热费

《北京市居住建筑供热计量管理办法(试行)》解读 作者: 来源: 时间:2010-10-27 北京市发布了《北京市居住建筑供热计量管理办法(试行)》(以下简称《办法》),该《办法》自2010年10月1日起实施。为使大家更加深入理解该《办法》,并更好地贯彻落实,本刊邀请了北京市供热行政管理部门的有关同志对《办法》主要条款进行解读。 一、什么是供热计量收费,为什么要实行供热计量收费? 答:供热计量收费是指供用热双方按照基本热价和计量热价相结合的两部制价格进行热费结算。目前,北京市供热能耗占全市社会能耗总量的20%左右,占全市建筑能耗的50%左右,节能潜力大。北京市将通过供热计量收费改革的实施,促进开发建设单位建造保温更好、更节能的房子;促使供热单位加强运行调节,精心管理,提高供热效率;并增强市民节能意识,用户根据自身用热习惯在一定温度范围内自主调节室内温度,少用热少缴费。以提高社会节能意识,促进节能减排,建设绿色北京。 二、今冬哪些居民实行热计量收费? 答:《办法》第三条规定:今年新建居住建筑和具备供热计量条件的既有居住建筑应当实行供热计量收费。新建居住建筑是指自2010年1月1日起通过竣工验收的集中供热居住建筑。 三、实行居民供热计量后如何收费? 答:《办法》第十七条规定:实行居民供热计量后实行两部制热价,由基本热价和计量热价两部分构成。基本热价按照建筑面积征收。其中: 燃煤锅炉供应的居住建筑基本热价标准为7元/建筑平方米·采暖季。 市热力集团供应的居住建筑基本热价标准为12元/建筑平方米·采暖季。 燃气、燃油、电锅炉供应的居住建筑基本热价标准为18元/建筑平方米·采暖季。计量热价按照用热量征收,价格标准为0.16元/千瓦时(44.45 元/吉焦)。 用户热费具体计算公式为: 用户热费=基本热费+计量热费 =基本热价×建筑面积+计量热价×用热量 例如:某热用户所住楼房建筑面积是70平米,供热方式为燃气锅炉供热,一个采暖季计量的用热量是4500千瓦时,那么该用户的计量热费为0.16*4500=720元,本采暖季应交用户热费=18*70+0.16*4500=1980元。 四、实行供热计量后采暖费用是否会增加?是如何结算的? 答:《办法》第十八条规定:本办法试行期间,居民用户实行供热计量收费时,供热单位在采暖期开始前先按照住宅面积收费的方式一次性收取采暖费,采暖期结束后进行清算,当供热计量的热费低于按照住宅面积收费时,按照供热计量的热费收取,用户多交的热费由供热单位返还给用户或者在收取下一个采暖期热费时予以抵扣;当供热计量的热费高于按照住宅面积收费时,按照住宅面积计算的热费收取。

计量供热中热计量方法的选择

计量供热中热计量方法的选择 摘要本文根据欧盟和德国在计量供热方面的标准和规定以及多年来的经验,结合我国这近些年计量供热的实践遇到的问题,提供了供热计量系统的选择方法,可供我国在推行计量供热中参考。实行计量供热的目的既是节约能源和保护环境,也是保证供热事业的可持续发展,要解决的问题:一是热量的正确计量;二是热费的合理分摊 就目前的计量技术而言,对热量的计量可以达到相当准确的程度。而对于具体的供热系统对象来说,从技术和经济方面的考虑,并不需要追求过高的精确度,而是保证计量系统在满足一定精度要求的同时还要有足够的稳定和持续可靠的运行特性。 目前欧盟各国在供热工程中采用的热量计量系统分两大类:第一类是热量表,其原理是通过对流量和进、出口温度差的测定而由积算装置求得热量。按流量计的类型,可分为叶轮式、涡轮式、涡结式、超声波和电磁式等类型。第二类是热分配表,分蒸发式和电子式两种。这类表不属于直接计量式仪表,它必须有热量表的配合。它的特点是能够反一个大型热量表所计量的整个计量单元的总热量分配到每个用户的各个房间。对此欧盟都有相应的标准:EN1434-热计量表;EN835-蒸发式热分配表;EN834-电子式热分配表;这些标准都源于德国标准DIN4713,其中包括了热计量表、蒸发式热分配表、电子式热分配表和热量分摊计算方法的标准等内容。 选用什么样的热计量系统,一般根据以下5个条件:①根据技术标准考虑所要采用的计量系统的可行性;②计量系统的误差分析;③在读取测量数据时对用户的影响;④每年系统计量与结算所花费的费用;⑤用户对所彩的计量系统的认可程度,这其中最重要的是为了进行供热系统的热计量和热费分摊计算每年到底要花费多少钱。因为热计量的目的是要节省能源,减少用户的热费开支,所以在德国的"节能法"第5第第一款(EnEG§5Abs.1)规定:为供热计量而花费的总费用不应超过实行计量供热节能所省下来的费用。这样就必须解决两个问题:一是实行计量供热到底能节省多少钱;二是采用不同的计量方法,各需要多少钱。为此,德国政府曾委托汉堡的GEWOS城市、地区和经济研究所对使用多年的建筑进行了研究,结果指出:节能数额至少为总热费的15%。1989年瑞士能源部也进行了两年的研究,得出了可节能17~24%的结果。同样,奥地利的Adunka教授对区域供热的研究也得出了可节能15~24%的结果。在我国,1996年天津市政府供热办公室同德国THECHEM能源服务公司在天津几栋已使用两年以上的住宅中进行了一个冬季的测试,其结果表明可节能20~25%;1997年冬季,天津大学又在节能鼓励的情况下进行了测试,结果表明有政策鼓励的节能效果和只靠散热器恒温调节阀的自控作用的节能效果基本相等。我们把前者称为行为节能,后者称为技术节能。这就是说,在原来节能25%的楼栋中,不予节能奖励,或者说不与用户的经济利益挂钩,而节约的热能只有12.5%。虽然我国在这方面所做的工作要比欧盟各国少得多,但也有不少单位作了不少有益的探索,可供我们在推行计量供热中参考。 1996年欧洲计量供热联合会编写的"计量供热指南"中列举不同时期、不同体型系数的建筑不同供热系统和不同作者的17项研究结果,其总的计量供热节能范围大致在15~32.5之间。2001年德国出版的"计量供热手册"(第五版)中指出:在德国1995年衽了新的"建筑保温法",使建筑的耗能降低了近30%。对1995年以前的建筑,因为高的建筑节能比数还没有实行,所以热计量费用上限定为30%;而在1995年以后,由于"建筑保温法"的实施,对新建的建筑只有有限的热费用,所以对热计量费用的上限也就改定为20%。在我国尚没有确切的计量供热节能数据之前,这是值得我们参考的数据。 在供热计量系统的费用应在总热费中所占比例确定之后,如何确定热计量系统的费用就成了必须解决的问题。在欧盟各国,花费在热计量的费用包括:热计量仪表的购置费用和安装费;抄表读数、分摊计算、帐单制作及发送等服务费用。 为了弄清不同的热计量系统在同样的住宅建筑内每年用于热计量的费用所占采暖总费用的

供热计量设计规程

牡丹江市集中供热住宅计量供热设计规程 (征求意见稿) 1总则 1.0.1根据《中华人民共和国节约能源法》、《国务院关于加强节能工作的决定》(国发[2006]28号)和建设部《关于推进供热计量的实施意见》(城建[2006]59号) 、中华人民共和国行业标准《供热计量技术规程》(JGJ173-2009 J860-2009)、《牡丹江市建设局关于对市区新建建筑实行供热分户计量的通知》(牡建政发[2008]168号),为在城市住宅中推行分室控温、分户计量,加快实现集中供热由按面积收费转变为计量收费,促进供热系统节能和用户行为节能,特制定本规程。 1.0.2住宅计量供热系统设计,应执行本规程。同时还应遵循国家和我市的现行有关标准和规范,并积极采用先进、成熟的技术,使计量供热系统安全可靠、节能降耗、方便适用、经济合理。1.0.3本规程适用于牡丹江市行政区域内的新建、改建住宅、及住宅补建集中供热工程的设计。公寓、别墅、商住楼、集体宿舍等居住建筑的供热系统设计可参照执行。

2术语 2.0.1计量供热系统 热源、热力站及终端等均具有热量计量功能的供热系统。 2.0.2建筑物热力入口 连接外网和建筑物内系统,具有调节、监测、关断等功能的装置组合。 2.0.3建筑物内系统 自建筑热力入口起至分户墙之间的采暖系统。 2.0.4户内系统 设置于住宅户(套)内的采暖系统。 2.0.5共用立管 多层或高层住宅内,用以连接各层户内系统的垂直供、回水管道,区别于传统的连接各层散热器的户内立管。 2.0.6户间传热负荷 由于户间隔墙及楼板间的温差而产生的热负荷。 2.0.7散热设备热负荷 用于确定散热设备的热负荷,在数值上为供热设计热负荷与户间传热负荷之和。 2.0.8热力站热负荷 用于确定热力站换热设备的热负荷,一般等于热力站供热范围内用户设计热负荷之和与室外管网热输送效率的商。

住房城乡建设部、国家发展改革委、财政部、国家质检总局《关于进一步推进供热计量改革工作的意见》(建城〔2

关于进一步推进供热计量改革工作的意见 建城…2010?14号 北京市、天津市、河北省、山西省、内蒙古自治区、辽宁省、吉林省、黑龙江省、山东省、河南省、陕西省、甘肃省、青海省、宁夏回族自治区、新疆维吾尔自治区及新疆生产建设兵团住房和城乡建设厅(建委、市政市容委、建设局、规划局、房地局)、发展改革委、财政厅(局)、质量技术监督局:我国北方地区冬季供热采暖每年消耗煤炭1.5亿多吨标煤,占北方地区建筑能耗50%以上,大大高于同等气候条件下发达国家水平,浪费严重。为贯彻执行《节约能源法》和《民用建筑节能条例》,进一步深化城镇供热体制改革,推进供热计量改革,促进建筑节能,现提出如下意见: 一、基本原则 推进供热计量改革要遵循以下原则: 坚持政府主导的原则。各地应将供热计量改革作为推进本地区节能减排的重点工作,明确各部门的责任和工作目标,落实具体任务和实施计划,纳入政府年度绩效考核。 坚持供热单位实施主体的原则。供热单位必须按照法律法规的规定和地方政府确定的目标任务,积极实施供热计量收费工作。

坚持同步推进的原则。新建建筑工程建设与供热计量装置安装同步,既有居住建筑供热分户计量改造与节能改造同步,供热计量装置安装与供热计量收费同步。 二、工作任务 (一)大力推行按用热量计价收费。从2010年开始,北方采暖地区新竣工建筑及完成供热计量改造的既有居住建筑,取消以面积计价收费方式,实行按用热量计价收费方式。用两年时间,既有大型公共建筑全部完成供热计量改造并实行按用热量计价收费。“十二五”期间北方采暖地区地级以上城市达到节能50%强制性标准的既有建筑基本完成供热计量改造,实现按用热量计价收费。各地价格主管部门要依据《城市供热价格管理暂行办法》,按照供热计量工作实施进度同步出台供热计量价格,出台的供热价格政策要有利于鼓励和促进按用热量计价收费。为调动用户行为节能的积极性,可将两部制热价中按面积收取的基本热价比例暂按30%执行。 (二)完善新建建筑供热计量的监管机制。切实加强新建建筑工程规划、设计、施工图审查、施工、监理、验收和销售等环节落实建筑节能标准和供热计量装置安装的监管,保证新建建筑达到建筑节能标准和分户计量收费的要求。 (三)保质保量完成既有居住建筑供热计量及节能改造工作。要将既有居住建筑供热计量及节能改造与老旧小区环

热计量方案

二、热计量方案 2.1 热计量方法 依据《供热计量技术规程》(JGJ173-2009)及相关行业标准和做法,我国目前实施的热计量方法总的分为两种,一种是热量直接计量,一种是热量分摊计量。热量直接计量方式是采用户用热量表直接结算的方法,对各独立核算用户计量热量。热量分摊计量方式是在楼栋热力入口处(或热力站)安装热量表计量总热量,再通过设置在住宅户内的测量记录装置,确定每个独立核算用户的热量占总热量的比例,进而计算出用户的分摊热量,实现分户热计量。用户热分摊方法主要有户用热量表法、通断时间面积法、温度法、散热器热分配法和流量温度法。 其中直接计量方式和户用热量表分摊法均采用户用热量表,且其在用户端实施方法基本一致,以下统称为户用热量表法。增加计算方法及具体详细内容。 (1)户用热量表法 通过安装在每户的户用热量表进行计量和分摊用户用热的方式,采用户作为分摊依据时,楼栋或者热力站需要确定一个热量结算点,由户表计量分摊总热量值。 图例:①——户用热量表,②——电动阀,③——温控装置,④——温控阀,⑤过滤器,⑥——测温球阀,⑦——热量表数据传输至载波模块 户用热量表法可用于共用立管的分户独立室内供暖系统和地面辐射供暖系统。户用热量表应符合《热量表》CJ 128的规定。户内系统入口装置应由供水管调节阀、置于户用热量表前的过滤器、户用热量表及回水管截止阀组成。安装户用热量表时,应保证户用热量表前后有足够的直管段。 (2)通断时间面积法 通过控制安装在每户供暖系统入口支管上的电动通断阀门,根据阀门的接通时间与每户的建筑面积进行用户热分摊的方式。以每户的供暖系统通水时间为依据,分摊建筑的总供热量。 对于接户分环的水平式供暖系统,在各户的分支路上安装室温通断控制阀,

各种供热计量方法的总结

各种供热计量方法的总结 摘要本文主要阐述了国内热计量改造工程和新建工程中使用的几种供热计量方法的原理和各自优点、缺点,如户用热量表法,散热器热分配计法,流量温度法,通断时间面积法,温度法,通断时间(温度)面积法。通过以上计量方法对比发现,各种方法都有其特点、适用条件,实际工程可根据其自身特点选择合适的计量方法。 关键词供热计量方法户用热量表法散热器热分配计法流量温度法通断时间面积法温度法通断时间(温度)面积法 0 引言 供热计量的目的在于推进城镇供热体制改革,在保证供热质量、改革收费制度的同时,实现节能降耗【1】。近几年来,国家对于新建建筑强制安装热计量装置的规定得到了比较好的落实,既有建筑的热计量改造也进行的如火如荼,建筑能耗得到了明显的降低。 热计量这一新事物,经过十几年的探索和试验,形成两种计量理念、六种方法。一种计量理念是“用多少热,交多少费”。从国外引进的户用热量表法和散热器热分配表法、北京众利德邦公司研发的流量温度法、清华大学江亿院士研发的通断时间面积法都是遵循这一理念。另一种热计量理念是:“享受多少温度,交多少费” 。哈工大方修睦教授研发的温度法,采用的就是这种计量理念。综合以上几种计量方法,珠海爱迪生节能科技有限公司开发出了通断时间(温度)面积法供热计量方法。 本文就这几种供热计量方法进行简要介绍。 1 供热计量方法的简述 1.1 户用热量表法 原理:该系统由各户用热量表以及楼栋热量表组成。在每户进口的供暖环路上安装一块户用热量表,通过读取热量表的热量耗用数据,获得住户的热量消耗量,根据热量单价进行计价。 目前在新建建筑中,普遍使用一户一表的方式。此种方式计量是否准确关键在于热量表的选择。热量表根据流量传感器的形式可分为:机械式热量表、超声波热量表和电磁式热量表。机械式热量表的初投资和流量测量精度相对较低,且传感器对轴承有严格要求和对水质有一定的要求。超声波热量表的初投资相对较高,流量测量精度高、压损小、不易堵塞,但流量计的管壁锈蚀程度、水中杂质含量、管道振动等因素将影响流量计的精度。电磁式热量表初投资偏中,但流量测量精度是热量表所用的流量传感器中最高的、压损小,此表的流量计工作需要外部电源,而且必须水平安装,安装、拆卸和维护较为不便。此种方法需要对住户位置进行修正。它读数直观,容易理解,适用于分户独立式室内供暖系统及分户地面辐射供暖系统。此种方法也存在不足:

相关文档
相关文档 最新文档